
1-4244-0328-6/06/$20.00 ©2006 IEEE.

STAS: A Scalability Testing and Analysis System

Yong Chen, Xian-He Sun
Illinois Institute of Technology
Chicago, Illinois, 60616, USA

{chenyon1, sun}@iit.edu

Abstract

Scalability is a crucial factor in performance

evaluation and analysis of parallel and distributed
systems. Much effort has been devoted to scalability
research and several metrics are proposed. However,
the lacking of an effective scalability analysis toolkit is
still a major barrier for researchers to measure and
analyze scalabilities. Isospeed scalability is a known
metric and has been extended for general computing
systems recently. This paper proposes an effective
Scalability Testing and Analysis System, called STAS,
and presents its implementation with isospeed-e
scalability metric. STAS provides the facility to conduct
automated isospeed-e scalability measure and analysis.
It reduces the burden for users to evaluate the
performance of algorithms and systems. Experiments
have been conducted to verify the design and
implementation.

1. Introduction

Scalability plays an important role in the design of
parallel and distributed system machines and algorithms.
Generally, the scalability concept can be defined as the
ability of a system to keep its performance when the
system ensemble size is scaled up. Scalability metrics
have been extensively studied in parallel and distributed
computing domain. It has been used widely for

describing how the system and problem size influence
the performance of parallel computers and algorithms.
Scalability can also be used to predict the performance
of parallel systems at large system size based on their
performance at small size. It suggests which parallel
computer could be built with more processors and which
algorithm might be suitable for a larger computer
system.

Although scalability of parallel and distributed
systems has been studied intensively, there still no an
effective and efficient scalability analysis tool exists for
algorithm designers and system researchers. The
software infrastructure for evaluating the scalability of
algorithms and parallel processing systems has not kept
in pace with theoretical research. Lack of such an
effective analysis tool is a major barrier for applying
scalability metrics in practice, thus hampering the
broader use of high performance computing. A system
to deliver an integrated performance modeling,
measurement and analysis, called Scalability Testing
and Analysis System (STAS) is proposed in this study.
In contrast to existing performance tools, STAS
provides detailed scalability analysis of algorithms and
systems based on the novel isospeed-e scalability [9].
STAS adopts extendable modular design. Each
component is designed and developed separately but
coupled tightly together to deliver an effective
performance analysis system. STAS performs
characterizing the computing system and constructing
testing machine set automatically. It supports compiler

or users’ hints as algorithm workload analysis, and
conducts runtime measurement and output scalability
analysis.

The rest of this paper is organized as following.
Section 2 discusses the isospeed metric and its recent
extension, isospeed-e metric. The details of design and
implementation of STAS are introduced in Section 3.
Section 4 demonstrates how STAS could be applied to
conduct scalability measure and analysis for algorithms
and systems. Section 5 discusses related work. Finally,
we summarize our study and discuss the future work in
Section 6.

2. Isospeed-e scalability

Several metrics are proposed to measure the
scalability of algorithms and parallel machines [2][4] [7]

[9][11], but most of these metrics are designed for
homogeneous environments only. In [11], Sun and
Rover proposed the isospeed scalability metric. An
algorithm-machine combination is defined to be
scalable if the achieved average unit speed of the
algorithm on the given machine can remain constant
with increasing number of processors, provided the
problem size can be increased with the system size,
where the average unit speed is defined as the system’s
achieved speed divided by the number of processors.

The scalability function is
'

'
)',(

pW

Wp
pp =ψ , where p

and 'p are the initial and scaled number of processors,

and W and 'W are the initial and scaled work (problem
size) respectively. The isospeed scalability works well
in homogeneous environment and is well cited in
scholarly publications, including several widely used
textbooks [1][3][4][7][9][10]. However, it is based on the
assumption that the underlying parallel machine is
homogeneous. This assumption does not stand for many
modern computing systems. Our recent study has
successfully extended it and proposed a novel metric,

isospeed-efficiency scalability (isospeed-e in short), for
both homogeneous and heterogeneous computing [9].

