
Efficient Data Eviction across Multiple Tiers of Storage.
Jaime Cernuda

Illinois Institute of Technology,
Chicago

jcernudagarcia@hawk.iit.edu

Hugo Trivino
Illinois Institute of Technology,

Chicago
hhernandeztrivino@hawk.iit.edu

Hariharan Devarajan
Illinois Institute of Technology,

Chicago
hdevarajan@hawk.iit.edu

Anthony Kougkas
Illinois Institute of Technology,

Chicago
akougkas@iit.edu

Xian-He Sun
Illinois Institute of Technology,

Chicago
sun@iit.edu

1 EXTENDED ABSTRACT
Data-intensive computing offers unprecedented opportunities for
scientific discovery, high-fidelity insights, and data-driven decision
making. However, I/O has become a major challenge for extreme
scale computing [4] due to the unparalleledmagnitude of datamove-
ment. The de facto solution to these challenges has been addressed
by using large scale Parallel File Systems (PFS). Modern storage en-
vironment have proposed the addition of multiple layers of storage
between the applications and the PFS. In these environments, upper
layers have a higher bandwidth at the cost of reducing storage capac-
ity, with the PFS as the bottom layer having a hypothetical infinite
capacity. This difference in capacities and speeds between storage
layers makes it extremely challenging to evict data from upper
layers to lower layers efficiently. Currently, the transfer of data be-
tween these storage layers is achieved by either caching or buffering
the data within the intermediate layers allowing the environment
to match the performance gap between two successive layers.

Scientists have proposed various software solutions to address
the performance gap between layers. Data Buffering is one solution
in which the data is accumulated in fast intermediate-storage-layers
and are eventually flushed down. For instance, Data Elevator [1],
Univistor [5], and Hermes [3] are examples of such a buffering
system. A second approach is Data Aggregation in which data from
various nodes is collected by an aggregation layer composed of spe-
cialized hardware, such as burst buffers or I/O forwarders. These
layers then flush the data collected into the underlying archival stor-
age (e.g., PFS). Finally, there is also Collective I/O in which processes
of an application coordinate themselves before performing an I/O
operation. This is commonly achieved in HPC clusters by using
MPI collective I/O frameworks [2]. These software solutions play
a critical role in addressing the growing I/O gap and in enabling
efficient scientific discovery.

These techniques not only enhance the I/O efficiency of an ap-
plication, but they also have in common that they trigger the asyn-
chronous flushing of data to the archival storage. The importance
of the latter operation is further exacerbated in applications (e.g,
The Square Kilometer Array or the Atlas experiment at the Large
Hadron-Collider) where data production exceeds the size of inter-
mediate buffering layers (e.g., RAM, NVMe, or burst buffers) since
the overall performance of these applications is closely tied to their
ability to move data to/from larger storage clusters in a timely and
efficient manner.

Data flushing suffers from several challenges. Firstly, although
buffering data into faster layers improves the application through-
put and latency, the data flushing of these layers into the final
archival storage is bound by the speed of the lowest layers. This
creates a gap in performance during the data flushing between two
layers in which the data can be written faster into one layer than it
can be evicted from the current into the subsequent layer. Secondly,
all software based solutions perform data flushing in batches which
increases the read latency for accessing data. Thirdly, traditional
data flushing is implemented using push-based architectures, an
operation which is typically hidden between computational phases.
For many applications, it can become impractical and a misallo-
cation of resources to meet this computational requirement since
I/O is bounded by the slowest layer. In order to deal with these
challenges, we ought tomove towards a near-real time pull-based ar-
chitecture to improve the efficiency of data eviction between layers.

To address the above challenges, we present RFlush, a real-time
data flushing platform for multi-tiered storage environments. The
core of RFlush is a streaming architecture with exactly once seman-
tics where all operations are decoupled and performed in parallel.
This architecture allows RFlush to provide a low latency and auto-
scaling capabilities while also providing an efficient pipeline for
continuous data flushing operations to enable high resource uti-
lization. RFlush stands between the buffering platform and the
archival storage, and it performs continuous data flushing opera-
tions through a server-pull mechanism, where data from multiple
layers is pulled by RFlush and moved into lower layers. Using a
data streaming model allows us to move away from traditional
batch-based applications and provides us the ability to efficiently
flush high volumes of data.

1.1 RFlush Overview
Figure 1 shows the architecture of RFlush. RFlush follows a pull-
based client-server model . RFlush has four main components. The
Data Collector is responsible for managing the pulling requests from
the buffering system. It requests the location of the earliest entry
and pulls starting from this location. The pulling is done in the
order of arrival of messages. The request is then passed to the Data
Grouping. This component is responsible for grouping requests into
a unit called a data segment. The data grouping is then processed
in parallel by leveraging the knowledge of the final destination
given in the request to perform an efficient data distribution. All
requests belonging to the same final destination are accepted into



Multi-Layer Output

Data 
Collector

Data 
Grouping

Data Sorting Data 
Dispatcher

RFlush

Compute Nodes

Application

Ram

NVMe

Burst Buffers Nodes

Node 1 Node n

...

