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Abstract—While computing speed continues increasing 
rapidly, data-access technology is lagging behind. Data-access 
delay, not the processor speed, becomes the leading 
performance bottleneck of high-end/high-performance 
computing. Prefetching is an effective solution to masking the 
gap between computing speed and data-access speed. Existing 
works of prefetching, however, are very conservative in 
general, due to the computing power consumption concern of 
the past. They suffer in effectiveness especially when 
applications' access pattern changes. In this study, we propose 
an Algorithm-level Feedback-controlled Adaptive (AFA) data 
prefetcher to address these issues. The AFA prefetcher is based 
on the Data-Access History Cache, a hardware structure that is 
specifically designed for data prefetching. It provides an 
algorithm-level adaptation and is capable of dynamically 
adapting to appropriate prefetching algorithms at runtime. We 
have conducted extensive simulation testing with SimpleScalar 
simulator to validate the design and to illustrate the 
performance gain. The simulation results show that AFA 
prefetcher is effective and achieves considerable IPC 
(Instructions Per Cycle) improvement in average.  

Keywords-data prefetching; high-performance processors; 
computer architecture; memory wall 

I.  INTRODUCTION 
As semiconductor process technology and micro-

architecture evolve, the processor cycle times have been 
significantly reduced in the past decades. However, 
compared to processor performance improvement, data-
access performance (latency and bandwidth) improvement 
has been at snail’s pace. The memory speed has only 
increased by roughly 9% each year over the past two 
decades, which is significantly lower than the improvement 
speed of nearly 50% per year for processor performance 
[12]. This performance disparity between processor and 
memory is predicted to continually expand in next decades 
[12]. Multi-level cache hierarchy architectures have been the 
primary solution to avoiding large performance loss due to 
long memory-access delays. However, cache memories are 
designed based on data access locality. When applications 
lack data access locality due to non-contiguous data 
accesses, multi-level cache memory hierarchy does not work 
well. 

Data prefetching is one of the basic techniques associated 
with multi-level cache hierarchy to bridge the performance 

gap between processor and memory. The basic idea of data 
prefetching is observing data access patterns, speculating 
future access addresses and fetching the data from predicted 
addresses in advance. Data prefetching can at least partially 
overcome the limitations of cache memories, and reduce 
long memory access latency by overlapping computation and 
data accesses. Intensive studies have been conducted and 
many strategies have been proposed for data prefetching in 
the past [4][5][6][7][8][14][15][17][23][26][28]. Prefetching 
has been adopted in production and found to be very 
effective for special applications with simple data access 
patterns, such as data streaming [15][8]. But in general, 
current prefetching techniques are very limited. Software 
solutions are too slow for cache level prefetching; whereas 
hardware prefetchers are static in nature and cannot change 
with the data access patterns of the applications. Previous 
studies show that there is no enough effort to support 
hardware dynamic adaptation among different strategies 
depending on the runtime application characteristics [3]. The 
fact is that data prefetching is application and data access 
pattern dependent. There is no single universal prefetching 
algorithm suitable for all applications at runtime. A general 
and effective data prefetcher must be dynamic in nature. 

In this study, we propose an Algorithm-level Feedback-
controlled Adaptive (or AFA in short) data prefetcher to 
exploit a dynamic and adaptive prefetching methodology 
based on the recently proposed generic prefetching structure, 
Data-Access History Cache (DAHC) [5], and runtime 
feedback collected by hardware counters. DAHC is a new 
cache structure designed for data prefetching. It is capable of 
effectively tracking data-access history and maintaining 
correlations of both data access address stream and 
instruction address stream. It can be used for efficient 
implementation of many history-based data prefetching 
algorithms [5]. Hardware counters gain considerable 
attention in recent years and are becoming more and more 
important for improving performance of contemporary 
architecture, operating system and applications [22][27][30]. 
This study exploits this trend and assumes hardware counters 
are available within a data prefetcher that generally resides 
on the lowest cache level. Based on DAHC and available 
hardware counters, the AFA data prefetcher is able to 
recognize distinct data-access patterns and adapts to the 
corresponding appropriate prefetching algorithms at runtime. 
This adaptation methodology is significantly better than 



conventional static prefetching strategies. It improves the 
prefetching effectiveness which in turn improves the overall 
performance. AFA prefetcher does consume some 
transistors. However, the hardware chip space and the 
number of transistors integrated on chip are not limitations 
for current processor architectures. Trading chip space for 
lower access latency is a current trend [16][29]. AFA 
prefetcher and DAHC follow the trend. 

The rest of this paper is organized as follows. Section II 
briefly reviews the DAHC structure. Section III presents the 
proposed AFA prefetcher design and discusses 
implementation related issues. Section IV presents the 
simulation environment and simulation results. Section V 
discusses related work, and finally Section VI concludes this 
study. 

II. DATA-ACCESS HISTORY CACHE 
To fully exploit the benefits of data prefetching and to 

focus on reducing data-access latency to achieve a high 
sustained performance instead of building extensive compute 
units to achieve a high peak performance, we proposed a 
generic prefetching-dedicated cache structure, named Data-
Access History Cache (DAHC) [5]. The DAHC serves as a 
fundamental structure dedicated to data prefetching. The 
DAHC behaves as a cache for recent reference information 
instead of as a traditional cache for either instructions or 
data. Theoretically, it is capable of supporting any history-
based prefetching algorithms. 

