
An Adaptive Data Prefetcher for High-Performance Processors

Yong Chen
Department of Computer Science
Illinois Institute of Technology

Chicago, USA
yong.chen@iit.edu

Huaiyu Zhu
Department of Computer Science
Illinois Institute of Technology

Chicago, USA
hzhu12@iit.edu

Xian-He Sun
Department of Computer Science
Illinois Institute of Technology

Chicago, USA
sun@iit.edu

Abstract—While computing speed continues increasing
rapidly, data-access technology is lagging behind. Data-access
delay, not the processor speed, becomes the leading
performance bottleneck of high-end/high-performance
computing. Prefetching is an effective solution to masking the
gap between computing speed and data-access speed. Existing
works of prefetching, however, are very conservative in
general, due to the computing power consumption concern of
the past. They suffer in effectiveness especially when
applications' access pattern changes. In this study, we propose
an Algorithm-level Feedback-controlled Adaptive (AFA) data
prefetcher to address these issues. The AFA prefetcher is based
on the Data-Access History Cache, a hardware structure that is
specifically designed for data prefetching. It provides an
algorithm-level adaptation and is capable of dynamically
adapting to appropriate prefetching algorithms at runtime. We
have conducted extensive simulation testing with SimpleScalar
simulator to validate the design and to illustrate the
performance gain. The simulation results show that AFA
prefetcher is effective and achieves considerable IPC
(Instructions Per Cycle) improvement in average.

Keywords-data prefetching; high-performance processors;
computer architecture; memory wall

I. INTRODUCTION
As semiconductor process technology and micro-

architecture evolve, the processor cycle times have been
significantly reduced in the past decades. However,
compared to processor performance improvement, data-
access performance (latency and bandwidth) improvement
has been at snail’s pace. The memory speed has only
increased by roughly 9% each year over the past two
decades, which is significantly lower than the improvement
speed of nearly 50% per year for processor performance
[12]. This performance disparity between processor and
memory is predicted to continually expand in next decades
[12]. Multi-level cache hierarchy architectures have been the
primary solution to avoiding large performance loss due to
long memory-access delays. However, cache memories are
designed based on data access locality. When applications
lack data access locality due to non-contiguous data
accesses, multi-level cache memory hierarchy does not work
well.

Data prefetching is one of the basic techniques associated
with multi-level cache hierarchy to bridge the performance

gap between processor and memory. The basic idea of data
prefetching is observing data access patterns, speculating
future access addresses and fetching the data from predicted
addresses in advance. Data prefetching can at least partially
overcome the limitations of cache memories, and reduce
long memory access latency by overlapping computation and
data accesses. Intensive studies have been conducted and
many strategies have been proposed for data prefetching in
the past [4][5][6][7][8][14][15][17][23][26][28]. Prefetching
has been adopted in production and found to be very
effective for special applications with simple data access
patterns, such as data streaming [15][8]. But in general,
current prefetching techniques are very limited. Software
solutions are too slow for cache level prefetching; whereas
hardware prefetchers are static in nature and cannot change
with the data access patterns of the applications. Previous
studies show that there is no enough effort to support
hardware dynamic adaptation among different strategies
depending on the runtime application characteristics [3]. The
fact is that data prefetching is application and data access
pattern dependent. There is no single universal prefetching
algorithm suitable for all applications at runtime. A general
and effective data prefetcher must be dynamic in nature.

In this study, we propose an Algorithm-level Feedback-
controlled Adaptive (or AFA in short) data prefetcher to
exploit a dynamic and adaptive prefetching methodology
based on the recently proposed generic prefetching structure,
Data-Access History Cache (DAHC) [5], and runtime
feedback collected by hardware counters. DAHC is a new
cache structure designed for data prefetching. It is capable of
effectively tracking data-access history and maintaining
correlations of both data access address stream and
instruction address stream. It can be used for efficient
implementation of many history-based data prefetching
algorithms [5]. Hardware counters gain considerable
attention in recent years and are becoming more and more
important for improving performance of contemporary
architecture, operating system and applications [22][27][30].
This study exploits this trend and assumes hardware counters
are available within a data prefetcher that generally resides
on the lowest cache level. Based on DAHC and available
hardware counters, the AFA data prefetcher is able to
recognize distinct data-access patterns and adapts to the
corresponding appropriate prefetching algorithms at runtime.
This adaptation methodology is significantly better than

conventional static prefetching strategies. It improves the
prefetching effectiveness which in turn improves the overall
performance. AFA prefetcher does consume some
transistors. However, the hardware chip space and the
number of transistors integrated on chip are not limitations
for current processor architectures. Trading chip space for
lower access latency is a current trend [16][29]. AFA
prefetcher and DAHC follow the trend.

The rest of this paper is organized as follows. Section II
briefly reviews the DAHC structure. Section III presents the
proposed AFA prefetcher design and discusses
implementation related issues. Section IV presents the
simulation environment and simulation results. Section V
discusses related work, and finally Section VI concludes this
study.

II. DATA-ACCESS HISTORY CACHE
To fully exploit the benefits of data prefetching and to

focus on reducing data-access latency to achieve a high
sustained performance instead of building extensive compute
units to achieve a high peak performance, we proposed a
generic prefetching-dedicated cache structure, named Data-
Access History Cache (DAHC) [5]. The DAHC serves as a
fundamental structure dedicated to data prefetching. The
DAHC behaves as a cache for recent reference information
instead of as a traditional cache for either instructions or
data. Theoretically, it is capable of supporting any history-
based prefetching algorithms.

The design rationale of DAHC is that history-based
prefetching algorithms must rely on correlations among
either instruction address stream or data address stream, or
both. Thus, DAHC is designed to have three hardware tables:
one data-access history table (DAH table) and two index
tables, program counter index table (PIT) and address index
table (AIT). The DAH table accommodates history details,
while PIT and AIT maintain correlations from instruction
and data address stream viewpoints respectively. Various
prefetching algorithms [5] thus can access these two tables to
obtain the required correlation as necessary. Fig. 1 illustrates
the general design of DAHC and a high-level view of how it
can be applied to support various prefetching algorithms.

