
HFlow: A Dynamic and Elastic Multi-Layered
I/O Forwarder

Jaime Cernuda, Hariharan Devarajan, Luke Logan, Keith Bateman, Neeraj Rajesh, Jie Ye
Anthony Kougkas and Xian-He Sun
Illinois Institute of Technology, Chicago

{jcernudagarcia, hdevarajan, llogan, kbateman, nrajesh, jye20}@hawk.iit.edu,{akougkas, sun}@iit.edu

Abstract—Modern applications are highly data-intensive, leading
to the well-known I/O bottleneck problem. Scientists have proposed
the placement of fast intermediate storage resources which aim
to mask the I/O penalties. To manage these resources, three core
software abstractions are being used in leadership-class computing
facilities: IO Forwarders, Burst Buffers, and Data Stagers. Yet, with
the rise of multi-tenant deployment in HPC systems, these software
abstractions are: managed and maintained in isolation, leading to
inefficient interactions; allocated statically, leading to load imbalance;
exclusively bifurcated between the intermediate storage, leading to
under-utilization of resources, and, in many cases, do not support
in-situ operations. To this end, we present HFlow, a new class of
data forwarding system that leverages a real-time data movement
paradigm. HFlow introduces a unified data movement abstraction
(the ByteFlow) providing data-independent tasks that can be
executed anywhere and thus, enabling dynamic resource provisioning.
Moreover, the processing elements executing the ByteFlows are
designed to be ephemeral and, hence, enable elastic management of
intermediate storage resources. Our results show that applications
running under HFlow display an increase in performance of 3x when
compared with state-of-the-art software solutions.

Index Terms—Data streaming, I/O forwarding, elasticity,
dynamicity, multi-tenant, data-intensive, I/O,data pipeline, in-transit

I. INTRODUCTION

Modern applications become more and more data-intensive as

they explore, query, analyze, visualize, and process large amounts of

data [1] in a short period of time. In traditional High-Performance

Computing (HPC) architectures storage is treated as a global remote

shared resource [2] typically exposed in a distributed software

abstraction in the form of Parallel File Systems (PFS). Unlike

traditional applications, where execution times are compute-bound,

data-intensive applications [3], [4] often spend the majority of CPU

cycles waiting for data, making them sensitive to the performance

of the underlying storage systems — a phenomenon widely known

as the I/O bottleneck problem [5]. To alleviate this bottleneck, a

new architectural trend proposes the placement of fast intermediate

storage resources [6] (e.g., NVMe SSDs, 3DXpoint, PCM) which

aim to mask the I/O gap between compute nodes and the underlying

PFS and has been shown to accelerate data-driven discovery [7].

The I/O bottleneck on PFS arises from various application

behaviors: a) highly concurrent I/O [8] that can lead to interference,

complex locking, and metadata contention, b) highly bursty I/O [9]

that can lead to bandwidth saturation, increased CPU stall time, and

resource idleness in between phases, c) highly iterative I/O [10]

that can lead to expensive data movements, network pressure, and

irregular data access patterns. Several software solutions have

been proposed to mitigate the negative effects of such behaviors.

These include I/O Forwarders [8], [11] (IOF), which reduce the

client concurrency by aggregating several I/O requests; Burst
Buffers [12], [13] (BB), which provide a fast temporary storage for

absorbing I/O bursts and asynchronously moving data to PFS; and

Data Staging [10], [14] (DS), which enables in-situ data analysis

and visualization to reduce expensive data movement between

storage and compute nodes. These I/O technologies mask the

data management complexity by transparently performing these

optimizations and improve applications’ I/O performance [15], [16].

As the scale of modern systems grows, managing such complex

multi-layered I/O infrastructure (i.e., IOF, BB, DS, PFS) and

extracting optimal performance becomes challenging. This difficulty

is further highlighted by the rise of multi-tenancy in HPC [17]. In this

study, we make the following observations. First, each of the above-

mentioned software solutions was designed with different objectives

and is typically managed and maintained in isolation [18]. This leads

to unnecessarily bloated software stacks and uncoordinated interac-

tions between these layers [7] and limits how applications can utilize

these resources in a workflow. Second, applications access these in-

termediate I/O resources by static allocations or time-based reserva-

tion mechanisms [19]. However, applications distribute work across

ranks non-uniformly [20], [21] which may lead to load imbalance

and performance mismatching ultimately resulting in sub-optimal

I/O performance. Third, to reduce resource contention, each interme-

diate I/O layer is exclusively provisioned to applications for their life-

time [22]. However, applications perform I/O in phases [23] which

leads to increased resource idleness between compute and I/O result-

ing in a misutilization of these specialized hardware resources [13].

Finally, in-situ [24] and in-transit [25] operations can significantly

reduce the data movement and time-to-insight and is a crucial func-

tionality of modern data-intensive applications [26], [27]. Since most

intermediate I/O layers gain data ownership for a given time, they

are a natural ideal candidate to carry forward such operations (e.g.,

data deduplication, filtering, compression, etc.). However, existing

intermediate I/O solutions lack support (or are limited at best) for

complex in-situ and in-transit user-defined computations. These

observations motivate a new generation of I/O forwarding software

that transparently unifies these intermediate I/O layers and optimizes

all data movements generated by modern data-intensive applications.

In this work, we present HFlow, a dynamic and elastic multi-

layered I/O forwarding technology, which addresses the identified

114

2021 IEEE International Conference on Cluster Computing (CLUSTER)

2168-9253/21/$31.00 ©2021 IEEE
DOI 10.1109/Cluster48925.2021.00064

challenges by utilizing a real-time continuous data movement

paradigm. HFlow introduces an abstraction, called ByteFlow,

which captures an application’s data movement requirements and

semantics (i.e., data aggregations, filtering, compression, ephemeral

data stashing, etc.). A ByteFlow is defined by a pair of endpoints

(i.e., source and sink) and a set of transmission rules (i.e., how the

bytes should flow between the endpoints). On one hand, HFlow
supports a variety of application and data representations by

transforming forwarding requests between the endpoints into a data

representation, the Data Parcel, that supports a publish-subscribe

model. On the other hand, the set of transmission rules are

defined through the chaining of user-defined tasks (compression,

aggregation, filtering, data caching, etc.) in the form of a DAG. The

data-centric and ephemeral nature of these tasks combined with

resource utilization monitoring allows HFlow to dynamically and

elastically adjust to the load of the system and I/O behavior of the

applications. The high customization of the tasks further enhances

HFlow’s capabilities to manage a variety of I/O resources by

behaving in complex and diverse ways. The combination of all these

features allows HFlow to improve the run-time of applications.

In summary, HFlow demonstrates the following contributions:

1) How exposing all intermediate I/O resources under a single

platform and a unified interface can reduce software bloating

and improve interactions between layers.

2) The effectiveness of run-time dynamic resource mapping to

avoid load imbalance and adapt to applications changes in I/O

behavior.

3) The effectiveness of elastic resource management, where

resources can automatically grow and shrink to handle the

demands of all applications running in the system.

4) How enabling complex user-defined in-situ/in-transit
computations can help reduce the I/O load of the system.

II. BACKGROUND AND MOTIVATION

A. Intermediate I/O Resources (InterIOR)

Intermediate I/O Resources (InterIORs) are temporary storage

areas physically deployed between compute nodes and storage

nodes used by applications to bridge the gap between CPU

performance and storage performance. There are three major types

of InterIORs: I/O Forwarders, Burst Buffers, and Data Stagers. In

this section, we will describe each of these technologies.

