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Abstract—Graphic Processing Units (GPUs) have limited mem-
ory capacity. Training popular deep neural networks (DNNs)
often requires a larger amount of memory than that a GPU may
have. Consequently, training data needs to be swapped between
CPUs and GPUs. Data swapping may become a bottleneck when
its latency is longer than the latency of DNN computations.
Tensor compression in GPUs can reduce the data swapping
time. However, existing works on compressing tensors in the
virtual memory of GPUs have two major issues: sub-optimal
compression performance for varying tensor sparsity and sizes
and lack of portability because its implementation requires
additional (de)compression units in memory controllers.

We propose a self-tuning tensor compression framework,
named CSWAP, for improving the virtual memory management
of GPUs. It has high portability and is minimally dependent on
GPU architecture features. Furthermore, its runtime only applies
compression on tensors that are deemed to be cost-effective
considering their sparsity and size and the characteristics of com-
pression algorithms. Finally, our framework is fully automated
and can customize the compression policy for different neural
network architectures and GPU architectures. Our experimental
results using six representative memory-intensive DNN models
show that CSWAP reduces tensor swapping latency by up to
50.9% and reduces the DNN training time by 20.7% on average
with NVIDIA V100 GPUs compared to vDNN.

Index Terms—DNN, GPU, Tensor, Swapping, Data Compres-
sion

I. INTRODUCTION

Deep Neural Networks (DNNs) have recently gained un-
precedented success in various domains such as computer vi-
sion [1], recommendation systems [2], speech recognition [3],
etc. DNN models become larger and deeper to achieve higher
prediction accuracy [4]–[9]. For example, the latest BERT
model needs more than 70 GB memory during the training
period with batch size 64 [7]. The newest language model
presented by Google has 137 billion parameters and requires
more than 100 GB memory for training [10]. Additionally,
evidence shows that the number of neural network parameters
in models has nearly doubled every 2.4 years since the
80s [11]. These trends lead to a higher memory demand for
training future DNN models.

To accelerate model training and inference of DNNs,
accelerators such as Graphic Processing Units (GPUs) are
widely used for high-performance tensor computation [12]–
[14]. However, GPUs have limited memory capacity compared
to what is demanded in the training of many popular DNNs.

∗ Shuibing He is the corresponding author.

For instance, the powerful NVIDIA V100 GPU is configured
with up to 32 GB on-board memory, which is inadequate for
training the BERT model which consumes up to 73 GB mem-
ory [15]. The lack of global GPU memory greatly constrains
the development of more advanced DNN architectures.

Because GPU memory could be under-provisioned for
training large models, both scale-out and scale-up approaches
may be used to overcome this limitation. The scale-out ap-
proaches exploit distributed memory of multiple GPUs in a
cluster. Its downside is that their performance may be con-
strained by networking latency [16]. Prior works for scaling
up swap intermediate tensors between GPUs and CPUs in
training [17]–[22]. They can be further improved by over-
lapping tensor swapping with computations of the next layer
to hide application-perceived swapping latency. Nevertheless,
Rhu et al. observed that the swapping latency of large tensors
cannot be effectively hidden for the increasingly larger gap
between drastically improved TFLOPS performance of GPUs
and limited data transfer bandwidth of PCIe links for tensor
swapping between GPUs and CPUs [23]. They implement a
new tensor compression engine located in memory controllers
of GPUs and show that swapping compressed tensors reduces
DNN training time by 32%.

Compressing tensors using additional (de)compression units
seems a straightforward approach because no changes are re-
quired for DNN applications. However, the static compression
scheme has two major issues. (1) It did not consider varying
tensor sparsity and sizes. For example, our study shows the
tensor sparsity of the VGG16 DNN model varies between
20% and 80%. The existing schemes only achieve suboptimal
performance when applying the same compression algorithms
and parameters to the tensors whose sparsity dynamically
changes during training. (2) The solution requires hardware
changes, thus having no portability to existing GPUs. Existing
GPUs cannot benefit from tensor compression because they do
not have dedicated compression units in their memory con-
trollers. A practical solution should be minimally dependent
on additional hardware features.

In this paper, we propose a high-performance, self-tuning,
and fully automated GPU memory compression framework,
named CSWAP, for software-level tensor compression man-
agement. It has three novel features. First, CSWAP uses
GPUs for (de)compression directly without relying on fixed
compression units in the memory controllers of GPUs. Cur-
rently, it supports four GPU-optimized compression algorithms
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(i.e., zero-value compression (ZVC) [23], run-length encoding
(RLE) [24], compressed sparse row (CSR) [25], and LZ4 [26]).
CSWAP caters for tensor characteristics of a DNN workload
and selects one of these four algorithms to achieve the best
trade-off between compression ratio and compression time.

Second, CSWAP dynamically decides whether to compress
sparse output tensors of DNN layers in forward propagation
based on the cost-effectiveness of (de)compression. Specif-
ically, it compares the swapping cost with (de)compression
to that without (de)compression at runtime. It only executes
(de)compression when it is deemed to reduce tensor swapping
cost.

Third, we observe that the cost-effectiveness of tensor com-
pression is very sensitive to the sparsity, sizes of tensors, set-
tings of GPU parameters including the size of GPU grids and
blocks, and data compression algorithms. Therefore, we build
a time model which uses a machine learning approach (i.e.,
linear regression) to accurately predict the (de)compression
time at runtime. Our results show that the model has a relative
absolute error of 3% on average. Furthermore, instead of
searching the optimal GPU configuration manually through
trials and errors, we use the Bayesian optimization algorithm
to set GPU parameters. The algorithm can reduce the time of
search optimal setting by 98% compared to the approaches
using trials and errors.

CSWAP makes the following contributions:
• We design a selective software-level tensor compression

framework to reduce the tensor swapping cost without
relying on compression units in the memory controllers
of GPUs. CSWAP applies tensor compression adaptively
in the ReLU and MAX layers according to the cost-
effectiveness of tensor compression at runtime.