In isospeed-e scalability metric [9], a new concept of
marked speed is introduced to describe the combined
computing power of a general parallel computing
system. The marked speed of a computing node is the
(benchmarked) sustained speed of that node. It
represents the computational capability of that node. It
can be calculated based on hardware peak performance,
which in general is higher than actually delivered
performance. In practice, computation intensive
benchmarks can be used to measure the marked speed of
each node. Once the marked speed of a computing node
is measured, it is used as a constant parameter, like CPU
frequency or memory access latency, in all experimental
analyses. The marked speed of a computing system is
defined as the sum of the marked speed of each node
that composes the computing system. Let Ci denote the
marked speed of node i. In a heterogeneous environment,
Ci may be different from each other due to the
heterogeneity. In homogeneous environment, all Ci are
the same. Let C stand for the marked speed of a
computing system. According to definition, we

have ∑
=

=
p

i iCC
1

 in a general parallel computing

environment with p nodes. In a homogeneous

environment, we have 1.
1

Cp
p

i iCC =∑
=

= because all

Ci are the same.
Let S denote the actual achieved speed, which is

defined as work divided by execution time, of a
computing system. Let W denote work and T denote
execution time, we have S=W/T. Marked speed
describes the computational capability of a computing
system, which is a constant for a study. The achieved
speed of an application may not be the same as the
benchmarked marked speed, especially for
distributed/parallel computing where the marked speed
does not consider the communication cost. Achieved
speed describes the actual computational performance

when the system tries to solve users’ applications. It
varies with the system and problem size. The
speed-efficiency of a computing system is defined as the
achieved speed divided by the marked speed of the
computing system. The speed-efficiency reflects the
performance gain of an algorithm-system combination.
Let Es denote the speed-efficiency. Then we have

TC
W

C
SEs == .

With the support of the new concept of marked speed
and the new definition of speed-efficiency, the
isospeed-efficiency scalability metric is defined. An
algorithm-system combination is scalable if the
achieved speed-efficiency of the combination can
remain constant with increasing system ensemble size,
provided the problem size can be increased with the
system size. The isospeed-e scalability function is

'
')',(

CW
WCCC =ψ

where C and 'C are the marked speed of initial and
scaled system respectively, W is the initial problem size
of a specified algorithm, 'W is the increased problem
size which is constrained by isospeed-efficiency

condition
''

'
CT

W
TC
W =

.
When we apply the isospeed-e

scalability to a homogeneous environment, because all

iC are equal, we have ipCC = , and iCpC ''= . Thus,

the scalability function is

'
'

'
')',(

pW
Wp

CW
WCCC ==ψ

This shows that the original homogeneous isospeed
scalability metric is a special case of isospeed-efficiency
scalability metric.

3. STAS: Scalability Testing and Analysis
System

Scalability metrics have been extensively studied in
homogeneous and heterogeneous parallel systems,
however, there no a scalability analysis tool exists that

performs system and code characterization and
scalability measure and analysis automatically and
effectively. Such a tool reduces the burden to analyze
system scalability for machine designers and provides
guidelines to build a scalable machine. It also provides
quantitative analysis of algorithm scalability and guides
users and the compiler in selecting transformation and
optimization strategies. For instance, system designers
can use this tool to analyze if a newly released
architecture is more scalable than existing ones.
Algorithm researchers can use this tool to evaluate if
the inherent scalability of code matches their
theoretical analysis, to get a better understanding of the
algorithm or find the performance bottleneck. These
motivate the design of Scalability Testing and Analysis
System (STAS). STAS is designed and developed by
using the novel isospeed-e scalability metric. It is
capable to characterize and describe the scaling features
of algorithms and underlying machines. It is suitable for
general parallel/distributed system, and can adapt to
measure other scalability or performance metrics with
minimal effort. STAS provides a realistic scalability
analysis tool for designers and researchers.

Fig. 1 STAS structure

As shown in Fig. 1, STAS consists of four
components: system characterization component,
algorithm pre-analysis component, scalability tester and

scalability analyzer component. These four components
are integrated tightly with each other. The details of
design and implementation of STAS are discussed in the
following.