1) I/O Forwarders: The I/O Forwarding Layer (IOFL) is an

InterIOR layer that intercepts I/O requests made by applications on

compute nodes and forwards them to a PFS located on storage nodes.

IOFs are commonly deployed in large-scale supercomputers [28]–

[30]. The IOFL is designed to reduce the I/O request concurrency, co-

ordinate reading/writing, enable buffering [19] and prefetching [31]

for the PFS. These properties provide two main benefits: First, a re-

duction in the I/O contention caused by concurrent I/O accesses [11],

and second, the removal of the filesystem clients on compute nodes,

which typically contribute to OS noise [8]. However, despite these

benefits, the IOFL also has a few disadvantages; for example,

most supercomputers implement a fixed-mapping strategy between

compute nodes and IOFs, which can lead to load imbalance and inter-

application interference [21]. Some solutions have been proposed

that map jobs to IOFs when the job is deployed [19]; however, these

approaches require profiles of the application and cannot re-map jobs

dynamically during runtime, which also leads to load imbalance.

2) Burst Buffers: The Burst Buffer Layer (BBL) is an InterIOR

layer that buffers data for applications [32]. The BBL is designed

to absorb I/O bursts, in contrast to the IOFL, which is designed

to coordinate and reduce the I/O requests made to the PFS. BBs

are deployed in large-scale supercomputers, including Cori [33]

and Trinity [34]. BBs are comprised of node-local or shared storage

devices such as NVRAM. The BBL accelerates several types

of workloads, including checkpoint-restart, non-sequential table

lookup, and out-of-core access [7]. However, shared BBs are subject

to cross-application I/O interference when multiple applications are

attempting to write to the same BB concurrently [12]. In addition,

allocating dedicated BBs causes resource under-utilization and

load imbalance due to the fact that many HPC applications spend

small fraction of their runtime in I/O phases, where no I/O is

happening [13]. Furthermore, for data-intensive workloads, the

batch-based approach for draining data is typically used to manage

BBs, resulting in significant I/O stall times due to BB capacity

being exhausted, which requires applications to stall until the BB

has been drained enough to accept further I/O request [9].

3) Data Staging: The Data Staging Layer (DSL) is an InterIOR

layer that dedicates a portion of compute resources for storing

data. The main difference between the DSL and the BBL is that

DSL was designed to provide concurrent access to application

data whereas the BBL was designed to absorb I/O bursts for

individual applications. The DSL provides multiple benefits: fast,

asynchronous data movement between compute nodes and the

staging area using RDMA [10]; fast indexing, querying, and

monitoring of simulation data in the staging area by multiple

applications concurrently [14]; and in-situ data processing [27].

B. Data Streaming

To support the ever-increasing demand of processing streaming

data, both Cloud computing and HPC communities have recently

proposed and developed their own Data Stream Processing (DSP)

systems. To the best of our knowledge, there are many DSP

platforms which have emerged in the Cloud-based space in the

last few decades, such as Apache Flink [35] [36], Google Cloud

DataFlow [37] and Kafka Streams [38]. These systems have been

used extensively in industry and scientific fields. Although these

DSP systems may differ in their architecture, they are mainly

designed and optimized for processing streaming data in order to

get low latency and high throughput. However, compared with the

DSP development in Cloud computing, DSP systems are neither

well-supported nor widely used in HPC. Two main DSP systems

exist in HPC: MPI Streams [39] [40], a library that extends Message

Passing Interface (MPI) to provide streaming operations in HPC

environments; and Pilot-Streaming [41], a framework that supports

Cloud native streaming applications and their resource management

requirements on HPC platforms. Although MPI Streams and

Pilot-Streaming partially make up for a deficiency in supporting

DSP on HPC platforms, the deficiency is still there. Further, a

growing number of data-intensive applications are moving to the

HPC platforms because of their high processing capabilities and

115

0

10

20

30

40

50

60

70

Batch Real Batch Real Batch Real

Base I/O Exclusive I/O Intensive Balanced

Ti
m

e
(s

)

Block

Drain-only (bg)

App-only

Interferance

(a) Batch vs real-time draining

(b) Detailed drain behaviour

Fig. 1: Batch vs real-time draining

larger memory capacities with the advent of exascale computing.

Therefore, it is becoming very important and necessary to provide

data stream processing on HPC platforms.

C. Motivation

Three observations motivate us to create a new Data Forwarding

System based on a real-time data movement engine: 1) batch-based

approaches to data draining result in significant I/O stalls on data-

intensive workloads, 2) software technologies that manage the InterI-

ORs are independent, which increases the complexity of code for the

user, and 3) fixed mappings are widely used for associating jobs to In-

terIORs, resulting in load imbalance and resource under-utilization.

1) InterIORs often depend on batch-based approaches for data

movement, which only drain data when some event is triggered, such

as entering the computation phase of a checkpoint-restart application

or capacity being depleted. In compute-intensive workloads (i.e.

compute phases are dominant, assuming an application with a

compute phase and an I/O phase, such as in a checkpoint-restart

application), batch-based approaches can overlap the cost of draining

with the phase of computation, assuming the capacity of the

InterIOR does not get depleted during the I/O phase. However, on

data-intensive workloads (i.e. workloads where draining is triggered

during a single phase of I/O), this approach may result in significant

slowdown due to I/O stalls caused by the need to wait for the space

to become available before accepting more I/O requests. However,

a pull-based streaming model to perform data movements contin-

uously can amortize the cost of I/O operations to the intermediate

layers and reduce the I/O stall time, increasing performance.

To demonstrate this, we conducted a study on the performance of

different workloads using continuous and batch-based draining. We

conducted tests for three workloads generated using IOR [42]:I/O-

Exclusive, I/O-Intensive, and I/O-Balance. In Figure 1a, we see

that the real-time drain scheduler outperforms the batch-based drain

scheduler. We illustrate the workloads with Gantt charts in Figure 1b

to showcase how the batch-based scheduler depleted the BB capacity,

causing significant stall time (wait phase) for incoming I/O. There-

fore, we conclude that, there is a large potential for a real-time drain

scheduler to improve the performance of data-intensive workloads.

2) Although various InterIOR layers exist (IOFL, BBL, DSL),

separate applications are used to manage them IOFL, BBL, and

DSL [43]. This lack of unification makes interacting with the

different layers more complex and system-dependent, increasing the

programming burden for the user. A unified platform would reduce

the programming overhead for the user by abstracting the various

interfaces provided by the different InterIOR software technologies.

3) Fixed mappings are widely used to associate jobs with InterI-

ORs, which leads to load imbalance and resource under-utilization

in InterIORs. Thus, a system which is able to elastically manage the

provisioning of InterIORs and dynamically map jobs to InterIORs

can significantly reduce the effects of load imbalance on InterIORs.

III. HFLOW: NEXT-GEN I/O FORWARDING

A. Design Requirements

In this work, we present a novel protocol for I/O Forwarding

technology, HFlow. HFlow features a real-time data movement

paradigm that, in combination with the ByteFlow abstraction,

enables HFlow to satisfy the challenges presented in section I:

1) Unified Forwarding Platform: A new I/O forwarding system

should expose all intermediate I/O resources under a single

platform to provide a unified interface. [7].

2) Dynamic resource mapping: A new I/O forwarding system

should dynamically map jobs to InterIOrs to avoid load

imbalance and inefficient resource utilization caused by changes

in the I/O behavior of applications [19].