Fig. 2 illustrates the detailed structure of DAHC through
an example. The DAH table consists of PC (program
counter), chain_PC, Addr, chain_Addr and State fields. PC
and Addr fields store the instruction address and data
address separately. The chain_PC and chain_Addr point to
an entry where the last access from the same instruction or
the last access of the same address is located. Therefore,
chain_PC and chain_Addr connect all accesses from the
instruction stream and data stream perspectives. This design
offers the fundamental mechanism to detect potential
correlations and access patterns. The State field maintains
state machine status used in prefetching algorithms. The PIT
table has two fields, PC and Index. The PC field represents
the instruction address, which is a unique index in this table.
The Index field records the entry of the latest data access in

the DAH table from the instruction stored in the
correspondent PC field. It is the connection between the PIT
and the DAH tables. The address index table is similarly
defined. For instance, in Fig. 2, the DAH table captured four
data accesses, three of them issued by instruction 403C20
(stored in the PC field) and one by instruction 4010D8. The
instruction 403C20 accessed data at address 7FFF8000,
7FFF8004 and 7FFF800C in sequence, which is shown
through the Addr and chain_PC fields. The instruction
403C20 and 4010D8 are also stored in the PIT table, and the
corresponding index field tracks the latest access from the
DAH table, which are entry 3 and 1 respectively. The AIT
table keeps each accessed address and the latest entry, as
shown in the bottom left of the figure, thus connecting all
the data accesses on the basis of the address stream.

Figure 1. DAHC general design and a high-level view.

The DAHC provides a prototype design of a prefetching-
dedicated structure. It works as a cache for data access
information compared with conventional cache for either
instructions or data. The DAHC can be placed at different
memory hierarchy levels for various desired data
prefetching. For instance, it can be used to track all accesses
to first level cache and to serve as an L1 cache prefetcher. It
can also be placed at the second level cache and to serves as
an L2 cache prefetcher only. The straightforward design
makes the implementation uncomplicated. The
implementation of the DAHC is a specialized physical
cache, like victim cache [13] or trace cache [20]. The PIT
and AIT tables can be implemented with any associativity
such as 2-way or 4-way. Since the index tables usually have
less valid entries than the DAH table, it is unlikely that
some entry is replaced due to a conflict miss [5]. Even if a
conflict miss occurs, it does not affect the correctness except
discarding certain access history. The DAH table can be
implemented with a special structure where each entry can
be located by using its index. The logic to fill/update the
DAHC comes from the cache controller. The cache
controller traps data accesses at the monitored level and

Addr Index

A1

PC Addr

PC1 A2

PC1 A3

PC2 A1

PC3 A1

PC Index

PC1

Stride
Prefetching

Aggressive
Algorithms

Markov
Prefetching

PC Index
Table

Address
Index Table

Data-Access
History Table

keeps a copy of the access information in the DAHC. Note
that DAHC design is general and it does not imply any
restriction to the system environment. It works in CMP or
SMT environment, as well as in an environment where
multiple applications are running concurrently.

Figure 2. DAHC design: PIT, AIT and DAH tables.

III. ALGORITHM-LEVEL FEEDBACK-CONTROLLED
ADAPTIVE DATA PREFETCHER

In this section, we present the design of an Algorithm-
level Feedback-controlled Adaptive data prefetcher. This
proposed AFA prefetcher leverages the powerful
functionality provided by DAHC, supports multiple
prefetching algorithms and dynamically adapts to those
algorithms that perform well at runtime. The essential idea is
using runtime feedback and evaluation to direct the dynamic
adaptation. We first introduce the evaluation metrics, and
then discuss the implementation and the methodology of
directing adaptation.

A. Evaluation Metrics
While extensive studies exist in prefetching, few studies

present a formalized metric to evaluate the effectiveness of
prefetching algorithms. We analyze and sort out the essential
and most critical criteria to model prefetching evaluation and
present a formal definition in this study. These metrics
provide a comprehensive evaluation of hardware prefetching
methodologies. These metrics can be independently used to
evaluate a prefetcher in addition to commonly used metrics,
such as an IPC speedup metric.

1) Prefetch Precision: The first and widely-adopted
metric is termed prefetching precision or prefetching
accuracy. This metric characterizes the percentage of
prefetches that are actually accessed by demand requests,
thus reflecting how accurate the prefetch requests and the
prefetching algorithms are. We present a formal definition
of prefetching precision as follows.

Definition 1. Prefetching precision is defined as the
ratio between the number of distinct prefetched cache lines
that are accessed by at least one demand request after being
prefetched in and before being replaced out over the
number of total prefetched cache lines.

By this definition, the prefetching precision models the
accuracy of the prefetcher, i.e. the percent of useful cache

lines in the overall cache lines prefetched. Note that we
define a useful prefetch as being accessed at least once
when the prefetched cache line resides in the prefetch
destination. Therefore, a repeated access to that cache line in
the current lifecycle does not account into the total number
of useful prefetches. However, if a cache line is prefetched
again into the destination after being displaced, and gets hit,
this scenario will contribute to one useful prefetch. We refer
these cache lines brought in by prefetch and accessed by
demand requests as prefetch hits, in contrast with demand
hits, those lines fetched by demand and hit again by other
requests.

The prefetch precision should be considered as the most
critical metric to evaluate or direct prefetch adaptation, as it
describes the cost-efficiency of a prefetcher well. Taking
prefetch precision into consideration, an aggressive but not
accurate enough prefetcher should be largely avoided
because it might produce a large number of useless
prefetches, which significantly wastes resources, such as
power and cache line slots. Instead, this metric favors a
prefetcher with high-confidence. The prefetch precision
metric suggests that the prefetcher should focus on
identifying the correct access pattern and make a highly-
accurate prediction. Such an approach maximizes the
hardware investment on the prefetcher and achieves a high
cost-efficiency. An ideal prefetcher will produce a
prefetching precision with value 1. In practice, the
prefetching precision has a range from 0 to 1.

Though the prefetch precision is critical and
straightforward, it merely describes one aspect of the
problem under study – the prefetch precision does not
quantify how effective the prefetcher is, i.e. how many
misses among the overall misses are hidden. The next
metric we formalize addresses this limitation.