3.1. System characterization component

The system characterization component is
responsible for obtaining the underlying system
information and collecting the marked speed of each
node. It has two modules: system information probe
module and marked speed measurement module. The
output of this component is the system configuration file,
which contains pairs of <hostname, marked speed> for
each node. The probe module obtains hostname
information from system files, and performs checkup to
remove redundant hostnames, switches and broken
nodes to guarantee only distinct active nodes are kept in
system configuration file. The marked speed
measurement module measures the marked speed of
each node according to the output of system information
probe agent. Different standard benchmark suites might
be selected as the marked speed benchmark based on the
underlying application, as long as the same benchmark
is used for all nodes to guarantee the comparability. A
common choice of the benchmark is a computational
intensive benchmark that shows the best performance a
node can deliver. In our current implementation, NPB
(NASA Parallel Benchmark) 3.1 suite is chosen because
it is one of the widely used scientific application
benchmark. The marked speed measurement agent
remote login each node and performs benchmark testing.
The testing result is filtered to acquire the “Mop/s total”
value. The final marked speed of each node is calculated
as the average of the collected value of all benchmarks.
The marked speed results are written into system
configuration file ms.conf, which will be fed into
scalability tester component.

3.2. Algorithm pre-analysis component

The algorithm pre-analysis component takes the

algorithm source code as the input and outputs the
binary and workload analysis. In the current
implementation, only MPI programs are supported, but
this component could be configured to support PVM or
HPF programs. The workload analysis is either
supported by compiler hints or user hints. We have done
the compiler analysis work in [10], but it is not
integrated in the current implementation of STAS yet.
The modular design allows us to integrate compiler
analysis effortlessly in the future. However, the
complier analysis has some difficulty in estimating the
amount of work of an algorithm automatically. The
current implementation of the STAS workload analysis
component is supported by users’ hints, with the
workload formula and parameters. For instance, the
workload formula for the Matrix Multiplication
application is 32 N× , and the workload parameter is the
matrix rank N. We believe the user’s hints are the most
straightforward and effective way to estimate the
workload, since algorithm developers know their
algorithms well and system designers are likely to use
well-studied benchmarks to evaluate their systems.

3.3. Scalability tester component

The scalability tester component has three modules:
testing set generator module, runtime measurement
module and database module. The testing set generator
constructs machine set with different system size, and
calculates the marked speed of each machine set. It
starts generating a set with size 2, and double the set size
every time to generate the next machine set. Each
previous machine set is fully included in the next
machine set. The generator continues constructing
machine set until it reaches the limit. In practice, the
heterogeneous system is usually composed of several
groups of nodes. The computing capability of nodes in
one group is similar to each other, but different nodes

from different groups may have large variations in
computing capability. In order to fairly represent the
system size scaling, the group concept is also introduced
in constructing machine set. When nodes are selected to
add to a machine set, the group information is
considered to balance the nodes from different groups in
machine sets. After one machine set is constructed, the
marked speed of this machine set is calculated according
to the definition. For instance, a machine set with two
nodes, where one node has marked speed of 20 Mflops
and the other node has marked speed of 30 Mflops, has a
marked speed of 50 Mflops.

The machine set, along with workload analysis results
and the binary, are fed into runtime measurement
module. This module first generates the MPI procgroup
file with the machine set and binary file name. Such a
procgroup file provides full control to start MPI jobs,
which is required to perform scalability measurement on
a heterogeneous environment. Fig. 2 shows an example
of generated procgroup file in our experiments. In this
example, there are three groups of nodes, sunwulf,
hpc-1 to hpc-64 and hpc-65 to hpc-84. The machine set
size is 8 and is composed of the sunwulf node, three
arbitrary nodes from hpc-1 to hpc-64 and four arbitrary
nodes from hpc-65 and hpc-84. The binary file is
/ufs1/home/scs/yongchen/scal/mm/hetero/hmm. The
second functionality of the runtime measurement
module is to perform a series of runtime testing with
workload parameters for each machine set. The testing
command is “mpirun -p4pg <generated procgroup file>
<binary file name> <workload parameters>” and is
invoked from the runtime measurement module. The
execution time is collected and stored in database along
with workload formula, tuned workload parameters and
the marked speed of the machine set. To reach a target
speed-efficiency, an estimated workload is first
calculated based on the workload formula, then the
workload parameter(s) is tuned with 2% variation (plus
or minus 2%) in each testing toward the target
speed-efficiency. The speed-efficiency is calculated

according to the definition, Es=W/TC. MySQL version
14.7 with distribution 4.1.10a for sun-solaris2.9 is
selected as the database support.