3) Elastic resource management: A new I/O forwarding system

should enable the automatic, real-time provisioning of InterIOrs,

as providing the minimum amount of resources necessary to

handle the demands of all applications running in the system

at any moment in time avoids resource under-utilization [13].

4) In-situ/in-transit operations: A new I/O forwarding system

should empower users with the ability to enhance their I/O

pipeline with an active forwarding model capable of data

transformations [24].

B. HFlow Data Model

A ByteFlow is defined by a pair of endpoints (i.e.,source and sink),

called ByteSockets, and a set of transmission rules (i.e., how the bytes

should flow between the endpoints), called ByteFlow Schema.

The ByteFlow Schema defines the internal behaviour of the

ByteFlow, and establishes the functionality and order (in the form

of a DAG) of the tasks that need to be perform on the data flowing

through the ByteFlow, more details and a sample of a ByteFlow
Schema are provided in section III-D7.

The ByteSockets are of key importance to HFlow as they are

the two I/O end-points of a ByteFlow that, in general, represent the

client and the final storage system.

ByteSockets have five core components:

1) Type: represents if the ByteSocket is a source (where HFlow

takes data from) or a sink (where HFlow moves data to).

2) Data Representation: defines how HFlow should internally

interface with the ByteSocket. For example, representations

can include queues, HDF5 files, POSIX files, Redis maps, or

NoSQL tables.

3) Access Information: defines how to access the ByteSocket. For

example, It can be an IP and port or a mount point.

4) Identifier: defines the location of data. For example, the path

to a file or a key in a database.

116

Fig. 2: HFlow Architecture

5) Flags: a collection of inputs which specify the management of

a ByteSocket. For example, the priority of data, data deletion,

write mode, etc.

C. High-Level Architecture

In Figure 2 we can see the overall path of a job on HFlow.On

initialization of HFlow, the HFlow Manager is deployed on a

single node. The HFlow Manager will spawn a default number of

HFlow Executors. Users create a custom ByteFlow Schema defining

the ByteSocket and any in-transit operations and then compile it

into a shared library. At runtime, the applications will submit the

ByteFlow Schema to the system (1) and the HFlow Manager will

register it (2). On submission, the HFlow Manager will load the

Schema dynamically from the shared library and map a default

number of Collectors defined in the ByteFlow Schema to a subset

of the HFlow Executors (3). At this point, the application is able

to begin submitting I/O Requests.

When the application publishes a request into the source (4), the

Collectors will pull the requests and convert them into Data Parcels
(6). When finished, each task (including the Collectors) asks the

HFlow Manager for the location of the next task (7) and emits

the Data Parcel. When the Delivery Tasks defined in the ByteFlow
Schema get executed, the Data Parcels are persisted to the sinks (8).

Four statistics are collected periodically by HFlow. First, when an

I/O request is submitted, the ByteFlow Monitor is given statistics of

the request, such as request size (5). Second, the HFlow Manager no-

tifies the ByteFlow Monitor when an I/O request has been completed

(9). Third, each HFlow Executor individually collects statistics about

the flow of Data Parcels in that HFlow Executor (10) and sends

them to the HFlow Manager to be aggregated into software runtime

statistics, which represent the flow of Data Parcels in the entire

system (11). Finally, a Hardware Monitor maintains a view of the

current status of the interIOR resources (12). These statistics are

periodically sent to the ByteFlow Regulator (13,14). The ByteFlow
Regulator uses these statistics to determine the optimal number of

resources that should be allocated for each ByteFlow and sends these

Fig. 3: Table of HFlow API Operations

suggestions to the HFlow Manager (15), which is responsible for

elastically reshaping the pool of HFlow Executors and dynamically

modifying the mappings of tasks to HFlow Executors.
This elasticity model can also be seen on Figure 2. Where

three ByteFlows are being used by three applications. (marked

in grey are unused resources). Two applications (Modelling and

BigData) are registered on start with a default set of resources. Up

until time t1, the I/O demand of two applications continue to rise,

requiring more resources to be provisioned and for the mappings

to change dynamically, resulting in wider ByteFlows. At time t2,

the Visualization application is launched and registered with HFlow.

With the addition of this application, all available resources become

provisioned. In this example, the I/O demand of the Visualizing
application is higher than the other two combined, resulting in the

ByteFlows of those two applications being stripped of resources. At

time t3, the Modeling application finishes, and as the I/O demand

of the Big Data application begins to decrease, resources start being

deallocated elastically since they are being under-utilized.

D. HFlow Components

1) HFlow API: Application interaction with the ByteFlows can

be perform in one of two ways: through the native HFlow API or

through a transparent mode where HFlow intercepts I/O calls.The

HFlow API can be seen in table 3. It consists of two components:

• ByteFlow Administration: provides users with the tools needed

to design and manage ByteFlow Schemas.
• Publish/Subscribe Paradigm: defines the methods applications

use to interact with HFlow during runtime.

2) HFlow Manager: The HFlow Manager is the brain of HFlow.

It is responsible for receiving the ByteFlow Schema registration

and instantiating the ByteFlow through the spawning of Collectors,
elastically managing the HFlow Executor by spawning or killing

them, parsing ByteFlow Regulator suggestions to dynamically map

tasks to HFlow Executors, directing the task communication by

informing each HFlow Executors of the destination of its Data
Parcels, and, finally, aggregating the software runtime statistics

provided by the HFlow Executors.
3) HFlow Executor: The HFlow Executor is the engine of

HFlow. It runs as a single process with control of a number of

threads. Its main responsibility is to spawn, control and terminate

the execution of tasks and feed them the incoming DP. It is remotely

spawned by the HFlow Manager. On receiving a request from

the HFlow Manager, containing a WorkerID, a SchemaID, and a

117

TaskID, the HFlow Executor will obtain a reference to the task to

be executed. When the WorkerID is not defined, this task will be

placed on the thread with the minimum load and will begin running

with a new unique ID. If the WorkerID is defined, the task is given

to the thread with that ID. Once a task is running, it will receive

some Data Parcels. The processed Data Parcels are emitted to the

HFlow Executors, which will contact the HFlow Manager, it will

return an ExecutorID and WorkerID pair to which the Data Parcels
will be sent. Finally, either under the request of the HFlow Manager
or because no new Data Parcels are received for the task, tasks can

be killed and their threads removed and dequeued. The combination

of this behaviours is what allows HFlow to provide the dynamic

and elastic behaviour.
4) Metadata Info: Implemented utilizing an in-memory

key-value object database. It is responsible for storing HFlow
runtime statistics, and hardware resource usage.

5) ByteFlow Monitor: The ByteFlow Monitor tracks the statistics

of the ByteFlow. Whenever an API call is made, it immediately

sends statistics to the ByteFlow Monitor, which can then be accessed

as necessary by the ByteFlow Regulator in order to determine

resource allocation. Since ByteFlow Monitor is designed to balance

HFlow resource usage, the major statistics tracked by the ByteFlow
Monitor are the InFlow (i.e. rate of data input) and OutFlow (i.e.

rate of data output). This information is pushed out to the ByteFlow
Regulator at fixed intervals either of time, data, or operation count.