The design rationale of DAHC is that history-based 
prefetching algorithms must rely on correlations among 
either instruction address stream or data address stream, or 
both. Thus, DAHC is designed to have three hardware tables: 
one data-access history table (DAH table) and two index 
tables, program counter index table (PIT) and address index 
table (AIT). The DAH table accommodates history details, 
while PIT and AIT maintain correlations from instruction 
and data address stream viewpoints respectively. Various 
prefetching algorithms [5] thus can access these two tables to 
obtain the required correlation as necessary. Fig. 1 illustrates 
the general design of DAHC and a high-level view of how it 
can be applied to support various prefetching algorithms. 

Fig. 2 illustrates the detailed structure of DAHC through 
an example. The DAH table consists of PC (program 
counter), chain_PC, Addr, chain_Addr and State fields. PC 
and Addr fields store the instruction address and data 
address separately. The chain_PC and chain_Addr point to 
an entry where the last access from the same instruction or 
the last access of the same address is located. Therefore, 
chain_PC and chain_Addr connect all accesses from the 
instruction stream and data stream perspectives. This design 
offers the fundamental mechanism to detect potential 
correlations and access patterns. The State field maintains 
state machine status used in prefetching algorithms. The PIT 
table has two fields, PC and Index. The PC field represents 
the instruction address, which is a unique index in this table. 
The Index field records the entry of the latest data access in 

the DAH table from the instruction stored in the 
correspondent PC field. It is the connection between the PIT 
and the DAH tables. The address index table is similarly 
defined. For instance, in Fig. 2, the DAH table captured four 
data accesses, three of them issued by instruction 403C20 
(stored in the PC field) and one by instruction 4010D8. The 
instruction 403C20 accessed data at address 7FFF8000, 
7FFF8004 and 7FFF800C in sequence, which is shown 
through the Addr and chain_PC fields. The instruction 
403C20 and 4010D8 are also stored in the PIT table, and the 
corresponding index field tracks the latest access from the 
DAH table, which are entry 3 and 1 respectively. The AIT 
table keeps each accessed address and the latest entry, as 
shown in the bottom left of the figure, thus connecting all 
the data accesses on the basis of the address stream. 

 

 
Figure 1.  DAHC general design and a high-level view. 

The DAHC provides a prototype design of a prefetching-
dedicated structure. It works as a cache for data access 
information compared with conventional cache for either 
instructions or data. The DAHC can be placed at different 
memory hierarchy levels for various desired data 
prefetching. For instance, it can be used to track all accesses 
to first level cache and to serve as an L1 cache prefetcher. It 
can also be placed at the second level cache and to serves as 
an L2 cache prefetcher only. The straightforward design 
makes the implementation uncomplicated. The 
implementation of the DAHC is a specialized physical 
cache, like victim cache [13] or trace cache [20]. The PIT 
and AIT tables can be implemented with any associativity 
such as 2-way or 4-way. Since the index tables usually have 
less valid entries than the DAH table, it is unlikely that 
some entry is replaced due to a conflict miss [5]. Even if a 
conflict miss occurs, it does not affect the correctness except 
discarding certain access history. The DAH table can be 
implemented with a special structure where each entry can 
be located by using its index. The logic to fill/update the 
DAHC comes from the cache controller. The cache 
controller traps data accesses at the monitored level and 
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keeps a copy of the access information in the DAHC. Note 
that DAHC design is general and it does not imply any 
restriction to the system environment. It works in CMP or 
SMT environment, as well as in an environment where 
multiple applications are running concurrently. 

 

 
Figure 2.  DAHC design: PIT, AIT and DAH tables. 

III. ALGORITHM-LEVEL FEEDBACK-CONTROLLED 
ADAPTIVE DATA PREFETCHER 

In this section, we present the design of an Algorithm-
level Feedback-controlled Adaptive data prefetcher. This 
proposed AFA prefetcher leverages the powerful 
functionality provided by DAHC, supports multiple 
prefetching algorithms and dynamically adapts to those 
algorithms that perform well at runtime. The essential idea is 
using runtime feedback and evaluation to direct the dynamic 
adaptation. We first introduce the evaluation metrics, and 
then discuss the implementation and the methodology of 
directing adaptation. 

A. Evaluation Metrics 
While extensive studies exist in prefetching, few studies 

present a formalized metric to evaluate the effectiveness of 
prefetching algorithms. We analyze and sort out the essential 
and most critical criteria to model prefetching evaluation and 
present a formal definition in this study. These metrics 
provide a comprehensive evaluation of hardware prefetching 
methodologies. These metrics can be independently used to 
evaluate a prefetcher in addition to commonly used metrics, 
such as an IPC speedup metric. 

1) Prefetch Precision: The first and widely-adopted 
metric is termed prefetching precision or prefetching 
accuracy. This metric characterizes the percentage of 
prefetches that are actually accessed by demand requests, 
thus reflecting how accurate the prefetch requests and the 
prefetching algorithms are. We present a formal definition 
of prefetching precision as follows. 