2) Prefetch Coverage: The prefetch coverage metric is
introduced to complement prefetch precision and quantify
the other aspect of how well a prefetcher works. We
formalize the prefetch coverage definition as follows.

Definition 2. Prefetch coverage is defined as the ratio of
the number of misses reduced due to prefetches over the
total number of misses that will occur without prefetching.

As the definition states, the prefetch coverage focuses on
quantifying the ratio of the misses reduced, i.e. how wide a
prefetcher covers the demand misses that are supposed to
occur without the assistance of prefetching. A highly-
accurate prefetcher does not necessarily provide a wide
coverage. This is because such a prefetcher could be very
conservative and takes action only when the prefetcher has a
high-confidence prediction. This conservativeness results in
a high precision but the effectiveness in terms of miss
reduction ratio is low. The vice versa holds as well, i.e. a
prefetcher with wide coverage is not necessarily highly-
accurate since the prefetcher could be very aggressive (such
as with a large prefetch degree) to improve the coverage
while sacrificing the precision. In essence, the prefetch
coverage and prefetch precision are complementary to each

PC Index

403C20 3

4010D8 1

… …

Addr Index

7FFF8000 0

100003F8 1

7FFF8004 2

7FFF800C 3

… …

PC chain_PC Addr chain_Addr State

403C20 - 7FFF8000 - Init

4010D8 - 100003F8 - Init

403C20 0 7FFF8004 - Transient

403C20 2 7FFF800C - Transient

… … … … …

Index

0
1
2
3
…

other, and together they quantify the effectiveness of a
prefetcher from two aspects.

3) Prefetch Pollution: While prefetch precision and
prefetch coverage can reflect the prefetch effectiveness, or
the positive side, of a prefetching algorithm well, they do
not characterize the negative side of an algorithm. Cache
pollution [28] is considered a critical down side of
prefetching. When a cache line that is replaced by a
prefetched line is later accessed by a demand request, cache
pollution occurs. Such a cache miss will not happen without
the interference of prefetching. This scenario, cache
pollution, is referred to as a negative side-effect of
prefetching. We present a formal definition to describe
prefetch pollution.

Definition 3. Prefetch pollution is defined as a ratio of
the number of additional demand misses caused by
prefetching that will not occur without prefetch interference
over the number of misses that will occur without
prefetching.

According to this definition, prefetch pollution quantifies
the percent of extra demand misses due to prefetches, which
means that those demand misses will not occur if
prefetching is not adopted. The occurrence of these misses
is due to the limited cache size and the replacement of
useful cache lines by prefetched cache lines. Together with
prefetch precision and prefetch coverage, the prefetch
pollution completes a three-tuple, (precision, coverage,
pollution) or PCP in short, to evaluate a prefetching
algorithm. These three metrics are complementary to each
other, and assess an algorithm from both positive and
negative aspects. Some literatures separate other metrics,
such as lateness [25]. We observed that these metrics are
well covered in the 3-tuple PCP metric. A separation of
these additional metrics might be helpful, but might also
cause confusion. In this study, the proposed dynamic
adaptation is based on the 3-tuple PCP metric.

B. Evaluation Metrics: On-the-Road
We have presented the formal definitions of a PCP

metric to evaluate and direct a prefetcher in the previous
section. We discuss the hardware design and realization of
these metrics in the proposed AFA prefetcher in this section.

1) Realizing Prefetch Precision Metric: To realize the
prefetch precision metric, the AFA prefetcher utilizes two
statistics counters for each evaluated algorithm, one counter
for the prefetch hits, and one counter for overall prefetches.
We refer these two counters as prefetch_hits and
prefetch_total. In addition, to collect the statistic of prefetch
hits, we need to distinguish the cache lines prefetched from
demanded. This requirement results in a major hardware
storage budget. We assume each cache line in the prefetch
destination (L2 cache in this study) has one extra prefetch
bit to represent whether this line is prefetched or fetched for
each evaluated algorithm. When a cache line is prefetched
into destination, this prefetch bit is set. If this cache line is

ever accessed during its lifetime in the cache (after being
prefetched and before being displaced), the prefetch_hits
counter is increased and the prefetch bit is reset. By this
way, the prefetched cache line is not counted as multiple
hits even when it is accessed multiple times, which is
consistent with the definition. A simple reason behind this
decision is that the first hit acts like a regular demand
request and fetches in data, and the future accesses will hit
in cache. The actual saving of the prefetching is the first
access. If a cache line is brought in by a normal demand
request, the prefetch bit is not set. The combinatorial logic
to maintain this prefetch bit, set and reset, is trivival, and the
hardware implementation of this logic is not complicated.
Note that if a cache line is prefetched by multiple
algorithms, the corresponding prefetch bits will be set and a
hit of this cache line will attribute to the statistics of each
corresponding prefetcher.

2) Realizing Prefetch Coverage Metric: The
prefetch_hits counter discussed above can also be used in
calculating the prefetch coverage. This is because that the
statistics the prefetch_hits counter collects is the number of
misses reduced due to prefetches. To compute the prefetch
coverage, the AFA prefetcher needs another counter − the
number of overall misses that will occur without
prefetching. The AFA prefetcher utilizes another acounter,
demand_misses counter, to collect the number of misses that
occurs even with prefetching. The prefetch_hits counter
represents the number of misses saved by prefetch, and the
demand_misses counter represents the number of misses
that still occur. The prefetch coverage is computed as: ܿݐ݂݁݁ݎ݌ℎ_ܿ݁݃ܽݎ݁ݒ݋ = ௣௥௘௙௘௧௖௛_௛௜௧௦௣௥௘௙௘௧௖௛_௛௜௧௦ାௗ௘௠௔௡ௗ_௠௜௦௦௘௦

3) Realizing Prefetch Pollution Metric: It is more
challenging to collect the prefetch pollution statistics than to
collect prefetch precision and coverage. The reason is that
we never know whether the replaced cache line due to a
prefetch will be used in future or not. An optimal solution to
collecting the prefetch pollution metric is tracing down all
these cache lines and detecting whether any future requests
will access these lines. If such a cache line is detected,
which means that this cache line is replaced out due to a
prefetch but is needed by a demand request, a case of cache
pollution is detected. However, such an optimal solution
will require infinite-size storage to keep all past cache lines
replaced out due to prefetches. This approach is not feasible
in practice. Motivated from existing studies [1][18][25], the
AFA prefetcher utilizes a Bloom filter [1] to estimate the
percentage of cache pollution.