Algorithm 1: ByteFlow Regulator Algorithm

1 CalculateRate (jobs)
2 foreach job ∈ jobs do
3 InFlow = InFlowMap[job]
4 OutFlow = OutFlowMap[job]
5 variation = |OutFlow−InFlow|
6 if InFlow = 0 ∨ OutFlow = 0 then
7 continue

8 if variation≥ conf.UpdateVariation then
9 AlterNodes(job, OutFlow, InFlow)

10 return
11 AlterNodes (job, OutFlow, InFlow)
12 if OutFlow≥ InFlow then
13 multiplier = AlterType::SHRINK
14 else
15 multiplier = AlterType::GROW

16 variation = |OutFlow−InFlow|
17 difference = variation - (conf.UpdateVariation/2)
18 nodeVar = difference*multiplier/conf.UpdateStep
19 ResourceAllocation resources(job, nodeVar ,0, 0)
20 HFlowManager.ChangeResourceAllocation(resources)
21 return

6) ByteFlow Regulator: The ByteFlow Regulator is the core

control center of the dynamic and elastic model behind HFlow.

At its core, the function of the ByteFlow Regulator is to generate

a set of suggestions instructing the HFlow Manager to reshape the

resources allocated to any given ByteFlow. The ByteFlow Regulator
requires the InFlow and OutFlow, software-level statistics, and

hardware resource statistics. With this information, it will generate

the suggestions. Algorithm 1 showcases a simplified version where

Fig. 4: A visualization of a ByteFlow for data writing

Listing 1: Simple ByteFlow Schema and a collector

1 struct SimpleSchema : public Schema {
2 SimpleSchema(uint32 t job id): Schema(job id){}
3 void CreateDAG() override {
4 collector = new HFLowCollector();

5 delivery = new HFLowDeliver();

6 collector−>links.push back(sink);

7 }
8 };

9 typedef struct HFlowCollector : public Collector {
10 HFlowCollector() : Collector(), server id(0) {}
11 Parcel Run() override {
12 client = new Client(job id);

13 while(wait for(microseconds(100))){
14 parcels = client−>Pull(server id);

15 if(parcels.size() == 0) continue;

16 for(parcel: parcels){
17 data = client−>GetData(parcel);

18 client−>DeleteData(parcel);

19 client−>UpdateStatus(parcel);

20 emit(job id , id , parcel, data);

only InFlow and OutFlow are considered. The algorithm triggers

a re-scaling if the difference between InFlow and OutFlow exceeds

a given threshold. A re-scaling involves reshaping the resources of

the given ByteFlow by an amount proportional to the UpdateStep,

which defines the maximum amount of flow that a single processing

unit (e.g. a core or a node) is capable of handling.

7) ByteFlow Schema: The ByteFlow Schema is a DAG that

orders and establishes the functionality of a series of independent

tasks that need to be performed on the data flowing through the

ByteFlow. The order and functionality of the tasks are user-defined

and provide the user with the flexibility to manage their own data.

In addition, this flexibility allows HFlow to interact with a variety

of sources and sinks as the Data Collectors and Data Deliverers can

be customized to interact with the desired target. Some limitations

do exist: a) HFlow tasks have to be state-less as we assume that

tasks can be killed and spawn at any point in time; b) HFlow
does not currently support interaction between two ByteFlows. As

an example, Listing 1 showcases a simple and generic ByteFlow
Schema. Figure 4 visualizes a Byteflow defined by a more complex

ByteFlow Schema that defines an aggregation task to achieve higher

performance over HDD while interacting with a temporary KVS

to store the in-transit data to reduce network usage.

118

E. Design Implications

In this section, we detail how the design of HFlow impacts the

performance and management of the storage system.

1) Amortizing Flushing cost: Data-intensive applications can

exhaust the capacity of InterIORs when a batch-based drainage

approach is used for data movement, resulting in significant I/O

stalls that reduce application performance. The real-time drain

approach that HFlow employs is able to reduce this penalty by

draining data before the capacity is expended. However, this

approach can cause I/O interference due to the fact that InterIORs

are receiving and sending data at the same time. When applications

are more compute-bound, the real-time draining approach can result

in performance degradation due to this interference. Therefore,

HFlow is best suited for data-intensive workloads.

2) Mitigating uncoordinated I/O: When multiple applications

attempt to perform I/O with a backend storage service such as PFS

without coordination, cross-application I/O interference is incurred.

Previous research has been conducted on coordinating this I/O

for particular InterIOR layers, such as the IOFL, BBL, and DSL.

However, these technologies work in isolation and still interfere

with each other. HFlow is able to manage the diverse set of InterIOR

software and hardware technologies. HFlow can sit on top of existing

InterIOR technologies and coordinate their I/O to the backend

storage, or it can completely replace those technologies and manage

the movement of data through the storage system. To reduce interfer-

ence, HFlow can make it so that only one ByteFlow can perform I/O

with a particular sink at a time. However, if the sink automatically

drains data to the backend storage, HFlow does not have direct

control over this data movement. This can still produce interference.

F. Design Considerations

While the core aim of HFlow is the management of InterIORs

for HPC systems, we have envisioned HFlow as a system capable

of becoming a more generic data movement engine between any

source and sink, such as application-to-application communication,

and even to be used outside of HPC systems. As such, in this

section, we present some design-level considerations that can be

implemented on HFlow for use in other environments.

1) HFlow Data Collection: With HFlow we have propose the

introduction of a new way to handle I/O drainage in HPC systems,

a real-time drainage model. The architecture of HFlow draws from

this new approach to introduce significant benefits to the user such

as automatic elasticity and dynamicity. Yet, HFlow is not inherently

tied to the real-time drainage model which we believe can provide

negative performance effects to compute heavy applications due

to an increase in I/O interference on the client side. Due to this, we

have design the Data Collector with tunable flushing capabilities

that allow users to define the amount of real-time vs batch eviction

desired for their application, this combined with a write-combining

buffer allows HFlow to provide a batch based approach. We believe

that this tunable draining could lead to interesting further research

allowing HFlow to adapt itself not only to the application behaviour

but also to the underlying storage device holding the buffer and its

capabilities, specially its data buses.

2) Bottlenecks: We theorize two possible origins for bottlenecks

within HFlow: a) Software-level bottlenecks caused by the inability

to properly match two stages on the ByteFlow Schema, which

can be caused by limited hardware availability, a lack of proper

information at the application level of the I/O demand or a big

mismatch between the computing demands of subsequent stages,

b) Hardware-level bottlenecks can be caused by a trickling of

Data Parcels steady enough that HFlow maintains threads alive

indefinitely without releasing their resources.

In order to resolve software-level bottlenecks, one possible idea

would be to force a specific increase of compute capabilities to

a given phase of the ByteFlow Schema. In some cases, it might

require a re-balancing of components where resources are taken

from one phase and given to the troubled one. Hardware-level

bottlenecks present a less complex solution, where the troubled

tasks can be killed and their flows will automatically be merged

with pre-existing tasks of the same types.

3) Application prioritization: HFlow is aimed at running and

managing multiple ByteFlows from a diverse pool of applications.

Due to the dynamic nature of resource management in HFlow, it can

be important in a production level system to allow for restrictions

and limitations over the properties of the different ByteFlows so as to

facilitate the ability of the system administrator to properly prioritize

more critical applications. To do so, HFlow could either limit the

quantity of nodes or threads the ByteFlow has available at the

ByteFlow Manager level or define a priority level, where ByteFlows
with a higher priority might be able to cannibalize on the resources

of lower priority ByteFlows by force-killing tasks when needed.