• Our study shows the performance of tensor compression
is sensitive to the GPU settings, tensor size and spar-
sity, and the characteristics of compression algorithms.
Therefore, we design two machine-learning algorithms
to predict the tensor (de)compression time and facilitate
the search for optimal GPU settings.

• We implement a software prototype of CSWAP using
Torch [27] and apply it to six popular DNN models (e.g.,
AlexNet [1], VGG16 [4], ResNet [6], etc.). Our experi-
mental results show that it reduces the swapping latency
and training time by up to 50.9% and 34.6%, respectively,
compared to vDNN [20] while achieving comparable
performance to hardware solutions, e.g., cDMA [23].

II. BACKGROUND AND MOTIVATION

A. DNN Architecture

The main goal of DNN training is to find the correct math-
ematical manipulation to provide high classification accuracy.
DNNs consist of multiple layers between input and output. In
the training of a DNN, we first perform forward propagation
from the first to the last layer in a sequential manner, then we
perform backward propagation from the last layer to the first
layer to update the parameters of DNNs.
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Fig. 1. Changing sparsity of tensors during the training of VGG16 in the first
50 epochs (left axis), while the broken line (right axis) denotes the changing
size of tensors of VGG16 .

Most DNNs are designed using a combination of convolu-
tion layers (CONV), activation layers (ACTV), pooling layers
(POOL), and fully connected layers (FC). The convolution
layers extract meaningful features in input data. The activa-
tion layers apply an activation function (typically ReLU [1]
because of its simplicity and efficiency) to the input feature
maps. ReLU allows positive input values to pass through but
resets all negative input values to zero. The pooling layers
are designed to reduce the spatial size of the input data using
average or maximum operations (MAX) over feature maps.
The fully connected layers find the hidden correlation between
the extracted features and the classified categories.

B. Changing Sparsity and Size of DNN Tensors

Tensor sparsity is observed in many popular DNN models,
e.g., VGG16 and AlexNet. One major cause of tensor sparsity
is the nature of ReLU operations, which makes the output
tensors of ACTV and POOL tend to contain zeros mostly.
We use VGG16 training as an example. We studied its tensor
sparsity as the percentage of zeros among all the elements in
the output tensors in the first 50 epochs. In the experiments,
we use the ImageNet dataset [28], NVIDIA Tesla V100, and
the Torch framework [29]. The model is trained with the
batch size of 128 until converged with 78.6% top-5 accuracy.
(More details of the experimental platforms are described in
Section V).

Figure 1 shows the tensor sparsity (left y-axis) and the sizes
(right y-axis) of each ReLU and MAX layer during the training
of VGG16. We can observe that the sparsity of tensors (bars)
varies between 20% and 80% across layers. To show the trend
of changing sparsity of tensors, for a particular layer, we also
show the average sparsity of every five epochs as indicated by
a bar in each group in the figure. We observe that for the same
layer the sparsity is also dynamically changed. For example,
for ReLU4, its sparsity is increased from 50% to 80% over
the time of training. In contrast, the tensor sparsity of ReLU7
is increased in the first 10 epochs and then decreased by 20%
afterward.

We also measure the tensor sizes during the training of
VGG16 on the ImageNet dataset. We find that the tensor
size changes across layers (broken line in Figure 1). For
example, the tensor size is reduced from 1568 MB to 49
MB from the first to the last layer during the training of
the model. Furthermore, we find that the tensor size does not
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Fig. 2. (a) DNN execution flow with tensor swapping but without tensor
compression; (b) The execution flow with both tensor compression and
swapping in cDMA.

change across epochs for the same tensor. We also evaluate the
tensor sparsity and tensor size with other models and datasets
(Section V). The results show similar observations. CSWAP
opportunistically applies tensor compression considering the
changing tensor size and sparsity.

C. Ineffectiveness of Static Compression Schemes

vDNN uses virtual memory to support training a DNN
whose memory demand might be larger than the size of
GPU memory [30]. It swaps out tensors that are not in use
in the forward propagation from GPUs to CPUs and then
swaps them back in when they are referenced in the backward
propagation of DNN training. Because of the tensor sparsity
in the ACTV and POOL layers (discussed in Section II-B),
cDMA further reduces the tensor swapping latency by com-
pressing all the tensors exploiting their sparsity in GPUs [23].
Figure 2 illustrates the execution flow of memory swapping
with tensor compression in cDMA. Fn/Bn denotes the time
of forward/backward computation at the layer n. Offloadn
denotes the time of swapping a tensor from GPUs to CPUs
and Prefetchn denotes the time of swapping a tensor from
CPUs to GPUs. Of and Ob denote the portion of the data
transfer time that cannot be effectively hidden from the DNN
propagation time, respectively. Only one tensor is swapped per
layer in the training process.

If Offloadn ≤ Fn, Offloadn can be overlapped with Fn,
thus resulting in no additional swapping overhead. Similarly,
if Prefetchn ≤ Bn+1, there will be no swapping latency
because Prefetchn can be overlapped with Bn+1. Recently,
researchers show that tensor swapping latency can no longer
be overlapped with DNN forward/backward computation [23].
This is because data transfer bandwidth offered by the pow-
erful PCIe link (gen3) has remained unchanged at 16 GB/sec
while the performance of datacenter GPUs is almost tripled
since 2014 [23]. And we think the performance gap between
I/O bus and GPU computing to be continued in the future
despite the emerging PCIe gen4 and NVLink techniques [31].
To reduce swapping overhead, cDMA compresses tensors
before offloading and decompresses them after prefetching. It
introduces compression latency Cn and decompression latency
DCn. For cDMA, the compression operations are executed
by dedicated (de)compression units in memory controllers of

ReLU1
MAX1

ReLU2
MAX2

ReLU3
ReLU4

MAX3
ReLU5

ReLU6
MAX4

ReLU7
ReLU8

0

30

60

90

120

150

180

T
im

e 
(m

s)

W/O compression
Data compression and decompression Data transfer

Fig. 3. Swapping time of VGG16 with static compression compared to that
without compression. The swapping time using the static compression consists
of data transfer time (the lower part of the right bar) and data compression
and decompression time (higher part of the right bar).