Suppose the cache line size is 64B, and a cache block
address is 26 bits. The pollution filter splits 26 bits into two
parts, high-order 13 bits and low-order 13 bits. These two
parts are fed into an XOR logical unit, and a filtered
address, with 13 bits, is the output. This filtered address is
used to index a bit vector and set the corresponding bit in

the vector. The AFA prefetcher uses this filter to estimate
the pollution. It tracks each cache line that is replaced out
due to a prefetch and feeds this cache line address into the
filter. A corresponding bit of the bit vector is set. It also
feeds cache miss addresses into the filter, and if the
corresponding bit is set, the AFA prefetcher estimates this
cache line was in the cache but was replaced out due to a
prefetch. After a cache pollution is detected, the
corresponding bit is reset, as the cache line is fetched back
into cache. The AFA prefetcher uses a pollution counter for
each evaluated algorithm to accumulate the prefetch
pollution statistics. The hardware cost of Bloom filters is
discussed in Section III-E.

C. Metrics Collection
The AFA prefetcher periodically collects the PCP metric

discussed above in order to make adaptation decision. The
adaptive prefetching mechanism is designed to have two
phases, metrics collecting phase and stably prefetching
phase. In the collecting phase, all supported prefetching
algorithms are enabled, and the statistics of each prefetching
algorithm are tracked and collected. In the end of collecting
phase, the PCP metric is computed for prefetching algorithm
evaluation. In the stably prefetching phase, only the
adaptively selected algorithm will be running, and all
counters and pollution estimator are cleared and turned off.
The decision to choose the working algorithm is discussed in
the following subsection.

The switch between these two phases is controlled by a
phase timer. There are many potential ways for measuring
the time and providing the phase timer, such as utilizing
CPU cycles, issued instructions, issued load/store
instructions or load/store misses. We choose the approach
that views each cache miss as one time tick and accumulates
to measure the time and provides the phase control. This is a
feasible design choice to control the adaptive prefetcher
behavior because the number of cache misses can fairly
represent how the prefetcher should react. In addition, this
design is considered better than utilizing cycles or issued
instructions, as those numbers could be huge and increase
rapidly. Utilizing cache misses as time ticks is a much
simpler way for the AFA prefetcher. The AFA prefetcher is
empirically configured with a collecting phase as 1/8th of the
stably prefetching phase, which means it collects statistics
and makes adaptive selection decision in one unit of time,
and prefetch with selected algorithms for eight units of time.

D. Adaptive Selection
After collecting statistics and computing the metrics, the

AFA prefetcher makes the decision to adaptively select the
suitable prefetching algorithms. The decision is based on the
evaluation of the performance of each prefetching algorithm,
indicated by the 3-tuple metric, the precision, coverage and
pollution. This evaluation is not complicated – simply done
by comparing the runtime statistics against a preset
threshold and classifying them as either high or low. If it is
above the threshold, the prefetcher classifies the statistics as

high. In contrast, if it is below the threshold, the prefetcher
classifies it as low. In our simulation experiments, the
threshold to distinguish a high/low prefetch precision,
coverage and pollution are preset as 0.70, 0.3, and 0.2
respectively based on empirical experience. In practice,
these thresholds can be measured and determined in
advance for any specific architecture. It can also be tuned
dynamically at runtime. Fig. 3 illustrates a table of eight
levels of prefetching algorithm performance that can be
recognized by the prefetcher.

Figure 3. Prefetching algorithm performance table.

Based on the prefetching algorithm evaluation
performance table, the AFA prefetcher is able to identify
and choose best prefetching algorithms dynamically. In our
current study, we propose and analyze two different
mechanisms, best-strategy adaptive selection and multi-
strategy adaptive selection, to select the algorithms
adaptively.

The best-strategy adaptive selection always outputs the
one performing best in the statistics collecting phase. This
decision is made based on the algorithm evaluation and the
performance table – the lowest level is assigned to have the
highest priority. Within the same level, the precision is
assigned to have the highest preference, while the coverage
has the medium and the pollution metric has the lowest
preference. This means that if the AFA prefetcher sees
multiple algorithms falling into multiple levels, the
prefetcher chooses the lowest level algorithms as the
candidate. If the prefetcher detects multiple candidates
sharing the same lowest level, it favors the one with the
highest precision.

The best-strategy adaptation works by choosing the best
strategy according to the defined policy (performance table
and preference assignment) out of all supported algorithms.
However, a potential limitation is that it only chooses one
algorithm even if multiple strategies are performing well
and can sometimes complement each other. In addition, this
strategy always outputs one “relatively best” strategy, even
though the best strategy might not work well enough at
certain circumstances. Based on these observations, we
introduce another adaptation strategy, multi-strategy
adaptive selection, that chooses multiple optimal strategies

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

PollutionCoverage

LHH

LLH

LHL

LLL

HLL

HLH

HHL

HHH

PollutionCoveragePrecision
LHH

LLH

LHL

LLL

HLL

HLH

HHL

HHH

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

PollutionCoverage

LHH

LLH

LHL

LLL

HLL

HLH

HHL

HHH

PollutionCoveragePrecision
LHH

LLH

LHL

LLL

HLL

HLH

HHL

HHH

according to the evaluation and performance table. This
adaptation strategy uses the level as the selection criteria.
For instance, if level 0 and level 1 are configured as the
adaptation criteria, then the AFA prefetcher dynamically
chooses all of these algorithms that fall into these levels, and
use them in the stably prefetching phase. This adaptive
strategy can also control the quality of the selection. If none
of the algorithms satisfies the specified criteria, the
prefetcher does not have any algorithm performing in the
prefetching phase, until the algorithms are evaluated again
in the next collecting phase. The selection criteria are preset,
for instance, as level 0, 1 and 2 in our current simulation
experiments.