IV. EVALUATION

A. Methodology

Testbed: All tests were conducted on the Ares computer cluster

at Illinois Tech [44], a research cluster, designed to support a

hierarchical storage architecture. The cluster consists of a storage

and compute rack, each having 32 nodes. The two racks are

interconnected by two isolated Ethernet networks (one of 40Gb/s

and the other 10Gb/s) , with RoCE enabled. Each compute node has

a dual Intel(R) Xeon Scalable Silver 4114, 48 GB RAM and NVMe

PCIe x8 drive. Each storage node has a dual AMD Opteron 2384 @

2.7Ghz, 32GB RAM, a SATA SSD and a traditional HDD. The ar-

chitecture for our evaluations consists of 16 compute nodes as clients,

16 compute nodes using 4xNVMe as BBs nodes, 16 storage nodes as

IOF nodes and 16 storage nodes with a PFS as the final storage layer.

Software: The implementation of HFlow is written in C++ with

over 9K lines of code, publicly available at GitHub1. The current

prototype supports both a native API interfacing with distributed

queues and a transparent API which leverage POSIX interception

to interface with HFlow, the latter will be used in the evaluation

section for real applications. Finally, the current implementation

supports Data Delivery to both POSIX based files and Redis queues.

For the evaluations, CentOS 7.1 was used as the operating

system on all nodes. OpenMPI was used, exclusively, to provide the

function MPI Comm spawn, wich is used to scale ByteFlow

Executors (HFlow is not an MPI application). HCL 0.9.3 [45], a

1https://github.com/scs-lab/HFlow

119

(a) ByteFlow Schema Submission (b) Write Task

(c) Read Task

Fig. 5: Visualization of percentage of time spent on each internal

component for the core operations of HFlow

high-performance distributed data structures library over RPCs, is

used for the communication layer and distributed metadata storage.

Finally, OrangeFS 2.9.7 is used as the PFS for data storage and

Redis 6.0.6 is used for temporary storage of Data Parcels while in

transit, as described in Section III-D7. All tests in the evaluations

were performed 5 times, the average result is reported.

B. Internal Evaluation

1) Anatomy of Operations: In Figure 5, we present the anatomy

of operations of HFlow. The three charts represent the ByteFlow

Schema Submission and the operation of a Write Schema and

a Read Schema. These were achieved via a setup with 40 client

processes on a node issuing 512 requests, each of size 512 KB in

a file-per-process fashion.

The ByteFlow Submission, in Figure 5a, is dominated by

ByteFlow Executor spawning, taking 95% of the time of the

whole submission. Task initialization and assigning are both not

particularly time consuming, while the relatively low time spent

in communication means that the network is not a bottleneck.

The anatomy of a Write Schema can be seen in Figure 5b, where

HFlow spends a total of 35.3%+ 26.03% performing I/O, both

collecting Parcels from the application‘s queue and delivering them

to final storage.The anatomy of a Read Schema can be seen in

Figure 5c, with most of the time taken up reading data from PFS

(47.25%) and submitting the parcels to the client (32.42%). The

extra bookkeeping not associated with any of these only takes up

about 15% of the total operation time.Note that when executed,

(a) Throughput of Collectors at
varying scales

(b) Bandwidth of varying number of
Delivery Tasks

Fig. 6: The performance of dynamically modifying the number of

Collector and Delivery Tasks

all tasks get pipelined. As HFlow is collecting one Data Parcel,

another one is being Delivered. Similarly, task submission refers

to the initial set-up of the system’s task as they get deployed and is

thus a one time cost. In all of these graphs, we observe that internal

network communication is not a bottleneck for HFlow and that our

RPC communication framework is suitable for the system.

2) Collector Dynamicity: Collectors are fundamental tasks that

are common to every ByteFlow Schema. They are responsible for

gathering data from sources, converting them into Data Parcels, and

storing them in an in-memory KVS for use by subsequent tasks.

The number of Collectors used to service I/O requests for a given

application should be dynamic and depend on the rate at which

I/O requests are being produced. To demonstrate this, we vary the

amount of I/O requests generated by the application and the number

of Collectors used to pull those I/O requests.

For this test, we launch an HFlow Manager that has 4 threads

and spawns a single HFlow Executor with 16 threads on a different

node. We use a ByteFlow Schema with a single Task in the DAG:

a Collector. The Collector pulls the data from the client’s queue

and puts it in the in-memory KVS. We built an application that

generates 10K I/O requests per process of size 64KB, and, on

one client node, we launch between 1 and 64 processes of this

application. The application measures the time at which the first

request was produced and the last request was collected, and we

calculate throughput in ops/sec. After each test, the KVS is reset

to prevent memory from overflowing.

From Figure 6a, we see that when there are 10K requests being

produced, only 2 collectors are necessary to get desirable throughput.

However, At 320K requests, the 16 collectors case improves

throughput by at least 2x when compared to the cases utilizing only

2, 4, or 8 collectors. This shows that the number of Collectors should

dynamically change as the behavior of the application changes.

3) Delivery Dynamicity: Delivery Tasks are fundamental tasks

that are common to every ByteFlow Schema. They are responsible

for moving data to the sink. The number of Delivery Tasks for

a given application should be dynamic and depend on the rate

at which I/O requests are made as well as the nature of the sink,

such as the amount of concurrency the sink can support. To

demonstrate this, we vary the quantity of I/O requests generated

by the application, the number of Delivery Tasks used to move data

120

(a) Cost of ByteFlow Regulator
Information Acquisition

(b) Cost of ByteFlow Regulator
Decision Making

Fig. 7: Visualization of the overall computational and networking

costs involving the ByteFlow Regulator

to storage, and the number of storage nodes in the sink.

For this test, we launch an HFlow Manager that has 4 threads and

spawns 16 HFlow Executors among 16 nodes with 16 threads each.

The HFlow Executors are divided among the set of nodes. We also

create a PFS (the sink) that manages between 1 and 16 HDD-based

storage nodes for each test case. We use a ByteFlow Schema that

contains a Collector Task and a Delivery Task. We built an applica-

tion that generates 10K I/O requests per process of size 64KB, and,

on a single client node, we launch between 1 and 64 processes of this

application. We spawn exactly 4 Collectors and between 1 and 4 De-

livery Tasks for each test case. The Delivery Tasks will be mapped to

different HFlow Executors so that the PFS can get more concurrency.

Since the Collector Tasks are much faster than the Delivery Tasks,

we only need 4 Collector Tasks to match the demand of the Delivery

Tasks. The application measures the time at which the first request

was produced and the time at which the last request was delivered,

and we calculate bandwidth from those measurements in MB/sec.

From Figure 6b, we see that when there is 1 PFS node, 1 Delivery

Task is sufficient to get desirable bandwidth. However, with 16

PFS nodes, the case with 4 Delivery Tasks improves bandwidth

by at least 2x when compared to using only 1 or 2 Delivery Tasks.

This is because the PFS with 16 nodes is able to support much

higher concurrent access that the higher number of Delivery Tasks

can provide. This shows that the number of Delivery Tasks should

change depending on the rate at which I/O requests are produced

and on the nature of the sink.

4) ByteFlow Regulator: Figure 7 shows the cost of the different

activities or operations performed by the ByteFlow Regulator. To

perform these tests, we have 40 client processes on one client node

and 4 threads on a single ByteFlow Regulator node. The client

processes issue I/O requests on a scale between 100k and 6.4 million

operations, and we measure inflow and outflow rate in terms of

number of operations per second, and the rate of operation decisions.

In Figure 7a, we can see the inflow and outflow operation rates.