GPUs. To make cDMA truly effective, (1) Cn and DCn should
be insignificant compared to Fn and Bn+1 and (2) Offloadn
and Prefetchn after compression needs to be smaller than its
corresponding computation time.

We then study the effectiveness of tensor compres-
sion in GPU virtual memory. Instead of relying on the
(de)compression units which are not available in markets,
we implement a new static compression (SC) scheme which
replicates the zero-value compression algorithm in cDMA by
using GPUs to emulate the (de)compression units in mem-
ory controllers. Because GPUs have more cores and higher
capacity than those of the (de)compression units in memory
controllers, we expect that the (de)compression performance
using GPUs directly will be superior to or comparable to that
of cDMA. For cDMA, tensor (de)compression is applied to
all the layers consisting of ReLU and MAX operations with
the SC scheme.

Figure 3 shows the execution time per layer during the
training of VGG16 without compression compared to the time
with SC using NVIDIA Tesla V100 GPUs and the same
experimental setup as described in the previous sections. It also
shows the execution time breakdown when SC is used. We
can observe that the swapping latency with static compression
is longer than that without compression for MAX[1-4] and
ReLU[7-8]. The results show that there are three reasons
for SC’s ineffectiveness. (1) Compression time accounts for
around 30% of swapping latency. (2) As the sparsity and
size of tensors are varied, blindly applying compression to
all the tensors does not reduce the overall swapping latency
when the tensor size is small and its sparsity is low. (3) The
compression performance is affected by many GPU parameters
(e.g., block size and grid size) which are difficult to be
determined statically before launching the kernels.

In summary, while the tensor compression has been well
implemented in GPUs to reduce tensor swapping latency, it
may not achieve optimal performance if being applied to all the
ReLU and MAX layers blindly. A novel compression frame-
work is required to dynamically determine when and how to
compress tensors at runtime considering the characteristics of
DNN networks and GPU architectures.
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TABLE I
COMPARISON OF CSWAP WITH EXISTING TENSOR SWAPPING
FRAMEWORKS FOR GPU-BASED DEEP-LEARNING SYSTEMS.

Technique Compression
unit/location

Tensor
selection Portability

vDNN [20] N/A N/A Yes
Other

swapping [17], [19],
[21], [32], [33].

N/A N/A Yes

cDMA [23] Memory
Controller No No

vDNN++ [30] CPU No Yes
CSWAP GPU Yes Yes

III. RELATED WORK

Model compression. DNN training streams need to manage
feature maps and model weights. To reduce the size of feature
maps, Courbariaux et al. proposed to train a model using low
precision multiplications [34]. It compresses training data in
floating point, fixed point, and dynamic fixed point formats and
show that low-precision feature maps are sufficient for training
Maxout networks. Gist exploits existing value redundancy
and proposes both lossless and lossy encoding schemes to
reduce the memory footprint of the feature maps [35]. These
approaches to compress feature maps are complimentary to
CSWAP and can be used for tensor compression in swapping.

Because DNN model weights are over-parameterized [34],
[36], many approaches of weight quantization and pruning
have been proposed [37]–[42]. However, these approaches are
generally used in model inference, and are not effective for
DNN training tasks because the memory footprint of feature
maps is significantly larger than that of weight matrices. For
example, the size of feature maps used in training VGG16 is
50× larger than the size of its weight matrices when batch
size is 256. Therefore, we focus on feature map compression
in the process of DNN training in this paper.

Tensor swapping frameworks. We compare CSWAP to the
existing tensor swapping frameworks of GPU virtual memory
in Table I. vDNN studies the characteristics of different DNN
layers and chooses to swap convolution input tensors to reduce
memory footprint in GPUs [20]. moDNN [32], SuperNeu-
rons [19], SwapAdvisor [17], and Sentinel [43] introduce
different heuristics and profiling technology to swap data
between heterogeneous memories. Besides, Capuchin [33]
uses greedy policy and AutoTM [21] chooses Integer Linear
Programming to make tensor swapping decisions. However,
none of them uses tensor compression in swapping which
loses the opportunity for further performance optimization.
cDMA [23] was the first swapping framework that compresses
tensors using compression hardware in memory controllers of
GPUs. However, it has two major issues. (1) It is not adaptable
to the existing GPUs without the compressors. And (2) it
does not consider the cost-effectiveness of tensor compression
trading off tensor size, sparsity, compression algorithm, and
swapping latency. vDNN++ supports tensor compression using
host CPUs to reduce the pinned memory requirement in the
host [30]. Nevertheless, it does not address the tensor transfer
bottleneck caused by the limited data transfer bandwidth of
PCIe links. CSWAP is the first tensor swapping framework
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Fig. 4. Architecture overview of CSWAP. The execution plan includes
compression decision and GPU settings for (de)compression operations. The
network profile consists of tensor sparsity, size, and execution time of layers.
The control command manages tensor profiles.

using GPUs for tensor (de)compression in the swapping of
GPU memory. It is adaptable to all GPUs and automates tensor
compression management using machine learning algorithms.