Definition 1. Prefetching precision is defined as the 
ratio between the number of distinct prefetched cache lines 
that are accessed by at least one demand request after being 
prefetched in and before being replaced out over the 
number of total prefetched cache lines. 

By this definition, the prefetching precision models the 
accuracy of the prefetcher, i.e. the percent of useful cache 

lines in the overall cache lines prefetched. Note that we 
define a useful prefetch as being accessed at least once 
when the prefetched cache line resides in the prefetch 
destination. Therefore, a repeated access to that cache line in 
the current lifecycle does not account into the total number 
of useful prefetches. However, if a cache line is prefetched 
again into the destination after being displaced, and gets hit, 
this scenario will contribute to one useful prefetch. We refer 
these cache lines brought in by prefetch and accessed by 
demand requests as prefetch hits, in contrast with demand 
hits, those lines fetched by demand and hit again by other 
requests. 

The prefetch precision should be considered as the most 
critical metric to evaluate or direct prefetch adaptation, as it 
describes the cost-efficiency of a prefetcher well. Taking 
prefetch precision into consideration, an aggressive but not 
accurate enough prefetcher should be largely avoided 
because it might produce a large number of useless 
prefetches, which significantly wastes resources, such as 
power and cache line slots. Instead, this metric favors a 
prefetcher with high-confidence. The prefetch precision 
metric suggests that the prefetcher should focus on 
identifying the correct access pattern and make a highly-
accurate prediction. Such an approach maximizes the 
hardware investment on the prefetcher and achieves a high 
cost-efficiency. An ideal prefetcher will produce a 
prefetching precision with value 1. In practice, the 
prefetching precision has a range from 0 to 1. 

Though the prefetch precision is critical and 
straightforward, it merely describes one aspect of the 
problem under study – the prefetch precision does not 
quantify how effective the prefetcher is, i.e. how many 
misses among the overall misses are hidden. The next 
metric we formalize addresses this limitation. 

2) Prefetch Coverage: The prefetch coverage metric is 
introduced to complement prefetch precision and quantify 
the other aspect of how well a prefetcher works. We 
formalize the prefetch coverage definition as follows. 

Definition 2. Prefetch coverage is defined as the ratio of 
the number of misses reduced due to prefetches over the 
total number of misses that will occur without prefetching. 

As the definition states, the prefetch coverage focuses on 
quantifying the ratio of the misses reduced, i.e. how wide a 
prefetcher covers the demand misses that are supposed to 
occur without the assistance of prefetching. A highly-
accurate prefetcher does not necessarily provide a wide 
coverage.  This is because such a prefetcher could be very 
conservative and takes action only when the prefetcher has a 
high-confidence prediction. This conservativeness results in 
a high precision but the effectiveness in terms of miss 
reduction ratio is low. The vice versa holds as well, i.e. a 
prefetcher with wide coverage is not necessarily highly-
accurate since the prefetcher could be very aggressive (such 
as with a large prefetch degree) to improve the coverage 
while sacrificing the precision. In essence, the prefetch 
coverage and prefetch precision are complementary to each 
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other, and together they quantify the effectiveness of a 
prefetcher from two aspects. 

3) Prefetch Pollution: While prefetch precision and 
prefetch coverage can reflect the prefetch effectiveness, or 
the positive side, of a prefetching algorithm well, they do 
not characterize the negative side of an algorithm. Cache 
pollution [28] is considered a critical down side of 
prefetching. When a cache line that is replaced by a 
prefetched line is later accessed by a demand request, cache 
pollution occurs. Such a cache miss will not happen without 
the interference of prefetching. This scenario, cache 
pollution, is referred to as a negative side-effect of 
prefetching. We present a formal definition to describe 
prefetch pollution. 

Definition 3. Prefetch pollution is defined as a ratio of 
the number of additional demand misses caused by 
prefetching that will not occur without prefetch interference 
over the number of misses that will occur without 
prefetching. 

According to this definition, prefetch pollution quantifies 
the percent of extra demand misses due to prefetches, which 
means that those demand misses will not occur if 
prefetching is not adopted. The occurrence of these misses 
is due to the limited cache size and the replacement of 
useful cache lines by prefetched cache lines. Together with 
prefetch precision and prefetch coverage, the prefetch 
pollution completes a three-tuple, (precision, coverage, 
pollution) or PCP in short, to evaluate a prefetching 
algorithm. These three metrics are complementary to each 
other, and assess an algorithm from both positive and 
negative aspects. Some literatures separate other metrics, 
such as lateness [25]. We observed that these metrics are 
well covered in the 3-tuple PCP metric. A separation of 
these additional metrics might be helpful, but might also 
cause confusion. In this study, the proposed dynamic 
adaptation is based on the 3-tuple PCP metric. 

B. Evaluation Metrics: On-the-Road 
We have presented the formal definitions of a PCP 

metric to evaluate and direct a prefetcher in the previous 
section. We discuss the hardware design and realization of 
these metrics in the proposed AFA prefetcher in this section. 