Fig. 2 Generated Procgroup File Example

3.4. Scalability analyzer component

The scalability analyzer component takes the
metadata stored in database as input and analyzes it. The
output is the scalability of algorithm-system
combination. This component consists of scaled
workload analysis module and scalability analysis
module. The scaled workload analysis module scans the
metadata in database and obtains the required workload
size to achieve the user-specified speed-efficiency for
each machine set. The scalability analysis module then
calculates the scalability by using the isospeed-e

scalability function,
'

')',(
CW

WCCC =ψ
.

4. Experimental results and analyses

In this section, we demonstrate how STAS can be
applied to measure and analyze the scalability of
algorithm-system combinations. The Sunwulf cluster at
the Scalable Computing Software (SCS) laboratory at
Illinois Institute of Technology is the underlying testing
system. Two classical scientific computing algorithms,
Gaussian Elimination and Matrix Multiplication, and
one real application, 2-D convolution, are selected as the
testing algorithms.

4.1. System characterization

The experimental platform, Sunwulf cluster, is

composed of one SunFire server node (sunwulf node),
64 SunBlade compute nodes (hpc-1 to hpc-64) and 20
SunFire V210 compute nodes (hpc-65 to hpc-84). The
server node has four CPUs and 4GB memory. Each CPU
is 480 MHz. The SunBlade compute node has one
500-MHz CPU and 128M memory. The SunFire V210
compute node has two 1GHz CPUs and 2GB memory.
The network connecting all these nodes is 100M
Ethernet. The software platform includes SunOS 5.8
and MPICH 1.2.5 release version. Fig. 3 shows the
measured marked speed of hpc-1 to hpc-84 node
through STAS system characterization component (note:
hpc-17, hpc-25, hpc-47 and hpc-58 do not work when
tested). Though the system configuration of node hpc-1
to hpc-64 or node hpc-65 to hpc-84 is the same with
each other, the measured marked speed has slight
variation due to varied load of each node when tested.
These variations will not affect the scalability analysis.
Fig. 4 illustrates a piece of generated system marked
speed configuration file, ms.conf, which is fed into
scalability tester component to perform runtime
measurement.

Marked Speed of Each Node

0
5

10
15
20
25
30
35
40

0 10 20 30 40 50 60 70 80 90

Node

M
ar

ke
d

Sp
ee

d
(M

flo
ps

)

Fig. 3 Measured Marked Speed of Each Node at Sunwulf

Cluster

Fig. 4 A Slice of ms.conf File

4.2. Tested algorithms

4.2.1. Gaussian Elimination (GE) algorithm.
Gaussian Elimination algorithm solves dense linear
equations bAx = , where A is a known matrix of

size NN × , x is the required solution vector, and b is a
known vector of size N. The tested parallel Gaussian
Elimination algorithm is described as following.
(1) Process 0 distributes the data of matrix A and
vector b proportionally to other nodes according to their
marked speeds by using row-based heterogeneous
cyclic distribution[5]
(2) All processes compute concurrently:

(2.1) For (i = 0; i < N - 1; i ++)
(2.1.1) The process which owns the pivot row
broadcasts the pivot row to all processes
(2.1.2) For (j = i + 1; j < N; j++)

(a) Each process judges if row j belongs to itself
or not
(b) If yes, then conducts Gaussian elimination on
this row

(2.2) Synchronize all processes due to data
dependence

(3) Process 0 collects temporary results from other
processes and conducts the back substitution stage

The total workload of this parallel algorithm (sum of
the workload in each node) is

3
6
13

2
1

3
2)(23 +−−= NNNNW . The algorithm

implementation follows HoHe strategy [5], which
generates the same number of processes as the number
of processors and distributes each process on a separate
processor. The system marked speed configuration file
generated from STAS system characterization
component is used for guiding balanced data
distribution. The configuration file is provided to tested
program through command line parameters. Once the
program is started, process 0 will open this file and read
in the marked speed of each node. When process 0

distributes data, it will partition matrices proportionally
to the marked speed and send to each process.