IV. DESIGN OF CSWAP

The design objective of CSWAP is to opportunistically apply
tensor compression for swapping in the training of DNNs
when its memory demand is larger than GPU memory capac-
ity. In this section, we describe CSWAP architecture as well
as how it determines the cost-effectiveness of compression op-
erations and manages GPU settings for compression streams.
To make our framework portable and be easily adopted with
different GPU architectures, we implement all components of
CSWAP in the existing library of machine learning.
A. Overview of Software Architecture

CSWAP consists of three components including tensor pro-
filer, execution advisor, and swapping executor as shown
in Figure 4. The tensor profiler is executed when a new
DNN training task is submitted the first time. DNN training
process usually consists of multiple iterations. During the
first iteration, it collects the DNN characteristics including
tensor size and sparsity, the execution time of each DNN layer
without compression, and effective data transfer bandwidth of
PCIe links. We did not use the name-tag bandwidth number
because its effective bandwidth is affected by other factors
(e.g., memory configurations of CPUs and GPUs). The DNN
profile is unique and does not change given the same GPU
and system configurations except the tensor sparsity. We only
need to execute the tensor profiler to collect the sparsity once
in each epoch to reduce profiling overhead. Then the profiling
data is stored in an in-memory database for retrieval with
low latency. Another functionality of the tensor profiler is to
manage the GPU parameter settings given a DNN (discussed
in Section IV-D) for the compression GPU stream.

The execution advisor is executed to fetch DNN profiles
to decide on whether to compress a tensor for swapping.
If a tensor is to be compressed, it also needs to retrieve
the GPU compression setting given the tensor characteristics
to achieve optimal compression performance. Finally, the
swapping executor selects proper tensors and exploits multiple
GPU threads to execute compression in parallel before swap-
ping from GPUs to CPUs and execute decompression after
swapping back from CPUs to GPUs.
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TABLE II
PARAMETERS IN THE MODEL. ONE TIME OR EPOCH MEANS WE PROFILE

ONLY ONCE AT THE FIRST ITERATION OR EVERY EPOCH.

Symbol Meaning Profiling
Sizet size of tensor t one time

BWh2d
effective PCIe bandwidth from CPU to
GPU one time

BWd2h
effective PCIe bandwidth from GPU to
CPU one time

Hiddent
f

overlapped swapping latency in forward
propagation of tensor t one time

Hiddent
b

overlapped swapping latency in back-
ward propagation of tensor t one time

Sparsityt sparsity of tensor t epoch
T imetc compression time of tensor t offline
T imetdc decompression time of tensor t offline

B. Determining Cost-Effectiveness of Tensor Compression

With the changing tensor sparsity and size, the cost-
effectiveness of tensor compression for swapping should be
dynamically determined. To achieve this goal, we build a
model of swapping cost to evaluate the cost-effectiveness of
tensor compression at runtime. The related parameters are
listed in Table II. Given a tensor t with size of Sizet and
sparsity of Sparsityt, we determine its cost-effectiveness
of compression by comparing the swapping cost with com-
pression T to the swapping cost without compression T .
If T  > T , a compression plan for the tensor t will be
generated and forwarded to the swapping executor; otherwise,
no compression is needed.

As shown in Figure 2(a), T  is the data transfer time
that cannot be hidden from DNN propagation time (i.e., the
portion with shade and slash in the timeline). Consequently,
we use the following equation to compute T . Hiddent

f and
Hiddent

b are the DNN forward and backward propagation
times, respectively. They are collected by the tensor profiler.
If the swapping latency can be hidden behind the DNN
propagation time, the value of T  can be effectively 0.

T  = max(
Sizet

BWd2h
−Hiddent

f , 0)+max(
Sizet

BWh2d
−Hiddent

b, 0)

(1)
Equation 2 computes the tensor swapping cost when com-

pression is used. Timetc and Timetdc are determined by the
tensor characteristics and compression algorithms. They are
computed by the tensor profiler using a machine learning
model as described in Section IV-C. Of and Ob are the portion
of the data transfer time that cannot be effectively hidden
from the DNN propagation time. If the compressed tensor is
adequately small, Timetc and Timetdc will dominate in T .

T = T imetc + T imetdc +Of +Ob (2)

Of = max(
Sizet × (1− Sparsityt)

BWd2h
−Hiddent

f , 0) (3)

Ob = max(
Sizet × (1− Sparsityt)

BWh2d
−Hiddent

b, 0) (4)

CSWAP uses the swapping cost model in DNN training.
At beginning of the DNN training, the tensor profiler collects

0 500
1000

1500
2000

2500
3000

3500
4000

30

70

110

150

Grid size

T
im

e 
(m

s)

Block size 128 Block size 64 BO searching samples

the minimal value

Fig. 5. The sum of ZVC compression and decompression time with different
GPU grid and block settings.

the effective data transfer bandwidth of the PCIe link of the
current system and tensor size Sizet. Then it detects the
tensor sparsity and records the hidden latency (Hiddent).
Based on these data, the execution advisor makes a preliminary
decision for all sparse tensors. During the training, tensors may
become more sparse or denser. The execution advisor then
asks the tensor profiler for the up-to-date data (e.g., Timetc
and Timetdc) used by the swapping cost model. T  and T are
then re-computed for updating tensor compression decisions.

C. Prediction of (De)compression Time

To dynamically determine the tensor compression plan,
the execution advisor of CSWAP needs to predict the com-
pression time Timetc and decompression time Timetdc given
tensor size, sparsity ratio, and compression algorithms. We
experimentally observe that the tensor size and sparsity have
a linear relationship with Timetc and Timetdc. Therefore,
CSWAP models the relationship offline using linear regression
algorithms [44]. The (de)compression time model is then used
to predict Timetc and Timetdc online. To have comprehensive
coverage of tensor characteristics, we develop a synthetic
tensor generator which can output tensors of different size
and sparsity.