E. Hardware Cost
As discussed in previous subsections, the AFA

prefetcher needs three counters for each evaluated algorithm
and two counters for all algorithms to collect the required
statistics in order to direct the adaptation. Each counter can
be implemented with a 32-bit register. The overall required
storage for counters will be 56 bytes, if assuming to support
four distinct algorithms simultaneously. In addition to the
counters, the AFA prefetcher needs one cache pollution
estimator for each supported algorithm. The pollution
estimator requires 213 bits of storage for the bit vector.
Therefore, the estimator consumes 1KB for each supported
algorithm. The cache structure needs a slight modification to
support adaptive selection of prefetching algorithm as
discussed previously. The modification is one bit for each
supported algorithm. For a typical 1MB L2 cache with 64
bytes cache line, it has 16,384 cache lines. To support one
prefetching algorithm, the additional hardware cost will be
16,384 bits or 2KB. Therefore, as a normal case, to support
adaptation among four algorithms, the overall hardware cost
will be around 12KB. This hardware budget is trivial – as
only around 1% compared to a regular 1MB L2 cache.
However, as the simulation verifies, the adaptive
prefetching can considerably reduce cache misses and
improve the overall system performance.

As discussed partially in the previous section, the
combinatorial logic to realize the proposed adaptive
prefetching is not complicated as well. The major required
combinatorial logic resides in maintaining the prefetch bits
within the cache line, maintaining statistics counters,
filtering through prefetch pollution estimator, and adapting
prefetching algorithms via the performance table.
Maintaining prefetch bits is straightforward because it
merely requires set/unset the corresponding bit according to
whether a cache line is brought in due to a specific
algorithm. Maintaining counters is a straightforward logic
too. Filtering is slightly complicated, but as we show with
the estimator, the hardware state machine can be described
effortlessly. Adapting the algorithm mainly needs
comparison logic, which can be implemented easily as well.

IV. SIMULATION AND PERFORMANCE ANALYSIS
We have carried out simulation experiments to study the

feasibility of the proposed AFA prefetcher and analyze the
potential performance impact. Stream prefetching [7][15],
stride prefetching [4][8], Markov prefetching [14] and
MLDT prefetching [26] algorithms are selected for
simulation. This section discusses simulation details and
presents the analytical results.

A. Simulation Methodology
We have enhanced SimpleScalar simulator [2] with the

DAHC [5] and the AFA prefetcher for the simulation
verification and analysis. SimpleScalar tool set provides a
detailed and high-performance simulation of modern
processors. It takes binaries compiled for SimpleScalar
architecture as input and simulates their execution on
provided processor simulators. It has several different
execution-driven processor simulators, ranging from
extremely fast functional simulator to a detailed and out-of-
order issue simulator [2].

We have chosen the most detailed, sim-outorder
simulator, for our experiments. Fig. 4 shows the enhanced
SimpleScalar simulator architecture. We have added two
primary modules, DAHC module and AFA prefetcher
module. The DAHC module simulates the functionality of
the DAHC, as explained in [5]. The AFA prefetcher module
implements the adaptive prefetching logic and four
supported prefetching algorithms, stream, stride, Markov
and MLDT. We have modified the cache line structure for
identifying whether a cache line is brought in due to a
prefetch, and which algorithm brings it in. We have created
the required counters and the pollution estimator to simulate
the evaluation as well. The combinatorial logic was
simulated to compare the evaluation of each algorithm, and
outputs the dynamically chosen suitable algorithms, with
both best-strategy and multi-strategy selections. The multi-
strategy selection was configured as level 0, level 1 and
level 2 algorithms.

Figure 4. Simulation architecture of AFA prefetcher.

Simulator
Core

Benchmark

Interface
Functional Core

AFA

Dlite!

Stats

Cache

Memory BPred
Resource

Regs
Loader

DAHC

Enhanced SimpleScalar Program Binary

Statistics
Enhanced Modules

New Modules
Original Modules

Enhanced SimpleScalar

The AFA prefetcher is simulated to have an additional
prefetch queue to store the prefetch requests. When the
load/store issuing bandwidth is available after issuing
demand requests, the prefetcher starts issuing the requests
from the prefetch queue. If a newly generated prefetch
request is already in the prefetch queue, the new request is
simply dropped. If the prefetch queue is full, the new
requests replace the old requests. The handling of prefetch
requests is similar to the handling of regular load requests,
with a slight difference that the effective address is computed
based on prefetching algorithm, and any exceptions/faults
generated by prefetches are discarded and the previous states
are restored.

B. Simulation Setup
We use the Alpha-ISA and configure the simulator as a

4-way issue and 256-entry RUU processor. The instruction
cache and data cache are split. L1 data cache is configured
as 32KB 2-way with 64B cache line size. The latency is 2
cycles. L2 data cache is configured as 1MB 4-way with 64B
cache line size. The latency of L2 cache is 12 CPU cycles.
DAHC is configured with 1024 entries. We assume each
DAHC access costs one CPU cycle. This should be a
reasonable assumption for a fairly small cache. The AFA
prefetch queue is configured with 512 entries. The stream
prefetching algorithm is configured to support four streams.
The prefetch degree for all prefetching algorithms is
configured as eight. The prefetch distance for strided,
Markov and MLDT is configured as four. Table I lists the
configuration of the simulator in our simulation tests.

TABLE I. SIMULATOR CONFIGURATION

Issue width 4
Load store queue 64 entries
RUU size 256 entries
L1 D-cache 32KB, 2-way set associative, 64 byte

line, 2 cycle hit time
L1 I-cache 32KB, 2-way set associative, 64 byte

line, 1 cycle hit time
L2 Unified-
cache

1MB, 4-way set associative, 64 byte
line, 12 cycle hit time

Memory latency 120 cycles
DAHC 1024 entries
AFA queue 512 entries

C. Simulation Results
We have performed a series of SPEC-CPU2000

benchmarks [32] simulation for performance evaluation. We
fast forwarded the first 100M instructions and simulated the
following 200M instructions to analyze the result. Twenty-
one out of total twenty-six benchmarks were tested
successfully in our experiments. We have excluded the other
five benchmarks (apsi, facerec, fma3d, perlbmk and
wupwise) that had problems and did not finish the test.