1) Realizing Prefetch Precision Metric: To realize the 
prefetch precision metric, the AFA prefetcher utilizes two 
statistics counters for each evaluated algorithm, one counter 
for the prefetch hits, and one counter for overall prefetches. 
We refer these two counters as prefetch_hits and 
prefetch_total. In addition, to collect the statistic of prefetch 
hits, we need to distinguish the cache lines prefetched from 
demanded. This requirement results in a major hardware 
storage budget. We assume each cache line in the prefetch 
destination (L2 cache in this study) has one extra prefetch 
bit to represent whether this line is prefetched or fetched for 
each evaluated algorithm. When a cache line is prefetched 
into destination, this prefetch bit is set. If this cache line is 

ever accessed during its lifetime in the cache (after being 
prefetched and before being displaced), the prefetch_hits 
counter is increased and the prefetch bit is reset. By this 
way, the prefetched cache line is not counted as multiple 
hits even when it is accessed multiple times, which is 
consistent with the definition. A simple reason behind this 
decision is that the first hit acts like a regular demand 
request and fetches in data, and the future accesses will hit 
in cache. The actual saving of the prefetching is the first 
access. If a cache line is brought in by a normal demand 
request, the prefetch bit is not set. The combinatorial logic 
to maintain this prefetch bit, set and reset, is trivival, and the 
hardware implementation of this logic is not complicated. 
Note that if a cache line is prefetched by multiple 
algorithms, the corresponding prefetch bits will be set and a 
hit of this cache line will attribute to the statistics of each 
corresponding prefetcher. 

2) Realizing Prefetch Coverage Metric: The 
prefetch_hits counter discussed above can also be used in 
calculating the prefetch coverage. This is because that the 
statistics the prefetch_hits counter collects is the number of 
misses reduced due to prefetches. To compute the prefetch 
coverage, the AFA prefetcher needs another counter − the 
number of overall misses that will occur without 
prefetching. The AFA prefetcher utilizes another acounter, 
demand_misses counter, to collect the number of misses that 
occurs even with prefetching. The prefetch_hits counter 
represents the number of misses saved by prefetch, and the 
demand_misses counter represents the number of misses 
that still occur. The prefetch coverage is computed as: ܿݐ݂݁݁ݎ݌ℎ_ܿ݁݃ܽݎ݁ݒ݋ = ௣௥௘௙௘௧௖௛_௛௜௧௦௣௥௘௙௘௧௖௛_௛௜௧௦ାௗ௘௠௔௡ௗ_௠௜௦௦௘௦  

3) Realizing Prefetch Pollution Metric: It is more 
challenging to collect the prefetch pollution statistics than to 
collect prefetch precision and coverage. The reason is that 
we never know whether the replaced cache line due to a 
prefetch will be used in future or not. An optimal solution to 
collecting the prefetch pollution metric is tracing down all 
these cache lines and detecting whether any future requests 
will access these lines. If such a cache line is detected, 
which means that this cache line is replaced out due to a 
prefetch but is needed by a demand request, a case of cache 
pollution is detected. However, such an optimal solution 
will require infinite-size storage to keep all past cache lines 
replaced out due to prefetches. This approach is not feasible 
in practice. Motivated from existing studies [1][18][25], the 
AFA prefetcher utilizes a Bloom filter [1] to estimate the 
percentage of cache pollution. 

Suppose the cache line size is 64B, and a cache block 
address is 26 bits. The pollution filter splits 26 bits into two 
parts, high-order 13 bits and low-order 13 bits. These two 
parts are fed into an XOR logical unit, and a filtered 
address, with 13 bits, is the output. This filtered address is 
used to index a bit vector and set the corresponding bit in 



the vector. The AFA prefetcher uses this filter to estimate 
the pollution. It tracks each cache line that is replaced out 
due to a prefetch and feeds this cache line address into the 
filter. A corresponding bit of the bit vector is set. It also 
feeds cache miss addresses into the filter, and if the 
corresponding bit is set, the AFA prefetcher estimates this 
cache line was in the cache but was replaced out due to a 
prefetch. After a cache pollution is detected, the 
corresponding bit is reset, as the cache line is fetched back 
into cache. The AFA prefetcher uses a pollution counter for 
each evaluated algorithm to accumulate the prefetch 
pollution statistics. The hardware cost of Bloom filters is 
discussed in Section III-E. 

C. Metrics Collection 
The AFA prefetcher periodically collects the PCP metric 

discussed above in order to make adaptation decision. The 
adaptive prefetching mechanism is designed to have two 
phases, metrics collecting phase and stably prefetching 
phase. In the collecting phase, all supported prefetching 
algorithms are enabled, and the statistics of each prefetching 
algorithm are tracked and collected. In the end of collecting 
phase, the PCP metric is computed for prefetching algorithm 
evaluation. In the stably prefetching phase, only the 
adaptively selected algorithm will be running, and all 
counters and pollution estimator are cleared and turned off. 
The decision to choose the working algorithm is discussed in 
the following subsection. 

The switch between these two phases is controlled by a 
phase timer. There are many potential ways for measuring 
the time and providing the phase timer, such as utilizing 
CPU cycles, issued instructions, issued load/store 
instructions or load/store misses. We choose the approach 
that views each cache miss as one time tick and accumulates 
to measure the time and provides the phase control. This is a 
feasible design choice to control the adaptive prefetcher 
behavior because the number of cache misses can fairly 
represent how the prefetcher should react. In addition, this 
design is considered better than utilizing cycles or issued 
instructions, as those numbers could be huge and increase 
rapidly. Utilizing cache misses as time ticks is a much 
simpler way for the AFA prefetcher. The AFA prefetcher is 
empirically configured with a collecting phase as 1/8th of the 
stably prefetching phase, which means it collects statistics 
and makes adaptive selection decision in one unit of time, 
and prefetch with selected algorithms for eight units of time. 

