
Accelerating Tensor Swapping in GPUs
With Self-Tuning Compression

Ping Chen , Shuibing He ,Member, IEEE, Xuechen Zhang ,Member, IEEE, Shuaiben Chen,

Peiyi Hong, Yanlong Yin, and Xian-He Sun , Fellow, IEEE

Abstract—Data swapping between CPUs and GPUs is widely used to address the GPU memory shortage issue when training deep

neural networks (DNNs) requiring a larger amount of memory than that a GPU may have. Data swapping may become a bottleneck

when its latency is longer than the latency of DNN computations. Tensor compression in GPUs can reduce the data swapping time.

However, existing works on compressing tensors in the virtual memory of GPUs have three major issues: lack of portability because

its implementation requires additional (de)compression units in memory controllers, sub-optimal compression performance for varying

tensor compression ratios and sizes, and poor adaptation to dense tensors because they only focus on sparse tensors. We propose a

self-tuning tensor compression framework, named CSWAP+, for improving the virtual memory management of GPUs. It uses GPUs for

(de)compression directly and thus has high portability and is minimally dependent on GPU architecture features. Furthermore, it only

applies compression on tensors that are deemed to be cost-effective considering their compression ratio, size, and the characteristics

of compression algorithms at runtime. Finally, to adapt to DNN models with dense tensors, it also supports cost-effective lossy

compression for dense tensors with nearly no model training accuracy degradation. We conduct the experiments through six

representative memory-intensive DNN models. Compared to vDNN, CSWAP+ reduces tensor swapping latency by up to 50.9%

and 46.1% with NVIDIAV100 GPU, for DNN models with sparse and dense tensors, respectively.

Index Terms—DNN, GPU, tensor, swapping, compression

Ç

1 INTRODUCTION

DEEP Neural Networks (DNNs) have been successfully
used in various domains, such as computer vision [1],

recommendation systems [2], speech recognition [3], etc.
DNN models become larger and deeper to achieve higher
prediction accuracy [4], [5]. Training such DNN models
often requires a larger amount of memory. For example, the
latest BERT model training needs more than 70 GB of mem-
ory with batch size 64 [4]. The newest language model pre-
sented by Google has 137 billion parameters and requires
more than 100 GB of memory for training [6]. Additionally,
a prior study [7] shows that the number of neural network
parameters has nearly doubled every 2.4 years since the 80s.

These trends lead to a higher memory demand for training
future DNNmodels.

To accelerate the training of DNN models, hardware
accelerators such as Graphics Processing Units (GPUs) are
widely used to compute tensors [8]. However, GPUs have
limited memory capacity compared to what is demanded in
the training of many popular DNNs. For instance, the pow-
erful NVIDIA V100 GPU is configured with up to 32 GB on-
board memory, which is inadequate for training the BERT
model which consumes up to 73 GB of memory [9]. The lack
of global GPU memory greatly constrains the development
of more advanced DNN architectures.

Because GPU memory could be under-provisioned for
training large models, both scale-out and scale-up app-
roaches may be used to overcome this limitation. The
scale-out approaches exploit distributed memory of multi-
ple GPUs in a cluster. Its downside is that their perfor-
mance may be constrained by networking latency [10]. The
scaling-up approaches swap intermediate tensors between
GPUs and CPUs in training [11], [12], [13], [14], [15], [16].
They can be further improved by overlapping tensor swap-
ping with computations of the next layer to hide applica-
tion-perceived swapping latency. Nevertheless, Rhu et al.
observed that the swapping latency of large tensors cannot
be effectively hidden for the increasingly larger gap
between drastically improved TFLOPS performance of
GPUs and limited data transfer bandwidth of PCIe links
for tensor swapping between GPUs and CPUs [17]. They
implement a sparse tensor compression engine located in
memory controllers of GPUs and reduce the DNN training
time through swapping smaller tensors.

� Ping Chen, Shuibing He, Shuaiben Chen, and Peiyi Hong are with the Col-
lege of Computer Science and Technology, Zhejiang University, Hangzhou
310027, China, and also with the Zhejiang Laboratory, Hangzhou 311100,
China. E-mail: {zjuchenping, heshuibing, jsxnh, hongpeiyi}@zju.edu.cn.