1) Cache Miss Rate Reduction: We first study the cache
miss rate reduction with various prefetching algorithms and
the AFA prefetcher. Fig. 5 plots the L2 cache miss rate
reported by the simulator for the entire twenty-one
benchmarks. This series of tests were conducted under eight
cases, including the base case (without data prefetching), the
cases with individual stream, strided, Markov and MLDT
data prefetching, the cases with best-strategy and multi-
strategy adaptation and the case with all supported
prefetching algorithms running simultaneously.

Figure 5. Cache miss rate of SPEC-CPU2000 benchmarks.

As clearly shown from the results, different applications
exhibit distinct access patterns, and thus the cache miss rate
reduction of various prefetching algorithms have large
variations. For instance, stream prefetching significantly
reduced the misses for equake, gap, mgrid and swim
benchmarks, while not for others like ammp, art, galgel and
gcc. Instead, the strided prefetching performed extremely
well for ammp, applu, lucas, mcf and etc., and Markov
prefetching had considerable miss reduction for bzip2, eon
and vortex benchmarks. The MLDT prefetching usually
achieved a better miss rate reduction than strided
prefetching, but still not for all benchmarks. These
observations confirm that an adaptive prefetcher is desired
to be able to adjust to different application features at
runtime to achieve a better overall prefetching performance.
Simply adopting a fixed prefetching strategy cannot be the
optimal solution.

The AFA prefetcher has demonstrated its strength
through the simulation. From the reported miss rate results,
we can tell that the best-strategy can almost achieve the
largest miss rate reduction compared with each individual

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

ammp applu art bzip2 crafty eon equake galgel gap gcc

L
2

 C
a
c
h

e
 M

is
s
 R

a
te

Base Case Stream Strided Markov MLDT Best-strategy Multi-strategy All

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

gzip lucas mcf mesa mgrid parser sixtrack swim twolf vortex vpr

L
2
 C

a
c
h

e
 M

is
s
 R

a
te

Base Case Stream Strided Markov MLDT Best-strategy Multi-strategy All

supported algorithm. This fact confirms that this adaptation
strategy can effectively identify the suitable prefetching
algorithm for current application access pattern. The multi-
strategy adaptation can sometimes achieve an even better
miss rate reduction, such as in the applu, gap, lucas, mesa
and sixtrack benchmarks. The investigation shows that this
further reduction is due to two or three well-performing
prefetching strategies the multi-strategy adaptation
identified and selected at different stages for these
benchmarks. These optimal strategies are all able to
generate effective prefetches at a specific stage. Table II
lists the primary prefetching algorithms identified and
selected by the AFA prefetcher for different benchmarks at
runtime.

TABLE II. PRIMARY PREFETCHING ALGORITHMS SELECTED
ADAPTIVELY AT RUNTIME

(B-S: Best-strategy, M-S: Multi-strategy; SM: Stream, ST: Strided, MK:
Markov, MT: MLDT)

 ammp applu art bzip2 crafty Eon equake galgel gap gcc
B-S ST ST MT MK ST MK SM MT SM ST

M-S ST ST,
MT

MT MT,
MK

ST,
SM

MK SM ST,
MT

SM ST

gzip lucas mcf mesa mgrid parser sixtrack swim twolf vortex vpr

ST ST ST SM SM ST MT SM ST MK ST

ST,
MT

SM,
ST

ST SM,
MT

SM,
MT

MT,
ST

ST, MT,
MK

SM MT,
ST

MK MT
ST

The last bar within each set of tests represents the miss

rate reduction with all four prefetching algorithms working
concurrently. The experimental results show that this case
has achieved about the same reduction as multi-strategy
adaptive prefetching, while better than adaptive strategies
sometimes. However, as shown from the reported IPC
results presented in the following subsection, the best miss
reduction does not translate to best overall performance
improvement because this strategy generates extensive
replacements to the prefetch destination. In addition, the all-
prefetching strategy consumes more resources than an
adaptive strategy like the AFA prefetcher because the latter
can identify the optimal ones and shut off low-efficiency
prefetchers.

2) IPC Improvement: Fig. 6 demonstrates the
performance measurement in terms of IPC reported by the
SimpleScalar simulator. The results shown in the figure
include twenty-one benchmarks under eight cases, similarly
as discussed in the previous subsection. The measured IPC
results confirm that different prefetching algorithms benefit
distinct benchmarks with different patterns. Any specific
algorithm did not achieve the best IPC improvement for all
benchmarks. Instead, these four supported prefetching
algorithms have large variations in terms of the performance
gain measured in IPC.

As shown from the reported results, the AFA prefetcher
does have the capability to distinguish well-performing

algorithms from others and adapts to these selected
algorithms to achieve an overall better performance gain.
For instance, the best-strategy adaptation has successfully
identified strided prefetching suitable for ammp, applu,
crafty, gcc, gzip, lucas, mcf, parser, twolf and vpr, while
stream prefetching suitable for equake, gap, mesa, mgrid
and swim. Both Markov and MLDT prefetching were also
identified as better strategies at some cases, like Markov for
the benchmark bzip2, eon and vortex, and MLDT for the
benchmark art, galgel and sixtrack. Notice that a better
cache miss rate reduction does not necessarily result in a
better IPC improvement. Take the applu benchmark as an
example. The strided prefetching reduced less misses than
MLDT did, but it produced better IPC improvement. This is
because that MLDT involves more prediction overhead.

Figure 6. IPC of SPEC-CPU2000 benchmarks with different data

prefetching strategies.

It is interesting to notice that multi-strategy adaptation
usually generates better performance improvement than
best-strategy does. This is because the multi-strategy
adaptation is able to recognize multiple well-performing
algorithms, and can benefit and complement each other
while avoiding low-effective algorithms. Adopting all
supported prefetching algorithms does not produce the best
performance speedup. This observation reveals that
adopting a low-accurate, low-coverage or high-pollution
algorithm can even substantially worsen the performance.
This fact has also been confirmed from most cases in the
experiments.