D. Adaptive Selection 
After collecting statistics and computing the metrics, the 

AFA prefetcher makes the decision to adaptively select the 
suitable prefetching algorithms. The decision is based on the 
evaluation of the performance of each prefetching algorithm, 
indicated by the 3-tuple metric, the precision, coverage and 
pollution. This evaluation is not complicated – simply done 
by comparing the runtime statistics against a preset 
threshold and classifying them as either high or low. If it is 
above the threshold, the prefetcher classifies the statistics as 

high. In contrast, if it is below the threshold, the prefetcher 
classifies it as low. In our simulation experiments, the 
threshold to distinguish a high/low prefetch precision, 
coverage and pollution are preset as 0.70, 0.3, and 0.2 
respectively based on empirical experience. In practice, 
these thresholds can be measured and determined in 
advance for any specific architecture. It can also be tuned 
dynamically at runtime. Fig. 3 illustrates a table of eight 
levels of prefetching algorithm performance that can be 
recognized by the prefetcher. 

 

 
Figure 3.  Prefetching algorithm performance table. 

Based on the prefetching algorithm evaluation 
performance table, the AFA prefetcher is able to identify 
and choose best prefetching algorithms dynamically. In our 
current study, we propose and analyze two different 
mechanisms, best-strategy adaptive selection and multi-
strategy adaptive selection, to select the algorithms 
adaptively. 

The best-strategy adaptive selection always outputs the 
one performing best in the statistics collecting phase. This 
decision is made based on the algorithm evaluation and the 
performance table – the lowest level is assigned to have the 
highest priority. Within the same level, the precision is 
assigned to have the highest preference, while the coverage 
has the medium and the pollution metric has the lowest 
preference. This means that if the AFA prefetcher sees 
multiple algorithms falling into multiple levels, the 
prefetcher chooses the lowest level algorithms as the 
candidate. If the prefetcher detects multiple candidates 
sharing the same lowest level, it favors the one with the 
highest precision. 

The best-strategy adaptation works by choosing the best 
strategy according to the defined policy (performance table 
and preference assignment) out of all supported algorithms. 
However, a potential limitation is that it only chooses one 
algorithm even if multiple strategies are performing well 
and can sometimes complement each other. In addition, this 
strategy always outputs one “relatively best” strategy, even 
though the best strategy might not work well enough at 
certain circumstances. Based on these observations, we 
introduce another adaptation strategy, multi-strategy 
adaptive selection, that chooses multiple optimal strategies 
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according to the evaluation and performance table. This 
adaptation strategy uses the level as the selection criteria. 
For instance, if level 0 and level 1 are configured as the 
adaptation criteria, then the AFA prefetcher dynamically 
chooses all of these algorithms that fall into these levels, and 
use them in the stably prefetching phase. This adaptive 
strategy can also control the quality of the selection. If none 
of the algorithms satisfies the specified criteria, the 
prefetcher does not have any algorithm performing in the 
prefetching phase, until the algorithms are evaluated again 
in the next collecting phase. The selection criteria are preset, 
for instance, as level 0, 1 and 2 in our current simulation 
experiments. 

E. Hardware Cost 
As discussed in previous subsections, the AFA 

prefetcher needs three counters for each evaluated algorithm 
and two counters for all algorithms to collect the required 
statistics in order to direct the adaptation. Each counter can 
be implemented with a 32-bit register. The overall required 
storage for counters will be 56 bytes, if assuming to support 
four distinct algorithms simultaneously. In addition to the 
counters, the AFA prefetcher needs one cache pollution 
estimator for each supported algorithm. The pollution 
estimator requires 213 bits of storage for the bit vector. 
Therefore, the estimator consumes 1KB for each supported 
algorithm. The cache structure needs a slight modification to 
support adaptive selection of prefetching algorithm as 
discussed previously. The modification is one bit for each 
supported algorithm. For a typical 1MB L2 cache with 64 
bytes cache line, it has 16,384 cache lines. To support one 
prefetching algorithm, the additional hardware cost will be 
16,384 bits or 2KB. Therefore, as a normal case, to support 
adaptation among four algorithms, the overall hardware cost 
will be around 12KB. This hardware budget is trivial – as 
only around 1% compared to a regular 1MB L2 cache. 
However, as the simulation verifies, the adaptive 
prefetching can considerably reduce cache misses and 
improve the overall system performance. 

As discussed partially in the previous section, the 
combinatorial logic to realize the proposed adaptive 
prefetching is not complicated as well. The major required 
combinatorial logic resides in maintaining the prefetch bits 
within the cache line, maintaining statistics counters, 
filtering through prefetch pollution estimator, and adapting 
prefetching algorithms via the performance table. 
Maintaining prefetch bits is straightforward because it 
merely requires set/unset the corresponding bit according to 
whether a cache line is brought in due to a specific 
algorithm. Maintaining counters is a straightforward logic 
too. Filtering is slightly complicated, but as we show with 
the estimator, the hardware state machine can be described 
effortlessly. Adapting the algorithm mainly needs 
comparison logic, which can be implemented easily as well. 

