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HFlush
Realtime Flushing for Modern Storage Environments

Jaime Cernuda, Hugo Trivino, Hariharan Devarajan, Anthony Kougkas, Xian-He Sun

=>A disparity in speedup between CPU and flushin flushinc
Storage access time has created what is known : '
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as the 1/O bottleneck. w

=>To solve this issue, traditional solutions have
involved data buffering and aggregations on fast
storage mediums.

->However, faster tiers of data storage, such as
RAM, have lower storage capacity which
eventually require eviction of data to a lower
tier, traditionally a Parallel File System (PFS).

Push-based

Observations

=>Current eviction solutions are event-based and
stall I/O when performing evictions. ik

=>Evictions are initiated by individual nodes, = Flushing. | Eviction I
without scalability, and provide writing patterns
not favorable to the PFS.

=>Enhanced capabilities of the new storage devices
(e.g., NVMe SSDs) such as increased hardware
concurrency are not taken into account by
existing system software.

Approach *  Yellow boxes indicate I/0 end time

->Amortize the cost of evictions into small ** /O in Real-Time Flushing are drawn larger because of higher hardware interference
continuous flushing operations instead of

irregularly stalling 1/O operations.
=>Globally coordinate all evictions to provide
better writing patterns to the PFS and match the
demand by offering elastic resources.
—>Leverage the hardware concurrency to perform 0 head
: ; . e verneaas
device-specific eviction optimizations.
=>Move to a server-pull eviction model to provide a 100%

Coordmated O ! continuous stream of evictions. 2822
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Testbed: Ares supercomputer at the lllinois Institute of Technology

Compute Nodes: Storage Nodes:
e CPU: Dual Intel(R) Xeon Scalable Silver e CPU: Two quad-core Opteron 2376 @
4114 @ 2.20GHz (40 nodes) 2.3GHz (40 nodes)
_ _ _ e RAM: 96 GB RAM e RAM: 32GB DDR2-667
Leveraging a data streaming paradigm enables: e Network: 10Gbit Ethernet with RoCE e Storage: 1 250GB Samsung 860 Evo SATA
® Autoscaling e Storage: local 512GB NVMe SSD. SSD, 1TB Seagate 7200K SATA hard drive

o Data durability
o Pipelined flushing in multi-tiered environments
o

Matching hardware properties from source and destination
J Pt HFlush is a pull-based data flusher that implements a continuous data

eviction mechanism.
Initial results have shown HFlush to be a promising solution to the
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Computing (HPDC '18). ACM, New York, NY, USA. | The ability of HFlush to amortize the I/O stall time allows applications
» A.Kougkas, H. Devarajan, X. Sun and J. Lofstead, "Harmonia: An Interference-Aware using it to significantly increase the CPU usage by over 50%.
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Conference on Cluster Computing (CLUSTER), Belfast, 2018, pp. 290-301. The near real-time nature of the eviction provides an improved overall
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