� Xuechen Zhang is with the School of Engineering and Computer Science,
Washington State University Vancouver, Vancouver, WA 98686 USA.
E-mail: xuechen.zhang@wsu.edu.

� Yanlong Yin is with the Institute of Open Source Chip, Beijing 100000,
China. E-mail: yyin@bosc.ac.cn.

� Xian-He Sun is with the Department of Computer Science, Illinois Insti-
tute of Technology, Chicago, IL 60616 USA. E-mail: sun@iit.edu.

Manuscript received 13 February 2022; revised 15 July 2022; accepted 21 July
2022. Date of publication 26 July 2022; date of current version 23 August 2022.
This work was supported in part by the National Key Research and Develop-
ment Program of China under Grant 2021ZD0110700, in part by the National
Science Foundation of China under Grant 62172361, in part by Zhejiang Lab
Research Project under Grant 2020KC0AC01, and in part by US National
Science Foundation under Grant CNS 1906541.
(Corresponding author: Shuibing He.)
Recommended for acceptance by V. Cardellini.
Digital Object Identifier no. 10.1109/TPDS.2022.3193867

4484 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on November 21,2022 at 17:10:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6973-0755
https://orcid.org/0000-0001-6973-0755
https://orcid.org/0000-0001-6973-0755
https://orcid.org/0000-0001-6973-0755
https://orcid.org/0000-0001-6973-0755
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-3730-8901
https://orcid.org/0000-0002-3730-8901
https://orcid.org/0000-0002-3730-8901
https://orcid.org/0000-0002-3730-8901
https://orcid.org/0000-0002-3730-8901
https://orcid.org/0000-0002-1093-0792
https://orcid.org/0000-0002-1093-0792
https://orcid.org/0000-0002-1093-0792
https://orcid.org/0000-0002-1093-0792
https://orcid.org/0000-0002-1093-0792
mailto:zjuchenping@zju.edu.cn
mailto:heshuibing@zju.edu.cn
mailto:jsxnh@zju.edu.cn
mailto:hongpeiyi@zju.edu.cn
mailto:xuechen.zhang@wsu.edu
mailto:yyin@bosc.ac.cn
mailto:sun@iit.edu

Compressing tensors using additional (de)compression
units seems a straightforward approach because no changes
are required for DNN applications. However, current com-
pression schemes have three major issues.

First, they require hardware changes [17], thus having no por-
tability to mainstream GPUs. Existing GPUs cannot benefit
from these tensor compression schemes because they do not
have dedicated compression units in their memory control-
lers. A practical solution should be independent of addi-
tional hardware features. Second, they always use a static
compression method to compress all tensors [17], [18], and are
not optimal because they ignore the compression and
decompression time, the changing of tensor sparsity, and
the potential of hiding swapping overhead. For example,
our study shows that tensors’ compression ratio changes
constantly during training. Tensors with a low compression
ratio and high additional overhead, are not worth being
compressed (Section 3.2). Third, they do not adapt to dense ten-
sors. The tensors in DNN models can be classified into
sparse tensors and dense tensors depending on the types of
activation functions used in the models. For example, the
ReLU [19] activation will generate sparse tensors and the
Leaky ReLU [20] activation will produce dense tensors.
However, current schemes only focus on sparse tensors
[17], [18], [21]. This may lose the opportunity of compress-
ing dense tensors for further performance optimization.

In this paper, we propose a high-performance, self-tun-
ing, and fully automated GPU memory compression frame-
work, named CSWAP+, for software-level tensor compression
management. It has three novel features. First, CSWAP+ uses
GPUs for (de)compression directly without relying on fixed
compression units in the memory controllers of GPUs. Cur-
rently, it supports four GPU-optimized lossless compression
algorithms (i.e., zero-value compression (ZVC) [17], run-
length encoding (RLE) [22], compressed sparse row
(CSR) [23], and LZ4 [24]). CSWAP+ caters to tensor character-
istics of a DNN workload and selects one of these four algo-
rithms to achieve the best trade-off between compression
ratio and compression time.

Second, CSWAP+ dynamically decides whether to com-
press sparse output tensors of DNN layers in forward prop-
agation based on the cost-effectiveness of (de)compression.
Specifically, it compares the swapping cost with (de)com-
pression to that without (de)compression at runtime. It only
executes (de)compression when it is deemed to reduce ten-
sor swapping cost.