4.2.2. Matrix Multiplication (MM) algorithm. Matrix
Multiplication algorithm calculates the product of two
matrices, BAC ×= . For simplicity, we restrict matrix
A and B to be square NN × matrices. There are many
classical parallel algorithms for matrix multiplication,
such as the Cannon’s algorithm and the outer product
algorithm used in ScaLAPACK. But these algorithms
are based on homogeneous environment. The tested
Matrix Multiplication algorithm in our experiments is a
row-based heuristic algorithm for heterogeneous
environment [9]. This algorithm adopts the HoHe
strategy too. In our algorithm, first, process 0 distributes
matrix A by using a row-based heterogeneous block
distribution, which means A is distributed
proportionally into other nodes according to these
nodes’ marked speeds. Then process 0 distributes matrix
B to other nodes. After data distribution, each node
computes part of the matrix multiplication on its own
data. Finally, process 0 collects all results from other
processes. The total workload of this parallel algorithm
is 32)(NNW ×= . The algorithm implementation

follows the same technique as in Gaussian Elimination
algorithm.

4.2.3. 2-D Convolution. 2-D convolution conducts
two-dimensional convolution on two NN × images,
where each element is a complex number. Fast Fourier
Transform (FFT) is the kernel in the algorithm. 2-D
convolution is implemented by first taking 2-D FFT of
each input image, then performing point-wise
multiplication of the intermediate results from 2-D FFT,
followed by an inverse 2-D FFT. 2D-FFT can be
obtained by first performing N times of N-point
1D-FFT along rows followed by N times of N-point
1D-FFT along columns of the intermediate result of the
row FFT. The procedure of 2-D convolution can be
described as following:

A = 2D-FFT(image1)
B = 2D-FFT(image2)
C = MM_Point(A,B)
D = Inverse-2DFFT(C)

where A, B, C, and D are NN × matrices of complex
numbers, and D is the final output.

The tested parallel 2-D convolution algorithm is
described as following. The total workload is:

NNNNNNW lg8421lg66)(22 ++= .

(1) Process 0 read image data (matrices) from input
files, and all other processes create the sub-image for
the part of data they will work on
(2) Process 0 distributes the data of matrix A and B
proportionally to other nodes according to their marked
speeds by using row-based heterogeneous block
distribution
(3) Each process computes forward 2D-FFT on its two
sub-images concurrently
(4) Each process computes point-wise multiplication
on its two sub-images and obtains the intermediate
sub-image
(5) Each process computes inverse 2D-FFT on its
intermediate sub-image
(6) Process 0 gathers final results from all other
processes and output the final result

4.3. Scalability testing and analysis

4.3.1. Machine set. Table 1 shows the constructed
machine set from testing set generator. All nodes in
Sunwulf cluster are classified into three groups,
Sunwulf node, hpc-1 to hpc-64, and hpc-65 to hpc-84.
Initially, sunwulf node and one SunFire compute node
are selected as Set1. These two nodes are kept in
constructing next set. One SunBlade compute node and
one additional SunFire compute node are added to Set1
to form Set2. Due to the SunFire node group has only 20
available nodes, the machine set construction stops at
Set5.

Table 1 Machine Set Constructed From STAS
Machine

Set
of

Nodes
Server
Node

SunBlade
Node

SunFire
Node

Marked
Speed

Set1 2 1 0 1 57.72
Set2 4 1 1 2 113.57
Set3 8 1 3 4 226.64
Set4 16 1 7 8 455.71
Set5 32 1 15 16 911.45

4.3.2. Scalability results. We have performed
scalability testing and analysis by using STAS system
for GE-Sunwulf, MM-Sunwulf and 2DConv-Sunwulf
combination. The target speed-efficiency is set as 0.2.
The runtime measurement module tunes parameters
with 2% variation in each testing and stops when the
achieved speed-efficiency reaches the target. All
measurement metadata are stored in scal database. If we
plot the metadata with plotting tools, the
speed-efficiency diagram of each combination is
obtained. The MM-Sunwulf and 2DConv-Sunwulf
results are showing in Fig. 5 and Fig. 6.