Application

Ram

NVMe

Figure 1: RFlush overview.

the same data segment managed by a specific process in the cluster.
The data segment will keep accepting requests until one of two
events gets triggered, either the data segment reaches the maximum
allowed size or the time spent since the creation of the segments
exceeds a user-defined threshold. Once the data segment is closed,
the segments is sent to a third component in the pipeline, the Data
Sorter. This component checks that each data segment is distributed
to different process where they are returned to a sorted state that
could have been lost due to network issues or data movements with
unequal speeds. Finally, the Data Dispatcher is the component re-
sponsible for writing segments into the corresponding user-defined
data object (e.g. a file document, a graph, an object, etc) at the final
layer of storage.

As such, the main idea behind RFlush is to flush a number of
requests buffered by an intermediate platform, group them into a
sorted data segment, and finally, send the data segment to a specific
layer. Since all of these processes are implemented under a data
streaming model, the data flushing becomes a continuous, real-time
operation. Even though RFlush requires some internal buffering, it
uses far less buffering compared to previous data flushing methods.
Also, by grouping the requests into file segments, RFlush provides
higher data throughput and lower latency in situations with a high
volume of data production.

1.2 Initial Results
All experiments were conducted on the Ares supercomputer at
the Illinois Institute of Technology. Each compute node has a dual
Intel(R) Xeon Scalable Silver 4114 @ 2.20GHz (i.e. 40 cores per
node), 96 GB RAM, 10Gbit Ethernet with RoCE, and a local 512GB
NVMe SSD. Each storage node has two quad-core Opteron 2376
@ 2.3GHz (i.e. 40 cores per node), 32GB DDR2-667 memory, one
250GB Samsung 860 Evo SATA SSD, and one 1TB Seagate 7200K
SATA hard drive. The operating system of the cluster is CentOS 7.5.

(a) Latency (b) Throughput

Figure 2: RFlush Results.

For our tests, we used four compute nodes and four storage nodes.
The compute nodes emulated a functional application generating
request of a constant, user-defined size. The storage nodes where
in charge of RFlush managing 4 different processes per node. We
compared RFlush with a generic batch-based buffering platform.
We ran three experiments using 10 thousand, 100 thousand, and 1
million requests respectively. Each experiment used three different
request sizes: 1 KB, 16 KB, and 64 KB. We average the data latency
of each of the requests to obtain the average latency of the system
and calculate the overall bandwidth of the system to obtain the
final results. As we see in figure [? ], the baseline batch solution
shows an average latency of 2000ms across all message sizes while
RFlush shows an average latency of 300ms, obtaining a 7X reduction.
With respect to bandwidth, RFlush presents a 2X increase over the
batch-based solution.

1.3 Conclusion
We have introduced RFLush, a pull-based data flusher that imple-
ments a near real-time data eviction policy over multi-tiered storage
environments. Initial results have shown a promising solution to a
growing problem of evicting data in multi-layered environments
especially in environments with extreme scale data generation. The
pull-based implementation of RFlush allows a significant reduction
on resource dedicated to I/O on the client nodes, while the near
real-time nature of the eviction allows for a lower dependency on
the inherent performance of the different layers and an improved
overall latency on the data flushing with 7X latency reduction and
a 2X bandwith increase over batch-based flushing solutions.

REFERENCES
[1] Bin Dong, Suren Byna, KeshengWu, Hans Johansen, Jeffrey N Johnson, Noel Keen,

et al. 2016. Data elevator: Low-contention data movement in hierarchical storage
system. In 2016 IEEE 23rd International Conference on High Performance Computing
(HiPC). IEEE, Hyderabad, India, 152–161.

[2] Yang Wang Xian-He Sun Chuanhe Huang He, Shuibing and Chenzhong Xu. 2017.
Heterogeneity-Aware Collective I/O for Parallel I/O Systems with Hybrid HD-
D/SSD Servers. Transactions on Computers 66, 6 (2017), 1091–1098.

[3] Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. 2018. Hermes: a
heterogeneous-aware multi-tiered distributed I/O buffering system. In Proceedings
of the 27th International Symposium on High-Performance Parallel and Distributed
Computing. ACM, USA, 219–230.

[4] John Shalf, Sudip Dosanjh, and John Morrison. 2010. Exascale computing technol-
ogy challenges. In International Conference on High Performance Computing for
Computational Science. Springer, USA, 1–25.

[5] Teng Wang, Suren Byna, Bin Dong, and Houjun Tang. 2018. UniviStor: Integrated
Hierarchical and Distributed Storage for HPC. In 2018 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, USA, 134–144.

2


	1 Extended Abstract
	1.1 RFlush Overview
	1.2 Initial Results
	1.3 Conclusion

	References