Specifically, we use the following steps to build and deploy
a (de)compression time model. We first collect data samples
for training the model. Each training sample includes the
following measures: tensor size, tensor sparsity, compression
algorithm, Timetc and Timetdc. In the experiments, we found
that randomly sampling the tensor size and sparsity will
likely over-fitting the models. To solve the problem, we only
train models using samples whose sparsity falls between 20%
and 80% because we observe that tensor sparsity is mostly
located in this range as shown in Figure 1. This sparsity
range is denoted as R (e.g., 60%). Second, to improve the
model accuracy, CSWAP trains n sub-models. Sub-model i is
trained using samples whose sparsity is in [Sparsitybase+R∗
i/n, Sparsitybase +R∗ (i+1)/n), where 0 ≤ i <n. The sub-
models are combined to form a holistic model after training
and deployed for inference. In training, we vary the tensor size
from 20 MB to 2000 MB in addition to the changes of tensor
sparsity. Third, the (de)compression time model is stored in
the in-memory database for retrieval.
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D. Setting GPU Parameters for Compression Kernels

The execution time of compression kernels is mainly de-
termined by the GPU grid and block sizes. A wrongly tuned
compression kernel may not saturate GPU warps failing to ex-
ploit its maximum parallelism or may reduce GPU utilization.
Figure 5 shows the variation of the sum of compression and
decompression time as the GPU grid size is increased from
1 to 4096 and the block size is increased from 64 to 128. In
the experiments, we compressed and decompressed a synthetic
tensor (500 MB and 50% sparsity). When the block size is 64,
we can observe that the total time is decreased from 146 ms to
44 ms when the grid size is increased from 10 to 197 and then
it is increased to 150 ms when the grid size is further increased
to 1024. The time with 128 block size shows a similar trend.

Because both Timetc and Timetdc change significantly with
GPU settings, it is very hard, if not impossible, for regular
users to find an optimal GPU setting for the compression
kernels. Conventional compression schemes require domain
experts to explore a large design space trading off among
grid size, block size, and compression time, resulting in sub-
optimal and time-consuming tuning processes. To find an
effective GPU grid/block set, search algorithms can be used
to accelerate the process. However, since the goal function
of choosing GPU grid and block sizes for (de)compression
is almost non-convex and expensive to calculate, many algo-
rithms (e.g., random search [45] and grid search [46]) may
only find a suboptimal sample or require a long searching
time. To solve this issue, we choose Bayesian optimization
(BO) algorithm [47] and customize it for our task. It is efficient
for searching GPU grid/block size and can automatically tune
the performance of compression algorithms.

BO is a global search method for solving multi-parameter
modeling problems that are hard to find a global optimal
solution. The inherent idea of BO derives from the famous
“Bayes theorem”, which can search efficiently with guid-
ance [47], [48]. BO is instructed by posterior distribution
and acquisition function. The posterior distribution determines
the estimated values (i.e., sum of Timetc and Timetdc) and
prediction uncertainty of points (i.e., tuples of grid size and
block size) in the entire search space. The acquisition function
determines the next point to search. It is designed to avoid
getting trapped in local optima (exploration) and to refine the
search in the vicinity of a promising solution (exploitation).

Algorithm 1 shows the pseudocode of the BO search engine
used in CSWAP. We first generate s1 points (i.e., tuples of
(grid size, block size)) in the search space and obtain the
corresponding values to initailize D, the dataset of candidate
points (Line #3-9). BO then uses D to estimate the poste-
rior distribution in the entire search space (Line #10). The
acquisition function instructs BO to pick out the next search
point. Next, under the guidance of posterior distribution and
acquisition function, BO searches s2 points (Line #11-16),
e.g., the dotted circle in Figure 5. The search results update
the posterior distribution and acquisition function in return.
Finally, BO returns the optimal point from D (Line #17).

Algorithm 1 BO search algorithm for choosing GPU param-
eters for (de)compression kernels
Require: s1: the number of initial samples; s2: the times of

attempts to find the optimal solution;
1: bayes opt ← new bayes opt()  Create the BO engine
2: D← ∅  Dataset of previously observed samples
3: for i = 1, 2, ..., s1 do
4: g ← random(0..4096)  g denotes grid size
5: b← random(64, 128)  Set block size as 64 or 128
6: p← (g, b)
7: y ← bayes opt.exec(p)  obtain sum of Timetc and

Timetdc
8: D.append(p, y)  Add the new sample to D
9: end for

10: bayes opt.update(D)  estimate posterior distribution
and acquisition function

11: for i = 1, 2, ..., s2 do
12: p ← bayes opt.select()  select the next sample
13: y ← bayes opt.exec(p)
14: D.append(p, y)
15: bayes opt.update(D)
16: end for
17: return bayes opt.optimize(D)  return an optimal point

In the experiments, we set s1 and s2 as 10 and 25 re-
spectively and limit the maximum grid size to 4096. We
find that the settings provide a large enough search space
to find an optimal solution with minimum time cost (i.e.,
less than 1 minute compared to hours when full searches
are implemented). We configure the block size as 64 or 128
because each SM of most existing GPUs features two or four
warp schedulers [49], [50], which support 64 or 128 threads
to execute concurrently. The BO search engine is executed
before DNN training begins using CSWAP.

E. Tensor Compression Algorithms

To compress sparse floating-point tensors, we need an
efficient compression algorithm that is easy to be imple-
mented on GPUs. CSWAP executes tensor (de)compression
using GPU multi-computing units in parallel to further reduce
the (de)compression time. Among floating-point compressors,
it currently supports run-length encoding (RLE) [24], com-
pressed sparse row (CSR) [25], LZ4 [26] , and zero-value
compression (ZVC) [23].

RLE stores data sequences where the same value occurs
in many consecutive positions as a single value and count
to reduce data size. For example, it can compress an original
sequence (A0000000) to (A70), decreasing the sequence length
from 8 to 3. However, it will increase the original sequence
size when the length of consecutive zeros cannot be efficiently
reduced. CSR compresses an original sequence as a non-
zero value sequence and an additional index representing
the locations of non-zero values. For example, a sequence
(A00B0C000) can be compressed as (ABC) and (035). LZ4
uses a dictionary-matching stage to reduce data size. For exam-
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ple, a string (abcde bcde) can be compressed as (abcde (5,4)),
where 5 denotes the position how far back the redundant string
(bcde) can be found and 4 denotes the length of matched
string. Similar to CSR, ZVC stores a float sequence as non-
zero values and additional indexes. Instead of using a float
as an index for each non-zero value, it utilizes a 32-bit
bitmap as the index for 32 consecutive floats. It improves
computation speed because of less index operations and higher
compressibility for less index space overhead.