The inflow and outflow operation rates are fairly similar for a given

number of requests. The maximum throughput of about 800000

ops per second is achieved at the 3.2 million request scale. This

shows us the network limit of the communication between the two

nodes. In Figure 7b, we can see the throughput of decisions made

Fig. 8: Throughput of spawn/terminate operations

by the ByteFlow Manager. It averages out to about 3.1 million ops

per second. There is little variation on this value at scale because the

decision algorithm is O(1), depending only on inflow and outflow

values which are updated in a decoupled fashion so as to minimize

the time spent waiting for their values.

5) Cost of Elasticity: HFlow has the ability to elastically expand

and contract the set of available resources that ByteFlows can use

for executing tasks, which is done by either spawning or terminating

HFlow Executors. HFlow spawns additional HFlow Executors

when the current pool of resources is being over-utilized, and HFlow

terminates HFlow Executors when they have no remaining tasks

and have been inactive for some period of time. To demonstrate

the cost of elasticity, we spawn and terminate a varying number

of HFlow Executors among multiple concurrent processes.

For this test, we created an HFlow Manager with 4 threads and

access to 16 compute nodes. We built an application that spawns

and then immediately terminates an HFlow Executor in a loop,

and, on a single client node, we launch exactly 40 processes of this

application. We measure the amount of time it takes to complete

the spawning and termination tasks individually and report the

throughput of the two operations in ops/sec.

In Figure 8, we see that we can spawn between 4,750 and 5,100

HFlow Executors and terminate between 196K and 226K HFlow

Executors every second. As expected, spawning HFlow executors

is much more expensive than terminating them. This is because

spawning has to distribute the binary for the HFlow Executor over

an SSH connection, launch it on the compute node, create the thread

pool, and establish an RPC connection to the HFlow Manager.

Terminate tasks are about 50x faster than spawning. This is because

the only cost is a quick RPC call that causes the HFlow Executor

process to exit. We also notice that, as the number of operations

increases, the throughput increases. This is because the HFlow

Manager can accept and service multiple spawn and terminate tasks

concurrently due to multi-threading.

C. Application Evaluation

This section is meant to demonstrate the performance of HFlow
for managing the IOF, BB, and DS using real-world applications.

In each of these tests, we have 32 compute nodes. Each node runs

40 client processes. A PFS that manages 16 storage nodes. And

Finally, HFlow running on the storage nodes and composed of a

HFlow Regulator with 4 threads, 15 HFlow Executors (8 threads

each), and a single ByteFlow Regulator with 4 threads.

121

Fig. 9: HFlow as an I/O Forwarder

1) HFlow as an I/O Forwarder: In order to prevent load imbal-

ance in HFlow, tasks are dynamically mapped to the pool of HFlow

Executors during runtime. The goal of this test is to demonstrate

the performance impact that the dynamic mapping of IOFs has on

real applications as they scale. To do this, we ran three real-world

applications that exhibit different I/O behaviors: VPIC, HACC, and

Kmeans. VPIC is a particle simulation program that is I/O-intensive;

HACC is a simulation program that uses checkpointing and has a

balanced workload; and, finally, KMeans is a clustering algorithm

that stores most of the data in-memory and is compute-intensive.

We compare the performance of these applications when using

the typical IOF approach, where batch-based draining and a static

mapping from compute node to IOF is used, and with HFlow, where

streaming and dynamic mapping is used. We provision 11 compute

nodes to VPIC, 11 nodes to HACC, and 10 nodes to KMeans, and

the three apps each get 5 HFlow Executors. We assign 1 collector

to every node by default, and we vary the number of nodes used by

the applications to be between 4 and 32. The nodes are divided as

evenly as possible among the applications. Fixed mappings do not

change the number of Collectors, whereas dynamic mappings will

adapt the number of Collectors based on the workload.

From Figure 9, we see that HFlow performs at least as well

as the typical IOFL approach in each of these cases. This is

because the I/O demands of the applications are different, requiring

different resource mappings. For the 32-node case, we found

that 80 collectors were used for VPIC, 32 for HACC, and 16 for

KMeans. We also notice that, as the number of processes increases,

the performance gained by using HFlow for VPIC and HACC

increases. This is because the amount of data being generated

increases, resulting in more load imbalance by the static mapping.

However, since KMeans is compute-intensive, there was little

performance difference between the two approaches. At the largest

scale, we see HFlow improves the performance by 3x for VPIC

and 2x for HACC compared with the static mapping approach.

2) HFlow as a Burst Buffer: In order to prevent load imbalance

and over-provisioning in HFlow, InterIORs are provisioned based on

the load of the entire system. The goal of this test is to demonstrate

the performance impact that the elastic resource provisioning of

BBs has on real applications. To do this, we ran an application

called Cosmic Tagger, which is a convolutional neural network

to separate cosmic pixels, background pixels, and neutrino pixels

from an image dataset. It is divided into 3 phases: data-intensive,

(a) BB Provisioning. Number of
Nodes vs Time

(b) HFlow as a Data Stager. Number
of Nodes vs Time

Fig. 10: HFlow as an intermediate I/O resource Manager

compute-intensive, and light I/O. We compare provisioning 2 BB

nodes, 8 BB nodes, and elastically provisioning between 1 and 15

BB nodes, and we scale the applications to run on 4 to 32 nodes.

This will show that, as the scale of the application changes, a fixed

allocation of resources will not always be optimal and can lead to

load imbalance and over-provisioning.

From Figure 10a, we see that when HFlow runs on 4 nodes,

allocating 2 nodes for the application results 2̃x less performance

since it’s not sufficient for the data-intensive phase. Either allocating

8 nodes statically or using elastic provisioning yields the best

results. However, 8 BBs results in under-utilization in each of these

phases. The elastic approach resulted in no BBs being allocated

in the compute phase, 2 BBs in the light I/O phase, and 4 BBs in

the data-intensive phase. Furthermore, as the application scales, the

performance achieved by HFlow is 3x better than that of the fixed

mapping. This is because HFlow was able to adapt to the demands

of the different application phases whereas the static mappings

became increasingly more imbalanced.

3) HFlow as a Data Stager: Data Staging is used for prefetching

and caching data. Typically, this requires all of the data to be loaded

into the staging area before computations can be performed on it.

However, HFlow can be used to perform computations on parts

of the data while the rest is being loaded. The goal of this test is

to show the performance benefit of using HFlow to asynchronously

move data as opposed to the typical DS approach. To do this, we

show the performance of KMeans at different scales, which was

accomplished via loading an entire dataset into the staging area

as opposed to loading 10% of the dataset into the staging area

and performing computations while data is asynchronously loaded

in. From Figure 10b, we see that when 4 nodes are used to run

KMeans, the performances of both approaches are roughly the

same. This is because the computation performed on 10% of the

dataset is so fast that the data for the next computation is not fully

loaded, resulting in data stalls. However, as the scale increases, the

performance of HFlow becomes increasingly better, up to 2.5x, than

that of the typical approach. The reason for this is that the speed

of the compute phase is matched with the inflow of data, removing

data stalls and overlapping data movement with computations.

122

V. RELATED WORK

Stream processing paradigms have been applied to HPC in a

few different contexts, but they have not been applied in the context

of I/O forwarding technologies. MPI-streams [39] utilizes the

streaming paradigm in HPC within the context of adding streaming

concepts to the MPI programming model, and pilot-streaming [41]

provides a generic abstraction across streaming solutions for HPC.