The average performance improvement of all twenty-one
benchmarks with each strategy is shown in Fig. 7. The best-
strategy and multi-strategy adaptation mechanisms provided
by the AFA prefetcher achieves 15.14% and 17.90%

0

0.5

1

1.5

2

2.5

3

3.5

4

ammp applu art bzip2 crafty eon equake galgel gap gcc

IP
C

Base Case Stream Strided Markov MLDT Best-strategy Multi-strategy All

0

0.5

1

1.5

2

2.5

3

3.5

4

gzip lucas mcf mesa mgrid parser sixtrack swim twolf vortex vpr

IP
C

Base Case Stream Strided Markov MLDT Best-strategy Multi-strategy All

average improvement respectively, which is clearly better
than all other cases. In summary, as verified from the
simulation testing, the AFA prefetcher is able to
dynamically choose proper algorithms for different
applications and to achieve an overall better performance
improvement of prefetching.

Figure 7. Average IPC speedup

V. RELATED WORK
Data prefetching, as the name indicates, is a technique to

fetch data before requested. A similar technique is
instruction prefetching, which tries to speculate the future
instructions and fetch them from memory in advance [9].
Data prefetching is usually classified as software
prefetching and hardware prefetching [28]. Software
prefetching is a technique to instrument prefetch instructions
to the source code either by a programmer or by a complier
during optimization phase. Hardware prefetching does not
require modifications to binary or source code, and can
benefit directly for existing executables.

The representative hardware prefetching techniques
include sequential prefetching, strided prefetching and
Markov prefetching. Sequential prefetching [6][7][15]
prefetches consecutive cache blocks by taking advantage of
locality. One-block-lookahead (OBL) approach
automatically prefetches the next block when an access of a
block is initiated. However, the limitation of this approach
is that the prefetch may not be initiated early enough prior to
processor’s demand for the data to avoid a processor stall.
To solve this issue, a variation of OBL prefetching, which
fetches k blocks (called prefetching degree) instead of one
block, is proposed. Another variation is called adaptive
sequential prefetching, which varies prefetching degree k
based on the prefetching efficiency. The prefetching
efficiency is a metric defined to characterize a program’s
spatial locality at runtime. Stream prefetching is a
generalized sequential prefetching that supports the
detection of multiple streams. [15]. Strided prefetching
approach [4][8] observes the pattern among strides of past
accesses and thus predicts future references. It builds a state
machine to track strides of accesses and generates
prefetches when the state machine arrives at a stable state.
The strided prefetching is generally implemented with a

reference prediction table [4], or the recently proposed Data-
Access History Cache [5]. To capture repetitiveness in data
reference addresses, Markov prefetching [14] was proposed.
This strategy builds a state transition diagram with states
denoting an accessed data block. Probability of each state
transition is maintained, so that most probable predicted
data are prefetched in advance and the least probable
predicted data references can be dropped from prefetching.

Other recent efforts in hardware prefetching include
Zhou’s dual-core execution (DCE) approach [31], Ganusov
et al’s future execution (FE) approach [10], Sun et al’s data
push server architecture [26] and Solihin et al.’s memory-
side prefetching [24]. DCE and FE approach target for
multi-core architecture. They use idle core to pre-execute
future loop iterations to warm up cache (bring data to cache
in advance). The data push server architecture utilizes a
separate processing unit such as a separate core to conduct
heuristic prefetching. The memory-side prefetching
approach uses a memory processor residing within main
memory to observe data access histories and prefetch data
proactively upon prediction. It is usually distinguished as
push based prefetching from traditional pull based
prefetching.

Without the benefit of programmer or compiler hints, the
effectiveness of hardware prefetching largely relies on the
accuracy of prediction strategies. Incorrect prediction brings
useless blocks into cache, consumes memory bandwidth and
might cause cache pollution. To increase prefetching
accuracy and coverage, hardware prefetching strategies
should be able to make dynamic adaptation at runtime for
different access patterns. This study targets to provide an
algorithm-level hardware adaptive data prefetching to
resolve this issue. Some existing literature [6][25] provide
various forms of adaptation, however, most of them target at
adapting the prefetch degree and prefetch distance only. Our
idea is motivated from the fact that no single prediction
algorithm can work universally well for all applications. The
adaptation at an algorithm-level is a necessity. This study
provides such a solution. In addition, the existing studies on
adapting prefetch degree and distance are complementary to
this study. The Global History Buffer [17] and Instruction-
Pointer prefetcher [8] are other hardware prefetching
strategies proposed in recent years. However, they both lack
adaptation support.

VI. CONCLUSION
Data prefetching is an effective solution to hiding data-

access latency and to mitigating the fast growing processor-
memory performance gap. Many hardware prefetching
techniques have been widely used in contemporary
processor architecture. They are successful for applications
with simple data access patterns, but notorious in certain
cases for generating pollution and other overhead due to
their low effectiveness. Previous study shows this low
effectiveness is due to the lack of adaptation of existing
hardware prefetchers. This study proposes an Algorithm-

0.00% 5.00% 10.00% 15.00% 20.00%

Stream

Strided

Markov

MLDT

Best-strategy

Multi-strategy

All

level Feedback-controlled Adaptive (AFA) prefetcher to
support algorithm-level adaptation depending on application
runtime data access behavior. While existing adaptive
prefetchers only adapt within a given prefetching algorithm,
AFA can change prefetching algorithms at runtime. It
provides more flexibility and, therefore, better performance.
We have conducted extensive simulations with an enhanced
SimpleScalar simulator to verify and evaluate the design.
Simulation results have demonstrated a clear performance
improvement over existing strategies.

VII. ACKNOWLEDGEMENT
We are thankful to the anonymous reviewers for their

valuable suggestions to further improve this work. This
research was supported in part by National Science
Foundation under NSF grant CCF-0621435 and CCF-
0937877, and by ACM/IEEE High-Performance Computing
Ph.D. Fellowship and Illinois Institute of Technology
Fieldhouse Research Fellowship.

REFERENCES
[1] B. Bloom. Space/Time Trade-offs in Hash Coding with Allowable

Errors. Communications of the ACM, Vol. 13, No. 7, pp. 422-426,
1970.

[2] D.C. Burger, T.M. Austin and S. Bennett. Evaluating Future
Microprocessors: the SimpleScalar Tool Set. University of
Wisconsin-Madison Computer Science Department Technical Report
1308, 1996.