Third, to adapt to DNN models with dense tensors,
CSWAP+ also supports dynamic cost-effective lossy com-
pression for dense tensors. One challenge is that the lossy
compression may significantly degrade the training accu-
racy. To tackle this issue, CSWAP+ proposes a sliding-down
scheme to carefully set the compression parameter of the
lossy algorithm, so that the compression yields nearly no
training accuracy loss. Compared to CSWAP [18] (the confer-
ence version), CSWAP+ can further optimize the swapping
performance for DNNs with dense tensors.

In summary, we make the following contributions in this
paper:

� We propose CSWAP+, a self-tuning compression
framework to reduce tensor swapping cost in DNNs

without relying on compression units in the memory
controllers of GPUs. It uses GPUs for (de)compres-
sion directly.

� We propose a selective cost-effective compression
scheme, which adaptively executes lossless compres-
sion for sparse tensors and lossy compression for
dense tensors, according to the cost-effectiveness of
tensor compression at runtime.

� We design a sliding-down scheme to carefully set the
compression parameter for the lossy compression
algorithm during the entire training process, so that
the cost-effective lossy compression yields negligible
model training accuracy degradation.

� Our study shows the performance of tensor com-
pression is sensitive to the tensor size, compres-
sion ratio, and the characteristics of compression
algorithms. Therefore, we design the machine-
learning algorithms to predict the tensor (de)com-
pression time for both lossless and lossy compres-
sion algorithms.

� We implement a software prototype of CSWAP+
using Torch [25] and apply it to six popular DNN
models (e.g., AlexNet [1], VGG16 [26], ResNet [27],
etc.). Our experimental results show that CSWAP+
reduces tensor swapping latency by up to 50.9% and
46.1% on sparse and dense DNN models, respec-
tively. Furthermore, CSWAP+ reduces the DNN train-
ing time by 18.4% and 16.7% on average for sparse
and dense DNNs with NVIDIA V100 GPU, com-
pared to vDNN [14].

2 BACKGROUND

2.1 DNN Training Architecture

The main goal of DNN training is to find the correct mathe-
matical manipulation to provide high classification accu-
racy. DNNs consist of multiple layers between input and
output. In the training of a DNN, we first perform forward
propagation from the first to the last layer in a sequential
manner, then we perform backward propagation from the
last layer to the first layer to update the parameters of
DNNs.

In DNN models, there are many activation-convolution
layers which make DNNs non-linear for better accuracy.
Users can choose one of the activation functions in their
models for different scenarios, such as ELU [28], ReLU [19],
Tanh [29], PReLU, and Leaky ReLU [20]. It is very common
to use ReLU to build the DNN models because of its sim-
plicity and improved performance. Specifically, ReLU
allows positive input values to pass through but resets all
negative input values to zeros for fast model convergence.
As many values are reset to zeros, ReLU generates sparse
tensors. Besides, in some training scenarios with a larger
learning rate to speed up convergence, users may choose
activation functions, such as Tanh, PReLU, or Leaky ReLU
to avoid the dead neurons problems [30] in DNN training.
For example, these activation functions are frequently used
in popular DNNmodels, such as the improved ResNet with
ELU [31] and the famous YOLO [32]. As their outputs are
non-zeros, these functions produce dense tensors.

CHEN ETAL.: ACCELERATING TENSOR SWAPPING IN GPUS WITH SELF-TUNING COMPRESSION 4485

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on November 21,2022 at 17:10:59 UTC from IEEE Xplore. Restrictions apply.

2.2 DNN Memory Management Frameworks

Virtualized Deep Neural Networks. vDNN uses virtual mem-
ory to support training a DNN whose memory demand
might be larger than the size of GPU memory [21]. It swaps
out tensors that are not in use in the forward propagation
from GPUs to CPUs and then swaps them back in when
they are referenced in the backward propagation of DNN
training, as shown in Fig. 1a. In the figure, Fn=Bn denotes
the time of forward/backward computation at layer n. Off-
loadn denotes the time of swapping a tensor from GPUs to
CPUs and Prefetchn denotes the time of swapping a tensor
from CPUs to GPUs. If Offloadn � Fn, Offloadn can be over-
lapped with Fn, thus resulting in no additional swapping
overhead. Similarly, if Prefetchn � Bnþ1, there will be no
swapping latency because Prefetchn can be overlapped with
Bnþ1.