Speed-efficiency of Matrix Multiplication Algorithm

0

0.2

0 200 400 600 800 1000 1200 1400
N

Sp
ee

d-
ef

fic
ie

nc
y

Set1
Set2
Set3
Set4
Set5

Fig. 5 Speed-efficiency of MM-Sunwulf Combination

Speed-efficiency of 2-D Convolution Application

0

0.2

0 500 1000 1500 2000 2500
N

Sp
ee

d-
ef

fic
ie

nc
y

Set1
Set2
Set3
Set4
Set5

Fig. 6 Speed-efficiency of 2DConv-Sunwulf Combination

The scalability analyzer takes the measured metadata
as input, and analyzes the scalability of each
combination. Table 2 is the summarized output of three
experiments.

Table 2 Scalability Analysis Results

 Ψ(Set1,
Set2)

Ψ(Set2,
Set3)

Ψ(Set3,
Set4)

Ψ(Set4,
Set5)

GE-Sunwulf 0.35 0.22 0.27 0.32
MM-Sunwulf 0.51 0.42 0.39 0.43

2DConv-Sunwulf 0.54 0.45 0.42 0.61

As we can see from the scalability analysis results
from STAS, the GE-Sunwulf is less scalable than
MM-Sunwulf, and MM-Sunwulf is less scalable than
2DConv-Sunwulf. The GE algorithm has a sequential
portion and has to globally synchronize in each iteration
due to data dependency constraints. It involves more
communication overhead than Matrix Multiplication
algorithm. Intuitively, it is less scalable than MM
algorithm. We have used the proposed STAS system to
perform the isospeed-e scalability testing of these two
algorithms on Sunwulf cluster. The STAS provides a
quantitative analysis and confirms the observation.
Comparing the Matrix Multiplication and
2D-Convolution algorithm, they have the same amount
of communication overhead when the matrix rank is the
same, but 2D-Convolution performs much more
computation work. When the system size is scaled, the
2D-Convolution should need less problem size
increment to keep the achieved speed-efficiency fixed,
therefore is more scalable than Matrix Multiplication.
This fact is verified through the STAS system as well.

The STAS has successfully performed the testing and
analysis of GE-Sunwulf, MM-Sunwulf and
2DConv-Sunwulf combinations. It is an effective and
realistic system for evaluating the performance of
algorithms and systems. The analysis results provided
by STAS can guide users in designing scalable
algorithms or systems.

5. Related work

Scalability of parallel and distributed system has been
a research issue for many years, but most of the work is
targeted on homogeneous environment. isospeed[11] and
isoefficiency[2] are two representative scalability metrics.
Isoefficiency keeps parallel efficiency constant, where
the efficiency is defined as speedup over the number of
processors. Here speedup, in turn, is defined as the ratio
of sequential execution and parallel execution time.
Isoefficiency involves measuring the sequential
execution time of algorithms. The requirement of
sequential execution time does not appear to be a
problem in theoretical analysis, but running a large
application on a single node of a parallel system might
be problematic in practice. Scalability is the ability to
maintain performance when parallel systems scale up. It
does not need to and should not refer the sequential
execution time. Isospeed and its recent extension, the
isospeed-e metric [9], compare the performance of the
original and the scaled parallel system directly, and do
not require the measurement of sequential processing
time.

There are some recent works in scalability analysis.
Jogalekar and Woodside proposed a strategy-based
scalability metric for general distributed systems[4].
Their scalability metric measures the worthiness of
renting a service. Pastor and Bosque proposed a
heterogeneous efficiency function to define the
heterogeneous scalability[7]. Their work tries to extend
the homogeneous isoefficiency scalability model to
heterogeneous computing and, therefore, inherits the
limitation of parallel speedup, requiring the
measurement of solving large-scale problem on single
node as we analyzed for homogeneous isoefficiency
scalability.