There is a tradeoff between computation and compressibility
for these compression algorithms. The efficiency of an algo-
rithm also depends on the sequence patterns. These algorithms
are widely used since they have a relatively high compression
ratio. Currently, we implemented these four compressors for
GPUs and study their performance. We wish to support more
compression algorithms in the future work. Because PCIe
bandwidth is limited, we observe that CSWAP favors the most
efficient algorithm (i.e., ZVC). This is because ZVC uses
a compact bitmap data structure to index compressed data.
For example, its memory overhead is only 3% compared to
50% for CSR (i.e., compressing data of 50% sparsity). As a
result, swapping using ZVC achieves lower latency when PCIe
bandwidth becomes a performance bottleneck.

V. EVALUATION

To demonstrate the performance of CSWAP, we implement
its prototype in Torch 1.5.1. To achieve parallel swapping,
we create an asynchronized cuda stream using cudaStream-
CreateWithFlags() and use cudaMemcpyAsync() to transfer
data. Furthermore, we add GPUcompression() as the kernel
compression function into CSWAP, then set GPUdecompres-
sion() for decompressing. However, the frequent GPU/CPU
memory allocation/free decreases the performance severely. To
solve this problem, we use memory pool functions in Torch,
getCUDADeviceAllocator() and getPinnedMemoryAllocator()
to avoid using the expensive cudaMalloc() and cudaMallo-
cHost() functions.

Experimental platforms. Our experiments are conducted
on two CPU-GPU hybrid servers. The first is equipped with
a 2.60 GHz Intel(R) Xeon(R) Gold 6126 CPU and 32 GB
main memory. Besides that, it has an NVIDIA Tesla V100
GPU with 32 GB GPU memory. The second server has two
2.10 GHz Intel(R) Xeon(R) Gold 5218R CPUs, 128 GB main
memory, an RTX 2080Ti GPU, and 11 GB GPU memory.
The CPU and GPU on a server are connected via the PCIe
3.0×16 bus. The first server (V100) has a higher peak compute
capability than the second one (2080Ti) [51]. In both servers,
we run Ubuntu-18.04, CUDA 10.0.13 [52], CuDNN 7 [53],
and Torch 1.5.1 [29].

Workloads and datasets. To show the effectiveness of
our approach for extensive workloads, we evaluate CSWAP
with four linear DNN models (i.e., AlexNet [1], Plain20 [54],
VGG16 [4], and MobileNet [55]), and two non-linear models
(i.e., ResNet [6] and SqueezeNet [56]). We tune the parameters
of these DNN models (e.g., learning rate and optimizer) based
on the specifications in the related papers and documents [1],

TABLE III
WORKLOAD AND DATASET CONFIGURATIONS. IN THE TABLE, WE USE
X/Y TO DENOTE THE BATCH SIZES FOR CIFAR10 (X) AND IMAGENET

(Y), RESPECTIVELY, GIVEN A PARTICULAR GPU.

DNN Model Batch size (V100) Batch size (2080Ti)
AlexNet 2560 / 512 2560 / 256
VGG16 2560 / 128 2560 / 32

MobileNet 2560 / 128 1280 / 32
Plain20 2560 / 32 1024 / -
ResNet 2560 / 64 1280 / 16

SqueezeNet 2560 / 512 1280 / 128

[4], [6], [54]–[56] and configured training batch sizes are
shown in Table III.

We use two representative datasets including CIFAR10 [57]
and ImageNet [58]. The CIFAR10 dataset is a collection of
60, 000 (50, 000 for training and 10, 000 for testing) labeled
color images (32 × 32 pixels each). The second is ImageNet
dataset which has 1.4 million 224 × 224 pixel images across
21841 non-empty synsets.

DNN frameworks for comparison. We compare CSWAP
with the state-of-the-art GPU memory swap frameworks,
vDNN [20], vDNN++ [30], and cDMA [23]. The vDNN
scheme offloads all convolution input tensors from GPUs
to CPUs and prefetches them back through overlapping
data transfer with computation. However, there is no data
(de)compression in the tensor swapping between GPUs and
CPUs. The vDNN++ scheme compresses tensors on host
CPUs to reduce the size of pinned memory. Although there
are two other techniques in vDNN++, we omit them in our
implementation since they are orthogonal to our design of
CSWAP. To make (de)compression more efficient, we use 64
threads in CPUs to compress and decompress the tensors when
the sparsity is more than 60%. Because cDMA [23] relies on
the (de)compression units which are not available in markets,
we implement a static compression (SC) scheme which repli-
cates the zero-value compression algorithm used in cDMA.
In SC, we use GPUs to emulate the (de)compression units in
memory controllers. In the evaluation, we compare CSWAP
to SC instead of cDMA. Furthermore, to show the potential
of our proposed framework, we evaluate the performance of
CSWAP on an oracular system (Orac), where the GPU is fast
enough so that the compression and decompression time is
effectively zero.

A. General Results

Figure 6 shows the system throughputs of different frame-
works on different GPUs and datasets. For comparison, the
throughput (samples/ms) is normalized to that of vDNN.

Figure 6(a) shows the system throughput when training
the models on V100 with the CIFAR10 dataset. Overall,
CSWAP outperforms vDNN and vDNN++ by 25% and 190%
on average. We also have the following observations. First,
compared to vDNN, CSWAP reduces the model training time
by up to 29.2% across the six models. CSWAP is better
than vDNN because it uses dynamic compression to reduce
tensor transfer time while vDNN transfers the original tensors
regardless of their sparsity, leading to high data transfer cost in
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(b) CIFAR10-2080Ti.