Compressing DMA Engine. Recently, researchers show
that tensor swapping latency can no longer be overlapped
with DNN forward/backward computation [17]. This is
because data transfer bandwidth offered by the powerful
PCIe and NVLINK has remained unchanged while the
performance of datacenter GPUs is almost tripled since
2014 [17]. To reduce swapping overhead, cDMA com-
presses all tensors before offloading and decompresses
them after prefetching through exploiting the tensor spar-
sity in GPUs [17].

Fig. 1b illustrates the execution flow of memory swap-
ping with tensor compression in cDMA. Of and Ob denote
the portion of the data transfer time that cannot be effec-
tively hidden from the DNN propagation time, respectively.
Only one tensor is swapped per layer in the training pro-
cess. For cDMA, the compression operations are executed
by dedicated (de)compression units in memory controllers
of GPUs. It introduces compression latency Cn and decom-
pression latency DCn. To make cDMA truly effective, (1) Cn

and DCn should be insignificant compared to Fn and Bnþ1
and, (2) Offloadn and Prefetchn after compression needs to be
smaller than their corresponding computation time.

3 MOTIVATION

3.1 Changing Sparsity and Size of Sparse Tensors

Tensor sparsity is observed in many popular sparse DNN
models (using the ReLU activation), e.g., VGG16 and Alex-
Net. One major cause of tensor sparsity is the nature of
ReLU operations, which makes the output tensors of ReLU
and POOL tend to contain zeros mostly. We use VGG16

training as an example. We studied its tensor sparsity as the
percentage of zeros among all the elements in the output
tensors in the first 50 epochs. In the experiments, we use the
ImageNet dataset [33], NVIDIA Tesla V100, and the Torch
framework [34]. The model is trained with the batch size of
128 until converged with 78.6% top-5 accuracy. (More
details of the experimental platforms are described in
Section 6).

Fig. 2 shows the tensor sparsity (left y-axis) and the sizes
(right y-axis) of each ReLU and MAX layer during the train-
ing of VGG16. We can observe that the sparsity of tensors
(bars) varies between 20% and 80% across layers. To show the
trend of changing sparsity of tensors, for a particular layer,
we also show the average sparsity of every five epochs as
indicated by a bar in each group in the figure. We observe
that for the same layer the sparsity is also dynamically changed.
For example, for ReLU4, its sparsity is increased from 50%
to 80% over the time of training. In contrast, the tensor spar-
sity of ReLU7 is increased in the first 10 epochs and then
decreased by 20% afterward.

We also measure the tensor sizes during the training of
VGG16 on the ImageNet dataset. We find that the tensor
size changes across layers (the solid line in Fig. 2). For exam-
ple, the tensor size is reduced from 1568 MB to 49 MB from
the first to the last layer during the training of the model.
Furthermore, we find that the tensor size does not change
across epochs for the same tensor. We also evaluate the ten-
sor sparsity and tensor size with other models and datasets
(Section 6). The results show similar observations. CSWAP+
opportunistically applies tensor compression considering
the changing tensor size and sparsity.

3.2 Ineffectiveness of Static Lossless Compression
for Sparse Tensors

We then study the effectiveness of sparse tensor compres-
sion in GPU virtual memory in existing works. Instead of
relying on the (de)compression units which are not avail-
able in markets, we implement a new static compression (SC)
lossless scheme which replicates the zero-value compres-
sion algorithm in cDMA by using GPUs to emulate the (de)
compression units in memory controllers. Because GPUs
have more cores and higher capacity than those of the (de)
compression units in memory controllers, we expect that
the (de)compression performance using GPUs directly will
be superior to or comparable to that of cDMA. For cDMA,
tensor (de)compression is applied to all the layers consisting
of ReLU and MAX operations with the SC scheme.

Fig. 1. (a) DNN execution flow with tensor swapping but without tensor
compression; (b) The execution flow with both tensor compression and
swapping in cDMA [17].

Fig. 2. Changing sparsity of tensors during the training of VGG16 in the
first 50 epochs (left axis), while the solid line (right axis) denotes the
changing size of tensors of VGG16.