Performance modeling and analysis tool is also a well
studied topic. There are numerous well-known
performance evaluation toolkits, such as Paradyn, TAU,
SCALEA and etc. Paradyn[6] is a performance
measurement tool for parallel and distributed programs.
It provides precise performance data and automatically

searches performance bottlenecks. It gathers and
presents performance information in terms of high-level
parallel languages and supports measuring programs on
massively parallel computers, workstation clusters and
heterogeneous systems. TAU[8] is a portable profiling
and tracking toolkit for performance analysis of parallel
programs. It is capable of gathering performance
information through instrumentation of functions,
methods, and statements. It also provides the
functionality to present performance analysis results
with visualization displays. SCALEA[12] is a
performance instrumentation, measurement, analysis
and visualization tool for parallel programs. It targets to
analyze performance of MPI, HPF, OpenMP or hybrid
programs and computes a variety of performance
metrics. These systems have different strengths and
focus on different applications. However, none of them
provides the quantitative scalability analysis for
algorithms and systems. Our study presents a practical
system to conduct inherent scalability analysis of
algorithm-system combination for guiding users in
designing algorithms and machines.

6. Conclusions and future work

In this study, we have presented a Scalability Testing
and Analysis System, STAS. STAS is designed and
implemented to assist users conducting scalability
analysis of algorithms and systems. STAS adopts
isospeed-e as its metric and provides a realistic toolkit
for automatic performance evaluation. STAS analyzes
the inherent parallelism of algorithms and the scaling
property of underlying systems, as well as provides
guidance to design scalable algorithms and machines for
users.

In the near future, we plan to integrate compiler hints
for workload analysis into STAS system. Performance
prediction with the support of scalability analysis is
another future work. We have demonstrated the
methodology of scalability prediction in [9], but more

studies need to be done to integrate performance
prediction into STAS system. We are also planning to
visualize the analysis results in order to better assist
users in analyzing the performance of algorithms and
systems.

7. Acknowledgments

This research was supported in part by national
science foundation under NSF grant CNS-0509118,
CNS-0406328, EIA-0224377, and EIA-0130673.

8. References

[1] D. Culler, J. Singh and A. Gupta, Parallel Computer

Architecture: A Hardware/Software Approach, Morgan

Kaufmann Publishers, 1999.

[2] A. Gupta and V. Kumar, “Scalability of Parallel

Algorithms for Matrix Multiplication”, Proceedings of the

1993 International Conference on Parallel Processing, Vol. 3,

pp.115–123, 1993.

[3] K. Hwang and Z. Xu, Scalable Parallel Computing,

McGraw–Hill, 1998.

[4] P.P. Jogalekar and C.M. Woodside, “Evaluating the

Scalability of Distributed Systems”, IEEE Transaction on

Parallel and Distributed Systems, Vol. 11, No. 6, pp.589-603,

2000.

[5] A. Kalinov and A. Lastovetsky, “Heterogeneous

Distribution of Computations While Solving Linear Algebra

Problems on Networks of Heterogeneous Computers”,

Journal of Parallel and Distributed Computing, Vol. 61, No. 4,

pp.520-535, 2001.

[6] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K.

Hollingsworth, R.B. Irvin, K.L. Karavanic, K.

Kunchithapadam and T. Newhall, “The Paradyn Parallel

Performance Measurement Tool”, IEEE Computer, Vol. 28,

No. 11, pp.37-46, 1995.

[7] L. Pastor and J.L. Bosque, “An Efficiency and

Scalability Model for Heterogeneous Clusters”. IEEE

International Conference on Cluster Computing, pp.427-434,

2001.

[8] S. Shende and A. D. Malony. “The TAU Parallel

Performance System”, Submitted to International Journal of

High Performance Computing Applications, ACTS Collection

Special Issue, 2005.

[9] X.H. Sun, Y. Chen and M. Wu, “Scalability of

Heterogeneous Computing”, Proceedings of 34th

International Conference on Parallel Processing, pp.557-564,

2005.

[10] X.H. Sun, T. Fahringer and M. Pantano, “SCALA: A

Performance System for Scalable Computing”, International

Journal of High Performance Computing Applications

(IJHPCA), Vol. 16, No. 4, 2002.

[11] X.H. Sun and D. Rover, “Scalability of Parallel

Algorithm–Machine Combinations”, IEEE Transaction on

Parallel Distributed Systems, Vol. 5, pp.599–613, 1994.

[12] H.L. Truong and T. Fahringer, “SCALEA: A

Performance Analysis Tool for Distributed and Parallel

Programs”, Proceedings of 8th International Euro-Par

Conference, 2002.