IV. SIMULATION AND PERFORMANCE ANALYSIS 
We have carried out simulation experiments to study the 

feasibility of the proposed AFA prefetcher and analyze the 
potential performance impact. Stream prefetching [7][15], 
stride prefetching [4][8], Markov prefetching [14] and 
MLDT prefetching [26] algorithms are selected for 
simulation. This section discusses simulation details and 
presents the analytical results. 

A. Simulation Methodology 
We have enhanced SimpleScalar simulator [2] with the 

DAHC [5] and the AFA prefetcher for the simulation 
verification and analysis. SimpleScalar tool set provides a 
detailed and high-performance simulation of modern 
processors. It takes binaries compiled for SimpleScalar 
architecture as input and simulates their execution on 
provided processor simulators. It has several different 
execution-driven processor simulators, ranging from 
extremely fast functional simulator to a detailed and out-of-
order issue simulator [2]. 

We have chosen the most detailed, sim-outorder 
simulator, for our experiments. Fig. 4 shows the enhanced 
SimpleScalar simulator architecture. We have added two 
primary modules, DAHC module and AFA prefetcher 
module. The DAHC module simulates the functionality of 
the DAHC, as explained in [5]. The AFA prefetcher module 
implements the adaptive prefetching logic and four 
supported prefetching algorithms, stream, stride, Markov 
and MLDT. We have modified the cache line structure for 
identifying whether a cache line is brought in due to a 
prefetch, and which algorithm brings it in. We have created 
the required counters and the pollution estimator to simulate 
the evaluation as well. The combinatorial logic was 
simulated to compare the evaluation of each algorithm, and 
outputs the dynamically chosen suitable algorithms, with 
both best-strategy and multi-strategy selections. The multi-
strategy selection was configured as level 0, level 1 and 
level 2 algorithms. 

 

 
Figure 4.  Simulation architecture of AFA prefetcher. 
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The AFA prefetcher is simulated to have an additional 
prefetch queue to store the prefetch requests. When the 
load/store issuing bandwidth is available after issuing 
demand requests, the prefetcher starts issuing the requests 
from the prefetch queue. If a newly generated prefetch 
request is already in the prefetch queue, the new request is 
simply dropped. If the prefetch queue is full, the new 
requests replace the old requests. The handling of prefetch 
requests is similar to the handling of regular load requests, 
with a slight difference that the effective address is computed 
based on prefetching algorithm, and any exceptions/faults 
generated by prefetches are discarded and the previous states 
are restored. 

B. Simulation Setup 
We use the Alpha-ISA and configure the simulator as a 

4-way issue and 256-entry RUU processor. The instruction 
cache and data cache are split. L1 data cache is configured 
as 32KB 2-way with 64B cache line size. The latency is 2 
cycles. L2 data cache is configured as 1MB 4-way with 64B 
cache line size. The latency of L2 cache is 12 CPU cycles. 
DAHC is configured with 1024 entries. We assume each 
DAHC access costs one CPU cycle. This should be a 
reasonable assumption for a fairly small cache. The AFA 
prefetch queue is configured with 512 entries. The stream 
prefetching algorithm is configured to support four streams. 
The prefetch degree for all prefetching algorithms is 
configured as eight. The prefetch distance for strided, 
Markov and MLDT is configured as four. Table I lists the 
configuration of the simulator in our simulation tests.  

TABLE I.  SIMULATOR CONFIGURATION 

Issue width 4 
Load store queue 64 entries 
RUU size 256 entries 
L1 D-cache 32KB, 2-way set associative, 64 byte 

line, 2 cycle hit time 
L1 I-cache 32KB, 2-way set associative, 64 byte 

line, 1 cycle hit time 
L2 Unified-
cache 

1MB, 4-way set associative, 64 byte 
line, 12 cycle hit time 

Memory latency 120 cycles 
DAHC 1024 entries 
AFA queue  512 entries 

 

C. Simulation Results 
We have performed a series of SPEC-CPU2000 

benchmarks [32] simulation for performance evaluation. We 
fast forwarded the first 100M instructions and simulated the 
following 200M instructions to analyze the result. Twenty-
one out of total twenty-six benchmarks were tested 
successfully in our experiments. We have excluded the other 
five benchmarks (apsi, facerec, fma3d, perlbmk and 
wupwise) that had problems and did not finish the test.  

1) Cache Miss Rate Reduction: We first study the cache 
miss rate reduction with various prefetching algorithms and 
the AFA prefetcher. Fig. 5 plots the L2 cache miss rate 
reported by the simulator for the entire twenty-one 
benchmarks. This series of tests were conducted under eight 
cases, including the base case (without data prefetching), the 
cases with individual stream, strided, Markov and MLDT 
data prefetching, the cases with best-strategy and multi-
strategy adaptation and the case with all supported 
prefetching algorithms running simultaneously. 

 

 
 

 
Figure 5.  Cache miss rate of SPEC-CPU2000 benchmarks. 

