e ¥
o
~.:’

s
\\' SCALABLE COMPUTING LLiNoIS INsTITUTE V
SOFTWARE LABORATORY OF TECHNOLOGY

HFlush
Realtime Flushing for Modern Storage Environments

Jaime Cernuda, Hugo Trivino, Hariharan Devarajan, Anthony Kougkas, Xian-He Sun

=>A disparity in speedup between CPU and flushin flushinc
Storage access time has created what is known : '

e . Data-intensive Compute-intensive
Current: Event-Based Evictions History P
flushing flushing '

as the 1/O bottleneck. w

=>To solve this issue, traditional solutions have
involved data buffering and aggregations on fast
storage mediums.

->However, faster tiers of data storage, such as
RAM, have lower storage capacity which
eventually require eviction of data to a lower
tier, traditionally a Parallel File System (PFS).

Push-based

Observations

=>Current eviction solutions are event-based and
stall I/O when performing evictions. ik

=>Evictions are initiated by individual nodes, = Flushing. | Eviction I
without scalability, and provide writing patterns
not favorable to the PFS.

=>Enhanced capabilities of the new storage devices
(e.g., NVMe SSDs) such as increased hardware
concurrency are not taken into account by
existing system software.

Approach * Yellow boxes indicate I/0 end time

->Amortize the cost of evictions into small ** /O in Real-Time Flushing are drawn larger because of higher hardware interference
continuous flushing operations instead of

irregularly stalling 1/O operations.
=>Globally coordinate all evictions to provide
better writing patterns to the PFS and match the
demand by offering elastic resources.
—>Leverage the hardware concurrency to perform 0 head
: ; . e verneaas
device-specific eviction optimizations.
=>Move to a server-pull eviction model to provide a 100%

Coordmated O ! continuous stream of evictions. 2822

b 70%

60%
90%
40%
30%
1
10%
0% .

RAM RAM NVME SATA RAM NVME SATA RAM RAM NVME SATA RAM NVME SATA RAM RAM NVME SATA RAM NVME SATA
Backlog \ Compute Node 1 Compute Node 2 SSD SSD SSD SSD SSD SSD SSD SSD SSD SSD SSD SSD

® Makes flushed data Application A Application B Base Event-based HFlush Base Event-based HFlush Base Event-based HFlush
available in : b . Compute Heavy Balanced IO Heavy

uCPU (%) 10 (%)

memory.
e Data is written to

HFlush Performance

180000
—~160000
@ 140000
£.120000
100000
3 80000

S 60000
Data Collector g

Pulls objects from 20000
;T:—-f i ! - ! 0

Event-based Hflush Event-based Hflush Event-based
64K 500K

Size of Objects
Througput —Latency

Active Operators :
C e erato.l‘s \ (" Data Dispatcher)
an perform operations

that make use of the SperTor Leverages ML O Application Performance
Sk to write objects into

global nature o

:IL. AN

NVME SSD
SATA SSD
NVME SSD
SATA SSD
NVME SSD
SATA SSD
NVME SSD
SATA SSD
NVME SSD
SATA SSD
NVME SSD
SATA SSD

Base Event-based HFlush Base Event-based HFlush Base Event-based HFlush

Compute Heavy Balanced IO Heavy
Througput —Latency

Testbed: Ares supercomputer at the lllinois Institute of Technology

Compute Nodes: Storage Nodes:
e CPU: Dual Intel(R) Xeon Scalable Silver e CPU: Two quad-core Opteron 2376 @
4114 @ 2.20GHz (40 nodes) 2.3GHz (40 nodes)
_ _ _ e RAM: 96 GB RAM e RAM: 32GB DDR2-667
Leveraging a data streaming paradigm enables: e Network: 10Gbit Ethernet with RoCE e Storage: 1 250GB Samsung 860 Evo SATA
® Autoscaling e Storage: local 512GB NVMe SSD. SSD, 1TB Seagate 7200K SATA hard drive

o Data durability
o Pipelined flushing in multi-tiered environments
o

Matching hardware properties from source and destination
J Pt HFlush is a pull-based data flusher that implements a continuous data

eviction mechanism.
Initial results have shown HFlush to be a promising solution to the
» Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. 2018. Hermes: A growing chaIIer)ge of _ethjeme Sca_le Sl GRS, efped Ry I S
Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System. In Proceedings of of workloads with periodic I/O or in systems that make use of modern
the 27th International Symposium on High-Performance Parallel and Distributed hardware with high concurrency.
Computing (HPDC '18). ACM, New York, NY, USA. | The ability of HFlush to amortize the I/O stall time allows applications
» A.Kougkas, H. Devarajan, X. Sun and J. Lofstead, "Harmonia: An Interference-Aware using it to significantly increase the CPU usage by over 50%.

Dynamic I/O Scheduler for Shared Non-volatile Burst Buffers," 2018 IEEE International _ o _ _
Conference on Cluster Computing (CLUSTER), Belfast, 2018, pp. 290-301. The near real-time nature of the eviction provides an improved overall

® D.Zhao, K. Qiao and I. Raicu, "HyCache+: Towards Scalable High-Performance Caching latency on the data flushing with 7x latency reduction and a 2X

Middleware for Parallel File Systems," 2014 14th IEEE/ACM International Symposium on bandwidth increase over batch-based flushing solutions, which reflects
Cluster, Cloud and Grid Computing, Chicago, IL, 2014, pp. 267-276. in a lower 1/O stall time for the application.

Jaime Cernuda

lllinois Institute of Technology

Hugo Trivino

lllinois Institute of Technology

jcernudagarcia@hawk.iit.edu hhernandeztrivino@hawk.iit.edu

tinyurl.com/hflush

https://tinyurl.com/hflush