4486 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on November 21,2022 at 17:10:59 UTC from IEEE Xplore. Restrictions apply.

Fig. 3a shows the execution time per layer during the
training of VGG16 without the lossless compression com-
pared to the time with SC using NVIDIA Tesla V100 GPUs
and the same experimental setup as described in the previ-
ous sections. It also shows the execution time breakdown
when SC is used. We can observe that the swapping latency
with static compression is longer than that without com-
pression for MAX[1-4] and ReLU[7-8]. As the compression
ratio and size of tensors are varied, blindly applying lossless
compression to all the sparse tensors does not reduce the
overall swapping latency when the tensor size is small and
its compression ratio is low.

3.3 Motivation and Challenges for Dense
Tensor Compression

As mentioned in Section 2.1, tensors in DNN models
include sparse tensors and dense tensors, depending on the
activation functions used in DNN models. Although exist-
ing compression approaches are promising to accelerate
tensor swapping performance, they all use lossless compres-
sion and can only work well for sparse tensors. For dense
tensors, such schemes are inefficient because lossless com-
pression algorithms keep the size of the compressed tensors
unchanged, which can not reduce the data swapping time.

Because dense tensors are widely generated in DNN
models, such as ResNet with ELU [31] and YOLO [32], we
need a new approach to reduce the data amount in the ten-
sor swapping process. Considering the fact that approxi-
mate computing may require less computing while having
a negligible impact on training accuracy [35], we propose to
use lossy compression to accelerate the dense tensor swap-
ping performance. Lossy compression can be used in many

applications, such as graphics applications. In this study,
we only focus on DNNmodels.

There are two unique challenges when applying lossy
compression to dense tensor compression. First, the com-
pression algorithm may cause a sub-optimal trade-off
between swapping performance and DNN training accu-
racy. A lossy compression algorithm usually uses a parame-
ter to control the compression ratio. If the parameter is not
carefully selected, the lossy compression may bring decent
swapping performance improvement but with unacceptable
accuracy degradation. For example, with the lossy compres-
sion algorithm (i.e., ZFP [36]) the VGG16 model training
may lose more than 2% accuracy when the compression
ratio is set casually (See Section 6.4). Meanwhile, DNN
training often has multiple epochs and in each epoch a
given compression ratio has various impacts on model accu-
racy, making the trade-off hard to achieve. Hence, CSWAP+
leverages a well-designed scheme to carefully choose the
compression ratio to achieve a better trade-off between com-
pression performance and training accuracy.

Second, static compression may still be inefficient for
dense tensor compression. To illustrate this, we use Leaky
ReLU (L-ReLU) instead of ReLU in VGG16 to generate
dense tensors and evaluate the execution time per layer
using lossy compression during the training. Because a
higher compression ratio will cause a higher accuracy loss,
we set the ZFP compression ratio as 30% to avoid explicit
DNN accuracy loss [37]. In Fig. 3b, we observe that the
swapping latency with dense tensor compression is longer
than that without compression for MAX[3-4] and L-ReLU
[7-8]. The reason is that there isn’t enough data to compress
for these tensors and therefore the compression does not
lead to large enough data and time savings to be cost-effec-
tive. Compressing such tensors will slow down the DNN
training.

In summary, while tensor compression has been widely
adopted to reduce tensor swapping latency, it may not
achieve optimal performance and model accuracy without
meticulous designs. A novel compression framework is
required to dynamically determine when and how to com-
press tensors at runtime considering the characteristics of
DNN networks and GPU architectures.

4 RELATED WORK

Model Compression. DNN training streams need to manage
feature maps and model weights. There are two kinds of
compression approaches to reduce the size of feature maps:
lossless compression and lossy compression.

Lossless compression algorithms (e.g., RLE [22], CSR [23],
LZ4 [40], ZVC [17]) usually work effectively for sparse ten-
sors containing a large number of zero floats. However, they
cannot reduce the size of dense float numbers because of the
randomness of the ending mantissa bits. Other popular loss-
less algorithms, such asGZIP [41], FPZIP [42], and BlosC [43],
can achieve a good compression ratio for sparse floats on
CPUs. But they only achieve suboptimal performance on
GPUs because it is hard to accelerate these algorithms using
many cores of GPUs.