As clearly shown from the results, different applications 
exhibit distinct access patterns, and thus the cache miss rate 
reduction of various prefetching algorithms have large 
variations. For instance, stream prefetching significantly 
reduced the misses for equake, gap, mgrid and swim 
benchmarks, while not for others like ammp, art, galgel and 
gcc. Instead, the strided prefetching performed extremely 
well for ammp, applu, lucas, mcf and etc., and Markov 
prefetching had considerable miss reduction for bzip2, eon 
and vortex benchmarks. The MLDT prefetching usually 
achieved a better miss rate reduction than strided 
prefetching, but still not for all benchmarks. These 
observations confirm that an adaptive prefetcher is desired 
to be able to adjust to different application features at 
runtime to achieve a better overall prefetching performance. 
Simply adopting a fixed prefetching strategy cannot be the 
optimal solution. 

The AFA prefetcher has demonstrated its strength 
through the simulation. From the reported miss rate results, 
we can tell that the best-strategy can almost achieve the 
largest miss rate reduction compared with each individual 
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supported algorithm. This fact confirms that this adaptation 
strategy can effectively identify the suitable prefetching 
algorithm for current application access pattern. The multi-
strategy adaptation can sometimes achieve an even better 
miss rate reduction, such as in the applu, gap, lucas, mesa 
and sixtrack benchmarks. The investigation shows that this 
further reduction is due to two or three well-performing 
prefetching strategies the multi-strategy adaptation 
identified and selected at different stages for these 
benchmarks. These optimal strategies are all able to 
generate effective prefetches at a specific stage. Table II 
lists the primary prefetching algorithms identified and 
selected by the AFA prefetcher for different benchmarks at 
runtime. 

TABLE II.  PRIMARY PREFETCHING ALGORITHMS SELECTED 
ADAPTIVELY AT RUNTIME 

(B-S: Best-strategy, M-S: Multi-strategy; SM: Stream, ST: Strided, MK: 
Markov, MT: MLDT) 

 ammp applu art bzip2 crafty Eon equake galgel gap gcc
B-S ST ST MT MK ST MK SM MT SM ST

M-S ST ST, 
MT 

MT MT, 
MK 

ST, 
SM 

MK SM ST, 
MT 

SM ST

gzip lucas mcf mesa mgrid parser sixtrack swim twolf vortex vpr

ST ST ST SM SM ST MT SM ST MK ST

ST, 
MT 

SM, 
ST 

ST SM,  
MT 

SM, 
MT 

MT, 
ST 

ST, MT, 
MK 

SM MT, 
ST 

MK MT 
ST

 
The last bar within each set of tests represents the miss 

rate reduction with all four prefetching algorithms working 
concurrently. The experimental results show that this case 
has achieved about the same reduction as multi-strategy 
adaptive prefetching, while better than adaptive strategies 
sometimes. However, as shown from the reported IPC 
results presented in the following subsection, the best miss 
reduction does not translate to best overall performance 
improvement because this strategy generates extensive 
replacements to the prefetch destination. In addition, the all-
prefetching strategy consumes more resources than an 
adaptive strategy like the AFA prefetcher because the latter 
can identify the optimal ones and shut off low-efficiency 
prefetchers. 

2) IPC Improvement: Fig. 6 demonstrates the 
performance measurement in terms of IPC reported by the 
SimpleScalar simulator. The results shown in the figure 
include twenty-one benchmarks under eight cases, similarly 
as discussed in the previous subsection. The measured IPC 
results confirm that different prefetching algorithms benefit 
distinct benchmarks with different patterns. Any specific 
algorithm did not achieve the best IPC improvement for all 
benchmarks. Instead, these four supported prefetching 
algorithms have large variations in terms of the performance 
gain measured in IPC. 

As shown from the reported results, the AFA prefetcher 
does have the capability to distinguish well-performing 

algorithms from others and adapts to these selected 
algorithms to achieve an overall better performance gain. 
For instance, the best-strategy adaptation has successfully 
identified strided prefetching suitable for ammp, applu, 
crafty, gcc, gzip, lucas, mcf, parser, twolf and vpr, while 
stream prefetching suitable for equake, gap, mesa, mgrid 
and swim. Both Markov and MLDT prefetching were also 
identified as better strategies at some cases, like Markov for 
the benchmark bzip2, eon and vortex, and MLDT for the 
benchmark art, galgel and sixtrack. Notice that a better 
cache miss rate reduction does not necessarily result in a 
better IPC improvement. Take the applu benchmark as an 
example. The strided prefetching reduced less misses than 
MLDT did, but it produced better IPC improvement. This is 
because that MLDT involves more prediction overhead. 

 

 
 

 
Figure 6.  IPC of SPEC-CPU2000 benchmarks with different data 

prefetching strategies. 

It is interesting to notice that multi-strategy adaptation 
usually generates better performance improvement than 
best-strategy does. This is because the multi-strategy 
adaptation is able to recognize multiple well-performing 
algorithms, and can benefit and complement each other 
while avoiding low-effective algorithms. Adopting all 
supported prefetching algorithms does not produce the best 
performance speedup. This observation reveals that 
adopting a low-accurate, low-coverage or high-pollution 
algorithm can even substantially worsen the performance. 
This fact has also been confirmed from most cases in the 
experiments. 