AlexNet
VGG16

Plain20
MobileNet

ResNet

SqueezeNet0.2

0.6

1.0

1.4

1.8

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

2.
22

 S
/m

s

0.
11

 S
/m

s

0.
03

 S
/m

s

0.
11

 S
/m

s

0.
04

 S
/m

s

0.
36

 S
/m

s

vDNN vDNN++ CSwap Orac

(c) ImageNet-V100.
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Fig. 6. The performance comparison of four different GPU virtual memory management frameworks. We conduct the experiments with six DNN models on
two datasets (CIFAR10 and ImageNet) and two GPUs (V100 and 2080Ti). The caption of each subfigure denotes its dataset and GPU configuration.

swapping. Compared to vDNN++, CSWAP increases system
throughput by up to 470% on AlexNet and reduces the model
training time by up to 445ms on ResNet. This is because
vDNN++ only compresses and decompresses tensors on the
host side after tensor swapping. It does not reduce data transfer
time by compressing tensors in GPUs. Second, we observed
that CSWAP performs the same number of compression and
decompression operations as that of Orac. Its training time is
up to 20.8% longer than Orac because of the compression and
decompression operations. Third, Figure 6(a) also shows that
the performance benefit of using CSWAP varies for different
DNN models. For example, the training time of AlexNet and
Plain20 is reduced by up to 31% and 24.1% respectively.
For other models, CSWAP only reduces the training time by
up to 19.3%. The main reason is that the data swapping
time dominates in the training time for AlexNet and Plain20.
Specifically, we observed that the data transfer time accounts
for 71% and 73% of the total model training time for AlexNet
and Plain20 respectively. For other models, the data transfer
time accounts for less than 50% of the training time. As a
result, reducing the data transfer time using CSWAP greatly
improves the overall training performance of AlexNet and
Plain20.

Figure 6(b) shows the system throughput when training the
models with the same dataset CIFAR10 but on a different
GPU 2080Ti, which has lower peak compute capability than
V100. The system throughput is decreased by 9% on aver-
age for all models compared to the results on V100. The
decreased throughput stems from two reasons. First, effective
data transfer bandwidths are not the same for the two GPU
platforms because they have different GPU and CPU memory
configurations. We have examined such bandwidths using
the NVIDIA bandwidthTest tool [59]. The effective host to
device and device to host bandwidths are 10.6 GB/s and 11.7
GB/s respectively on V100 and 11.8 GB/s and 12.9 GB/s

respectively on 2080Ti. The higher effective data transfer
bandwidth in 2080Ti alleviates the data transfer bottleneck
in the DNN training process. Second, 2080Ti has a lower
compute capability than V100. The computation time of DNN
models on 2080Ti is relatively longer. As a result, CSWAP
has a better chance to hide the data transfer time behind the
computation time, decreasing the data transfer overhead.

To show the effectiveness of CSWAP on different datasets,
we train the models on the large dataset ImageNet. Figure 6(c)
and Figure 6(d) show the system throughput of CSWAP for
all the models on V100 and 2080Ti, respectively. Overall,
compared to the CIFAR10 dataset, ImageNet leads to similar
performance trends on the two GPU platforms. The model
training time is reduced by 20.3% and 16.9% on average
on V100 and 2080Ti respectively. These results show that
our approach is effective for ImageNet dataset. Note that in
Figure 6(d), we do not display the performance results for the
Plain20 model. This is because Plain20 is a large model and
2080Ti only has 11GB GPU memory, which cannot meet the
memory requirement of Plain20 even when the batch size is
set to one.

B. Effectiveness of Dynamic Tensor Compression

To further evaluate the effectiveness of CSWAP, we compare
its training time to that with SC, which is a replica of
cDMA using GPUs. While CSWAP performs (de)compression
in tensor swapping based on the cost-effectiveness analysis of
tensor compression, SC blindly compresses the sparse tensors
in all layers of DNNs. We train the models on V100 and
2080Ti with CIFAR10 and ImageNet.

We show the experimental results in Figure 7. We can
observe that CSWAP can improve the performance by 5.5%
and 5.1% on average compared to SC for all the models except
Plain20 on V100 and 2080Ti, respectively. The maximal
performance improvement brought by CSWAP can be 12.5%
and 10.7% on the two GPUs respectively. Because tensors in
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Fig. 8. The number of layers executing tensor compression for four DNN
models for every epoch in their training processes.

all ReLU layers of Plain20 are sparse and have a larger size
on average than other models, CSWAP determines that tensors
in all the layers of Plain20 need to be compressed. As a result,
CSWAP has the same performance as SC.

Figure 8 shows the number of layers whose tensors are
compressed with CSWAP during the training of AlexNet,
VGG16, MobileNet, and SqueezeNet. We have two observa-
tions. First, the number of such layers tends to increase while
epochs are increased. Let’s use VGG16 as an example, as
shown in Figure 9, the number of its layers executing tensor
(de)compression is increased from 5 at epoch 0 to 9 at epoch
48. This is because as epochs are increased, the tensors in more
layers become sparse enough to trigger the (de)compression
operations in CSWAP for reducing data transfer overhead in
swapping. However, there may exist some layers never to be
compressed during the model training. Taking the VGG16
as an example, since the tensor in MAX4 always has low
sparsity (i.e., lower than 45%) and the tensors in ReLU7 and
ReLU8 are relatively small, which make the compression cost-
ineffective, these layers are never be compressed, as shown
in Figure 9. Second, models have distinct characteristics that
lead to varied tensor compression decisions. For instance,
the number of layers executing tensor (de)compression for
MobileNet does not change too much as the epochs are
increased because its tensor sparsity changes slightly as shown
in Figure 8(c). For SqueezeNet, there exist two tensors whose
sparsity is decreased between epoch 5 and epoch 17 and
is increased after epoch 17, as shown in Figure 8(d). The
reason for the fluctuation is that their model convergence may
change during training. Besides the four models, the other
three models show their own characteristics concerning the
number of layers having compressed tensors. Because of the
space limitation, we do not show their curves in Figure 8.
C. (De)compression Time Model Verification

An important component of CSWAP is the (de)compression
time model, which influences the effectiveness of its execu-
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tion advisor (Section IV). We compare the linear regression
(LR) model in CSWAP for (de)compression time modeling to
three other regression models including bayesian regression
(BR) [60], support vector machine (SVM) [61], and decision
tree (DT) [62] from scikit-learn [63]. To evaluate prediction
accuracy, we use relative absolute error (RAE) which is
defined as

N
i=1 |ŷi−yi|N
i=1 |ȳi−yi|

, where N is the size of test samples,
ŷi and yi are predicted and measured values respectively, and
ȳi is the mean value of yi.