Both of these works accomplish alternative objectives instead of

the management of InterIOR, but they provide valuable precedent

in the application of streaming paradigms to HPC infrastructure

and in the unification of underlying resources.

Integration of the different hardware in the storage hierarchy has

been proposed in works such as Hermes [46] and Cambridge Data

Accelerator [47]; however, these technologies have the objective

of providing multi-level file buffering rather than multi-level I/O

forwarding, and therefore fail to provide the generic source and sink

abstractions, which are a prerequisite to multi-layer I/O forwarding.

This means that, while they unify access to multi-layer HPC

hardware, they make assumptions about the available hardware and

software architecture which will limit them to particular behaviors

across particular types of sources or sinks (such as applications

and files). For example, none of these systems can interface with

other software systems; they require direct control of the hardware

resources in order to manage them. This is a major restriction to

the applicability and flexibility of these systems.

Dynamic and elastic provisioning of I/O forwarding resources

has been proposed in Ji et al [19] and Harmonia [12], but they

limit their data sinks to a singular type of InterIOR (I/O Forwarders

or Burst Buffers) and make assumptions about the nature of their

sources (typically assuming that the source is an application),

whereas HFlow allows more generic source and sink definitions,

permitting a full scope of resource allocation in a fashion that is

interoperable with other storage technologies. Furthermore, the

general idea of dynamic scheduling has been explored in the context

of I/O scheduling by CALCioM [48] and Gainaru et al [49]; none

of these works explore run-time dynamic resource scheduling in

the context of InterIOR as a whole.

VI. CONCLUSIONS AND FUTURE WORK

Alleviating the I/O bottleneck has become a significant concern

for the scientific community. Proposed solutions involved the

introduction of intermediate layers of storage resources. Yet, this

intermediate I/O resources suffer issues rooted in the independent

development of software abstractions and their inherent rigidity.

In this work, we have proposed HFlow, a new approach to

data forwarding system that utilizes a real-time data movement

paradigm. HFlow introduces a unified data movement abstraction

(the ByteFlow) that allows global management of intermediate

I/O resources while providing data-independent tasks that enable

dynamic resource provisioning. Moreover, the processing elements

executing the ByteFlows are designed to be ephemeral and, hence,

enable elastic management of intermediate storage resources.

Finally, HFlow empowers users to define in-transit computations

over data. Our results show that applications running under HFlow
display an increase in performance of 3x when compared with

alternative solutions for managing intermediate I/O resources.

As future work, we want to explore enhancements to our

ByteFlow Schema in order to determine methods to make it more

diverse; we are especially interested in exploring the possible

interactions of HFlow with time-based storage systems such as log

stores or time-series databases.

ACKNOWLEDGMENT

This work is supported by National Science Foundation under

OCI-1835764 and CSR-1814872.

REFERENCES

[1] R. T. Kouzes, G. A. Anderson, S. T. Elbert, I. Gorton, and D. K. Gracio, “The
changing paradigm of data-intensive computing,” Computer, vol. 42, no. 1,
pp. 26–34, 2009.

[2] D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang, D. Kimpe, P. Carns, R. Ross, and
I. Raicu, “Fusionfs: Toward supporting data-intensive scientific applications
on extreme-scale high-performance computing systems,” in 2014 IEEE
International Conference on Big Data (Big Data), 2014, pp. 61–70.

[3] Z. Liu, R. Lewis, R. Kettimuthu, K. Harms, P. Carns, N. Rao, I. Foster,
and M. E. Papka, “Characterization and identification of hpc applications
at leadership computing facility,” in Proceedings of the 34th ACM
International Conference on Supercomputing, ser. ICS ’20. New York,
NY, USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3392717.3392774

[4] Y. Kim, R. Gunasekaran, G. M. Shipman, D. A. Dillow, Zhe Zhang, and B. W.
Settlemyer, “Workload characterization of a leadership class storage cluster,”
in 2010 5th Petascale Data Storage Workshop (PDSW ’10), 2010, pp. 1–5.

[5] J. He, J. Bent, A. Torres, G. Grider, G. Gibson, C. Maltzahn, and X.-H. Sun, “I/o
acceleration with pattern detection,” in Proceedings of the 22nd International
Symposium on High-Performance Parallel and Distributed Computing, ser.
HPDC ’13. New York, NY, USA: Association for Computing Machinery,
2013, p. 25–36. [Online]. Available: https://doi.org/10.1145/2462902.2462909

[6] J. Lofstead, I. Jimenez, C. Maltzahn, Q. Koziol, J. Bent, and E. Barton,
“Daos and friends: A proposal for an exascale storage system,” in SC ’16:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2016, pp. 585–596.

[7] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and
C. Maltzahn, “On the role of burst buffers in leadership-class storage systems,”
in 2012 IEEE 28th Symposium on Mass Storage Systems and Technologies
(MSST), 2012, pp. 1–11.

[8] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ross, L. Ward,
and P. Sadayappan, “Scalable i/o forwarding framework for high-performance
computing systems,” in 2009 IEEE International Conference on Cluster
Computing and Workshops, 2009, pp. 1–10.

[9] K. Tang, P. Huang, X. He, T. Lu, S. S. Vazhkudai, and D. Tiwari, “Toward
managing hpc burst buffers effectively: Draining strategy to regulate bursty i/o
behavior,” in 2017 IEEE 25th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS).
IEEE, 2017, pp. 87–98.

[10] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng,
“DataStager: scalable data staging services for petascale applications,” vol. 13,
pp. 277–290, 2010.

[11] K. Ohta, D. Kimpe, J. Cope, K. Iskra, R. Ross, and Y. Ishikawa, “Optimization
techniques at the i/o forwarding layer,” in 2010 IEEE International Conference
on Cluster Computing. IEEE, 2010, pp. 312–321.

[12] A. Kougkas, H. Devarajan, X. H. Sun, and J. Lofstead, “Harmonia: An
Interference-Aware Dynamic I/O Scheduler for Shared Non-volatile Burst
Buffers,” in Proceedings - IEEE International Conference on Cluster
Computing, ICCC, vol. 2018-September. Institute of Electrical and
Electronics Engineers Inc., oct 2018, pp. 290–301.

[13] H. Sung, J. Bang, C. Kim, H.-S. Kim, A. Sim, G. K. Lockwood, and H. Eom,
“Bbos: Efficient hpc storage management via burst buffer over-subscription,” in
2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID). IEEE, 2020, pp. 142–151.

[14] C. Docan, M. Parashar, and S. Klasky, “Dataspaces: an interaction and
coordination framework for coupled simulation workflows,” Cluster
Computing, vol. 15, no. 2, pp. 163–181, 2012.

[15] H. Khetawat, C. Zimmer, F. Mueller, S. Atchley, S. S. Vazhkudai, and
M. Mubarak, “Evaluating burst buffer placement in hpc systems,” in 2019
IEEE International Conference on Cluster Computing (CLUSTER). IEEE,
2019, pp. 1–11.