[3] S. Byna, Y. Chen and X.-H. Sun. Taxonomy of Data Prefetching for
Multicore Processors", Journal of Computer Science and Technology
(JCST), vol. 24, no. 3, pp. 405-417, 2009.

[4] T.F. Chen and J.L. Baer. Effective Hardware-Based Data Prefetching
for High Performance Processors. IEEE Trans. Computers, pp. 609-
623, 1995.

[5] Y. Chen, S. Byna and X.-H. Sun. Data Access History Cache and
Associated Data Prefetching Mechanisms. In Proc. of the 2007
ACM/IEEE Supercomputing Conference, 2007.

[6] F. Dahlgren, M. Dubois, and P. Stenstrom. Fixed and Adaptive
Sequential Prefetching in Shared-memory Multiprocessors. In Proc.
1993 International Conference on Parallel Processing, pp. I56-I63,
1993.

[7] F. Dahlgren, M. Dubois and P. Stenstrom. Sequential Hardware
Prefetching in Shared-Memory Multiprocessors. IEEE Trans. on
Parallel and Distributed Systems, Volume 6, Issue 7, pp.733-746,
1995.

[8] J. Doweck. Inside Intel Core Micro-architecture and Smart Memory
Access. Intel White Paper, 2006.

[9] A. Falcon, A. Ramirez and M. Valero. Effective Instruction
Prefetching via Fetch Prestaging. In Proc. of the 19th International
Parallel and Distributed Processing Symposium, 2005.

[10] I. Ganusov and M. Burtscher. Future Execution: A Hardware
Prefetching Technique for Chip Multiprocessors. In Proc. of the 14th
Annual International Conference on Parallel Architectures and
Compilation Techniques, 2005.

[11] B. Goeman, H. Vandierendonck and K. Bosschere. Differential FCM:
Increasing Value Prediction Accuracy by Improving Table Usage
Efficiency. In Proc. of 7th Intl. Symp. on High performance Computer
Architecture, 2001.

[12] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative
Approach. The 4th edition, Morgan Kaufmann, 2006.

[13] N. P. Jouppi. Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers. In
Proc. of the 17th International Symposium on Computer Architecture,
1990.

[14] D. Joseph and D. Grunwald. Prefetching Using Markov Predictors. In
Proceedings of the 24th Annual Symposium on Computer
Architecture, 1997.

[15] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O'Connell, D. Q. Nguyen, B.
J. Ronchetti, W. M. Sauer, E. M. Schwarz and M. T. Vaden. IBM
Power6 Microarchitecture. IBM Journal of Research and
Development. Vol. 51, No. 6, pp. 639 – 662, 2007.

[16] S.A. McKee. Reflections on the Memory Wall. In Proc. of Computing
Frontiers (CF'04), 2004.

[17] K. J. Nesbit and J. E. Smith. Prefetching Using a Global History
Buffer. In Proc. of the 10th Annual International Symposium on High
Performance Computer Architecture, 2004.

[18] J. Peir, S. Lai, S. Lu, J. Stark and K. Lai. Bloom Filtering Cache
Misses for Accurate Data Speculation and Prefetching. In Proc. of the
16th International Conference on Supercomputing, 2002.

[19] L. Ramos, J. Briz, P. Ibañez and V. Viñals. Data Prefetching in a
Cache Hierarchy with High Bandwidth and Capacity. In ACM
Computer Architecture News, pages 37-44, 2007.

[20] E. Rotenberg, S. Bennett, J. E. Smith. Trace Cache: A Low Latency
Approach to High Bandwidth Instruction Fetching. In Proc. of the
29th Annual IEEE/ACM International Symposium on
Microarchitecture, 1996.

[21] Y. Sazeides and J. E. Smith. The Predictability of Data Values. In
Proc. of the 30th Intl. Symp. on Microarchitecture, 1997.

[22] K. Shen, M. Zhong, S. Dwarkadas, C. Li, C. Stewart and X. Zhang.
Hardware Counter Driven On-the-Fly Request Signatures. In Proc. of
the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2008.

[23] J. Skeppstedt and M. Dubois. Hybrid Compiler/Hardware Prefetching
for Multiprocessors Using Low-overhead Cache Miss Traps. In Proc.
of the International Conference on Parallel Processing, 1997.

[24] Y. Solihin, J. Lee and J. Torrellas. Using a User-Level Memory
Thread for Correlation Prefetching. In Proc. of the 8th International
Symposium on Computer Architecture, 2002.

[25] S. Srinath, O. Mutlu, H. Kim and Y. Patt. Feedback Directed
Prefetching: Improving the Performance and Bandwidth-Efficiency of
Hardware Prefetchers. In Proc. of 13th International Symposium on
High Performance Computer Architecture, 2007.

[26] X.H. Sun, S. Byna and Y. Chen. Improving Data Access Performance
with Server Push Architecture. In Proc. of the NSF Next Generation
Software Program Workshop in IPDPS’07, 2007.

[27] P.F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan, D.
Grove and M. Hind. Using Hardware Performance Monitors to
Understand the Behaviors of Java Applications. In Proc. of the 3rd
USENIX Virtual Machine Research and Technology Symp., 2004.

[28] S. P. VanderWiel and D. J. Lilja. When Caches Aren't Enough: Data
Prefetching Techniques. IEEE Computer, Vol. 30, No. 7, pp.23-30,
1997.

[29] W.A. Wulf and S.A. McKee. Hitting the Memory Wall: Implications
of the Obvious. In Computer Architecture News, 23(1):20-24, March
1995.

[30] X. Zhang, S. Dwarkadas, G. Folkmanis and K. Shen. Processor
Hardware Counter Statistics As A First-Class System Resource. In
Proc. of the 11th Workshop on Hot Topics in Operating Systems,
2007.

[31] H. Zhou. Dual-Core Execution: Building a Highly Scalable Single-
Thread Instruction Window. In Proc. of the 14th International
Conference on Parallel Architectures and Compilation Techniques,
2005.

[32] Standard Performance Evaluation Corporation, SPEC Benchmarks,
http://www.spec.org/