CSWAP current supports four compression algorithms in-
cluding RLE, CSR, LZ4, and ZVC. For each algorithm, we
generate a total of 3000 sparse tensors, whose sparsity ranges
between 20% to 90%. The sample sizes are varied from 20
MB to 2000 MB as real DNN training tensors. We train all the
models with the same collected 3000 test samples for fairness.
As shown in Figure 10, LR achieves the best prediction
accuracy. Its mean relative absolute error for compression and
decompression time prediction is only 3%, which is 56% and
80% smaller than those of BR and SVM respectively.

We also evaluate the compression decision accuracy based
on the swapping cost model, which relies on the LR model.
CSWAP uses the swapping cost model to make a tensor
compression decision. If the decision based on the swapping
cost model matches the decision based on the measured time
at runtime for a tensor compression, we regard the decision
as correct. We define the decision accuracy as the ratio of the
number of correct decisions to the number of all decisions.

We train the six DNN models and show the decision accuracy
in Figure 11. We observe that the decision accuracy using the
swapping cost model is 94.2% on average.
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D. Effectiveness of Bayesian Optimization for Setting GPU
Parameters

To demonstrate the effectiveness of the Bayesian optimiza-
tion, we train the VGG16 model with four GPU grid/block
setting approaches, i.e., random search, expert knowledge,
CSwap BO search, and grid search. For the random search, we
randomly choose a GPU setting for tensor (de)compression.
For the expert knowledge, we manually choose a GPU setting
which may achieve the minimum (de)compression time given
a particular set of grid and block size. More specifically, we
configure the block size as 128 because this configuration
will make all threads concurrently execute since each SM
(Streaming Multiprocessor) has four warp schedulers and each
warp has 32 threads in our GPUs [64]. The grid search
finds the best GPU setting by going through all grid/block
configurations.

Figure 12 illustrates the average training time for one
VGG16 iteration under the four design space exploring meth-
ods. The overall training time consists of two parts: the sum
of compression and decompression time and the remaining
time including DNN computing time, data swapping time,
etc. Figure 12 shows that the (de)compression time varies
greatly under different searching approaches. The random
search (i.e., 2024, 64) has the maximum (de)compression
time of 547 ms, which is 54% of the total training time,
thus unacceptable for DNN training. The expert knowledge
approach needs 178 ms to compress and decompress, which
is 32% of that with the random search. CSwap BO search
uses the algorithm in Section IV-D to find the optimized
grid and block configuration (199, 64). Its compression and
decompression time is 66 ms which is only 30% of the time
cost with the expert knowledge approach and 12% of the time
cost with the random search. The grid search achieves an
optimal time cost of 56 ms with a global brute-force search.
The CSwap BO search achieves similar performance as the
grid search. It reduces the search overhead by 224 × compared
to the grid search.

E. Overhead Discussion

CSWAP introduces the following overheads. However, the
overheads are either negligible compared to the overall training
time or can be amortized over the training.

Runtime overhead. The profiling of tensor characteristics
in CSWAP introduces overhead to the model training pro-
cess. To make an effective decision with minimum runtime
overhead, CSWAP is set with a fine-grained detecting cycle

(i.e., each epoch). Because the hidden time and tensor size
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Fig. 12. The average training time of VGG16 for one iteration. RD: random
search, EP: expert knowledge, BO: CSWAP BO search, and GS: grid search.

do not change across epochs, CSWAP only needs to update
Sparsityt and Timetc/Timetdc periodically to make dynamic
decisions. CSWAP utilizes GPU multi-cores to profile tensor
sparsity (e.g., only 8 ms overhead every 10 sec for training
VGG16). Besides, one prediction of Timetc or Timetdc is only
1 ms which is negligible compared to the overall training time.

Offline overhead. CSWAP needs to train a (de)compression
time model of tensor compression offline as discussed in
Section IV-C. It only takes on average 4.5 minutes to generate
all training samples and 21ms to build the time model because
of the lower complexity of the linear regression method used in
the paper. In addition, CSWAP executes Bayesian optimization
search before DNN training begins (Section IV-D). This one-
time overhead is 50 seconds compared to 3 hours when full
grid searches are used.

VI. CONCLUSION

The virtual memory manager of GPUs needs to swap tensors
between GPUs and CPUs to increase the effective size of
GPU memory for training large DNN models. Existing tensor
compression schemes blindly apply the same compression
algorithm to all tensors without considering their sparsity and
sizes, resulting in suboptimal tensor swapping performance.
In this paper, we present CSWAP, a self-tuning compression
framework to reduce data transfer overhead in tensor swap-
ping. First, it does not require additional (de)compression units
in memory controllers of GPUs or expertise in setting GPU
parameters for effectively executing (de)compression. Second,
it uses the cost model of tensor swapping to selectively
apply (de)compression to tensors in the ReLU and MAX
layers according to its cost-effectiveness of tensor compression
at runtime considering tensor sparsity and sizes. Third, it
uses a machine-learning algorithm to facilitate the search for
optimal GPU settings with low latency and high accuracy. We
implement CSWAP using Torch and evaluate it using six linear
and non-linear DNNs. The experimental results show that it
reduces the tensor swapping time by 50.9% and 47.6% on
V100 and 2080Ti respectively. It reduces the total training
time by up to 34.6%.
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