123

[16] B. Yang, X. Ji, X. Ma, X. Wang, T. Zhang, X. Zhu, N. El-Sayed,
H. Lan, Y. Yang, J. Zhai, W. Liu, and W. Xue, “End-to-end i/o
monitoring on a leading supercomputer,” in 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). Boston,
MA: USENIX Association, Feb. 2019, pp. 379–394. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/yang

[17] F. Zahid, E. G. Gran, B. Bogdański, B. D. Johnsen, and T. Skeie, “Efficient
network isolation and load balancing in multi-tenant hpc clusters,” Future
Generation Computer Systems, vol. 72, pp. 145 – 162, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X16300735

[18] G. K. Lockwood, D. Hazen, Q. Koziol, R. S. Canon, K. Antypas, J. Balewski,
N. Balthaser, W. Bhimji, J. Botts, J. Broughton, T. L. Butler, G. F. Butler,
R. Cheema, C. Daley, T. Declerck, L. Gerhardt, W. E. Hurlbert, K. A.
Kallback-Rose, S. Leak, J. Lee, R. Lee, J. Liu, K. Lozinskiy, D. Paul,
N. Prabhat, C. Snavely, J. Srinivasan, T. Stone Gibbins, and N. J. Wright,
“Storage 2020: A vision for the future of hpc storage,” 10 2017. [Online].
Available: https://www.osti.gov/biblio/1632124

[19] X. Ji, in Wuxi, B. Yang, T. Zhang, X. Ma, X. Zhu, X. Wang,
N. El-Sayed, J. Zhai, W. Liu, and W. Xue, Automatic, Application-
Aware I/O Forwarding Resource Allocation. [Online]. Available:
https://www.usenix.org/conference/fast19/presentation/ji

[20] Institute of Electrical and Electronics Engineers, On the Load Imbalance
Problem of I/O Forwarding Layer in HPC Systems.

[21] J. Yu, W. Yang, F. Wang, D. Dong, J. Feng, and Y. Li, “Spatially Bursty
I/O on Supercomputers: Causes, Impacts and Solutions,” IEEE Transactions
on Parallel and Distributed Systems, vol. 31, no. 12, pp. 2908–2922, dec
2020. [Online]. Available: https://ieeexplore.ieee.org/document/9127806/

[22] A. Souza, M. Rezaei, E. Laure, and J. Tordsson, “Hybrid resource management
for hpc and data intensive workloads,” in 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2019, pp.
399–409.

[23] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu, “On the Root
Causes of Cross-Application I/O Interference in HPC Storage Systems,”
in Proceedings - 2016 IEEE 30th International Parallel and Distributed
Processing Symposium, IPDPS 2016. Institute of Electrical and Electronics
Engineers Inc., jul 2016, pp. 750–759.

[24] M. Parashar, “Addressing the petascale data challenge using in-situ analytics,”
in Proceedings of the 2nd International Workshop on Petascal Data Analytics:
Challenges and Opportunities, ser. PDAC ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 35–36. [Online]. Available:
https://doi.org/10.1145/2110205.2110212

[25] P. C. Wong, H. Shen, C. R. Johnson, C. Chen, and R. B. Ross, “The top 10
challenges in extreme-scale visual analytics,” IEEE Computer Graphics and
Applications, vol. 32, no. 4, pp. 63–67, 2012.

[26] J. C. Bennett, H. Abbasi, P. Bremer, R. Grout, A. Gyulassy, T. Jin, S. Klasky,
H. Kolla, M. Parashar, V. Pascucci, P. Pebay, D. Thompson, H. Yu, F. Zhang,
and J. Chen, “Combining in-situ and in-transit processing to enable
extreme-scale scientific analysis,” in SC ’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, 2012, pp. 1–9.

[27] S. Duan, P. Subedi, K. Teranishi, P. Davis, H. Kolla, M. Gamell, and
M. Parashar, “Scalable data resilience for in-memory data staging,” in 2018
IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2018, pp. 105–115.

[28] N. S. C. in Guangzhou, “Tianhe-2a supercomputer,” 2018. [Online]. Available:
https://www.top500.org/system/177999/

[29] J. C. for Advanced HPC, “Oakforest-pacs supercomputer,” 2016. [Online].
Available: https://www.top500.org/system/178932/

[30] J. Dongarra and P. Luszczek, “Top500,” in Encyclopedia of Parallel Computing,
2011, pp. 2055–2057.

[31] H. Devarajan, A. Kougkas, and X.-H. Sun, “Hfetch: Hierarchical data
prefetching for scientific workflows in multi-tiered storage environments,”
in 2020 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2020, pp. 62–72.

[32] M. Romanus, R. B. Ross, and M. Parashar, “Challenges and Considerations for
Utilizing Burst Buffers in High-Performance Computing,” Tech. Rep., 2018.

[33] N. E. R. S. C. Center, “Nersc’s cori supercomputer,” 2020. [Online]. Available:
https://www.nersc.gov/systems/cori/

[34] L. A. N. Laboratory, “Trinity: Advanced technology system,” 2020. [Online].
Available: https://www.lanl.gov/projects/trinity/

[35] K. Jacobs and K. Surdy, “Apache flink: Distributed stream data processing,”
Tech. Rep., 2016.

[36] A. Flink, “Apache flink,stateful computations over data streams,” 2020.
[Online]. Available: https://flink.apache.org/

[37] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández,
F. Fernández-Moctezuma, R. Lax, S. Mcveety, D. Mills, F. Perry, E. Schmidt,
and S. Whittle Google, “The Dataflow Model: A Practical Approach to
Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded,
Out-of-Order Data Processing,” Tech. Rep., 2150.

[38] A. Kafka, “Apache kafka, a distributed streaming platform,” 2020. [Online].
Available: https://kafka.apache.org/

[39] E. P. Mancini, G. Marsh, and D. K. Panda, “An MPI-Stream Hybrid
Programming Model for Computational Clusters,” Tech. Rep.

[40] I. B. Peng, S. Markidis, E. Laure, D. Holmes, and M. Bull, “A data streaming
model in mpi,” in Proceedings of the 3rd Workshop on Exascale MPI, 2015,
pp. 1–10.

[41] A. Luckow, G. Chantzialexiou, and S. Jha, “Pilot-Streaming: A Stream
Processing Framework for High-Performance Computing,” jan 2018. [Online].
Available: http://arxiv.org/abs/1801.08648

[42] T. R. of the University of California, “Ior: Hpc io benchmark,” 2003. [Online].
Available: https://github.com/hpc/ior.git

[43] G. K. Lockwood, D. Hazen, Q. Koziol, R. Canon, K. Antypas, J. Balewski,
N. Balthaser, W. Bhimji, J. Botts, J. Broughton et al., “Storage 2020: A vision
for the future of hpc storage,” 2017.

[44] IIT, “Ares cluster,” http://www.cs.iit.edu/\∼scs/resources.html\#content6-8p,
2019, accessed: 2019-04-24.

[45] H. Devarajan, A. Kougkas, K. Bateman, and X. H. Sun, “Hcl: Distributing
parallel data structures in extreme scales,” in 2020 IEEE International
Conference on Cluster Computing (CLUSTER), 2020, pp. 248–258.

[46] A. Kougkas, H. Devarajan, and X.-H. Sun, “Hermes: A Heterogeneous-Aware
Multi-Tiered Distributed I/O Buuering System,” 2018.

[47] A. King, “Cambridge Data Accelerator,” Tech. Rep. [Online]. Available:
https://glennklockwood.blogspot.com/2017/03/,

[48] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim, “CALCioM:
Mitigating I/O interference in HPC systems through cross-application
coordination,” in Proceedings of the International Parallel and Distributed
Processing Symposium, IPDPS. IEEE Computer Society, 2014, pp. 155–164.

[49] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir, “Schedul-
ing the i/o of hpc applications under congestion,” in 2015 IEEE International
Parallel and Distributed Processing Symposium. IEEE, 2015, pp. 1013–1022.

124