The average performance improvement of all twenty-one 
benchmarks with each strategy is shown in Fig. 7. The best-
strategy and multi-strategy adaptation mechanisms provided 
by the AFA prefetcher achieves 15.14% and 17.90% 
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average improvement respectively, which is clearly better 
than all other cases. In summary, as verified from the 
simulation testing, the AFA prefetcher is able to 
dynamically choose proper algorithms for different 
applications and to achieve an overall better performance 
improvement of prefetching. 

 

 
Figure 7.  Average IPC speedup 

V. RELATED WORK 
Data prefetching, as the name indicates, is a technique to 

fetch data before requested. A similar technique is 
instruction prefetching, which tries to speculate the future 
instructions and fetch them from memory in advance [9]. 
Data prefetching is usually classified as software 
prefetching and hardware prefetching [28]. Software 
prefetching is a technique to instrument prefetch instructions 
to the source code either by a programmer or by a complier 
during optimization phase. Hardware prefetching does not 
require modifications to binary or source code, and can 
benefit directly for existing executables. 

The representative hardware prefetching techniques 
include sequential prefetching, strided prefetching and 
Markov prefetching. Sequential prefetching [6][7][15] 
prefetches consecutive cache blocks by taking advantage of 
locality. One-block-lookahead (OBL) approach 
automatically prefetches the next block when an access of a 
block is initiated. However, the limitation of this approach 
is that the prefetch may not be initiated early enough prior to 
processor’s demand for the data to avoid a processor stall. 
To solve this issue, a variation of OBL prefetching, which 
fetches k blocks (called prefetching degree) instead of one 
block, is proposed. Another variation is called adaptive 
sequential prefetching, which varies prefetching degree k 
based on the prefetching efficiency. The prefetching 
efficiency is a metric defined to characterize a program’s 
spatial locality at runtime. Stream prefetching is a 
generalized sequential prefetching that supports the 
detection of multiple streams. [15]. Strided prefetching 
approach [4][8] observes the pattern among strides of past 
accesses and thus predicts future references. It builds a state 
machine to track strides of accesses and generates 
prefetches when the state machine arrives at a stable state. 
The strided prefetching is generally implemented with a 

reference prediction table [4], or the recently proposed Data-
Access History Cache [5]. To capture repetitiveness in data 
reference addresses, Markov prefetching [14] was proposed. 
This strategy builds a state transition diagram with states 
denoting an accessed data block. Probability of each state 
transition is maintained, so that most probable predicted 
data are prefetched in advance and the least probable 
predicted data references can be dropped from prefetching.  

Other recent efforts in hardware prefetching include 
Zhou’s dual-core execution (DCE) approach [31], Ganusov 
et al’s future execution (FE) approach [10], Sun et al’s data 
push server architecture [26] and Solihin et al.’s memory-
side prefetching [24]. DCE and FE approach target for 
multi-core architecture. They use idle core to pre-execute 
future loop iterations to warm up cache (bring data to cache 
in advance). The data push server architecture utilizes a 
separate processing unit such as a separate core to conduct 
heuristic prefetching. The memory-side prefetching 
approach uses a memory processor residing within main 
memory to observe data access histories and prefetch data 
proactively upon prediction. It is usually distinguished as 
push based prefetching from traditional pull based 
prefetching.  

Without the benefit of programmer or compiler hints, the 
effectiveness of hardware prefetching largely relies on the 
accuracy of prediction strategies. Incorrect prediction brings 
useless blocks into cache, consumes memory bandwidth and 
might cause cache pollution. To increase prefetching 
accuracy and coverage, hardware prefetching strategies 
should be able to make dynamic adaptation at runtime for 
different access patterns. This study targets to provide an 
algorithm-level hardware adaptive data prefetching to 
resolve this issue. Some existing literature [6][25] provide 
various forms of adaptation, however, most of them target at 
adapting the prefetch degree and prefetch distance only. Our 
idea is motivated from the fact that no single prediction 
algorithm can work universally well for all applications. The 
adaptation at an algorithm-level is a necessity. This study 
provides such a solution. In addition, the existing studies on 
adapting prefetch degree and distance are complementary to 
this study. The Global History Buffer [17] and Instruction-
Pointer prefetcher [8] are other hardware prefetching 
strategies proposed in recent years. However, they both lack 
adaptation support. 

VI. CONCLUSION 
Data prefetching is an effective solution to hiding data-

access latency and to mitigating the fast growing processor-
memory performance gap. Many hardware prefetching 
techniques have been widely used in contemporary 
processor architecture. They are successful for applications 
with simple data access patterns, but notorious in certain 
cases for generating pollution and other overhead due to 
their low effectiveness. Previous study shows this low 
effectiveness is due to the lack of adaptation of existing 
hardware prefetchers. This study proposes an Algorithm-
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level Feedback-controlled Adaptive (AFA) prefetcher to 
support algorithm-level adaptation depending on application 
runtime data access behavior. While existing adaptive 
prefetchers only adapt within a given prefetching algorithm, 
AFA can change prefetching algorithms at runtime. It 
provides more flexibility and, therefore, better performance. 
We have conducted extensive simulations with an enhanced 
SimpleScalar simulator to verify and evaluate the design. 
Simulation results have demonstrated a clear performance 
improvement over existing strategies. 
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