In contrast, lossy compression has a higher compression
ratio on dense floats than does lossless compression.

Fig. 3. Swapping time of VGG16 with static compression compared to
that without compression. The swapping time using the static compres-
sion consists of data transfer time (the lower part of the right bar) and
data compression and decompression time (the upper part of the right
bar).

CHEN ETAL.: ACCELERATING TENSOR SWAPPING IN GPUS WITH SELF-TUNING COMPRESSION 4487

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on November 21,2022 at 17:10:59 UTC from IEEE Xplore. Restrictions apply.

Recently, some GPU-based lossy compression techniques
have been developed, such as ZFP [36] and SZ [44]. ZFP
splits the whole dataset into many small blocks and com-
presses the data in each block separately. SZ predicts each
data’s value with its neighboring points and utilizes the cus-
tomized Huffman coding to shrink the data size.

Because DNN model weights are over-parameter-
ized [45], many approaches of weight quantization and
pruning have been proposed [46]. Besides, DeepSZ [47]
designs an error-bounded lossy compression for better
DNN inference accuracy for edge devices. However, these
approaches are generally used in model inference and are
not effective for DNN training tasks because the memory
footprint of feature maps is significantly larger than that of
weight matrices. For example, the size of feature maps used
in training VGG16 is 50� larger than the size of its weight
matrices when batch size is 256. Therefore, we focus on fea-
ture map compression in the process of DNN training in
this paper.

Tensor Swapping Frameworks. We compare CSWAP+ to the
existing tensor swapping frameworks of GPU virtual mem-
ory in Table 1. vDNN studies the characteristics of different
DNN layers and chooses to swap convolution input tensors
to reduce memory footprint in GPUs [14]. moDNN [38],
SuperNeurons [13], SwapAdvisor [11], and HOME [48]
introduce different heuristics and profiling technology to
swap data between heterogeneous memories. Besides,
Capuchin [39] uses the greedy policy and AutoTM [15]
chooses Integer Linear Programming to make tensor swap-
ping decisions. However, none of them uses tensor com-
pression in swapping which loses the opportunity for
further performance optimization. cDMA [17] was the first
swapping framework that compresses sparse tensors using
compression hardware in memory controllers of GPUs.
vDNN++ [21] supports sparse tensor compression using
host CPUs to reduce the pinned memory requirement in the
host. Nevertheless, it does not address the tensor transfer
bottleneck caused by the limited data transfer bandwidth of
PCIe links. CSWAP [18] is the first tensor swapping frame-
work using GPUs for tensor (de)compression in the swap-
ping of GPU memory. It is adaptable to all GPUs and
automates tensor compression management using machine
learning algorithms. However, CSWAP can only work well
for sparse tensors. In contrast, CSWAP+ is efficient for DNN
models with both sparse and dense tensors.

5 DESIGN OF CSWAP+

The design objective of CSWAP+ is to opportunistically apply
tensor compression for swapping in the training of DNNs

when their memory demand is larger than GPU memory
capacity. In this section, we describe the architecture of
CSWAP+ and explain how it improves the DNN training
throughput with comparable model accuracy as the default
DNNs. Then, we explain how it determines the cost-effec-
tiveness of tensor compression. To make our framework
portable and compatible with different GPU architectures,
we implement all components of CSWAP+ in an existing
machine learning software framework.

5.1 Overview of Software Architecture

CSWAP+ consists of three components including tensor pro-
filer, execution advisor, and swapping executor as shown in
Fig. 4. The tensor profiler is executed when a new DNN train-
ing task is submitted for the first time. DNN training pro-
cess usually consists of multiple iterations. During the first
iteration, it scans the DNN architecture to judge whether
the tensors are sparse or not (i.e., using ReLU activation or
other activations) and then collects their profile information
for different kinds of tensors.

For sparse tensors, the tensor profiler collects the profile
including tensor size, tensor sparsity, execution time of each
DNN layer without compression, and effective data transfer
bandwidth of PCIe links. For dense tensors, the tensor pro-
filer collects the same information except tensor sparsity.
Additionally, to determine the proper parameter in the final
lossy compression, it records the compression ratios with
different compression parameters. The detailed profile
information is listed in Table 2.

It is notable that we profile the system real-time PCIe
bandwidth instead of the manufacturer-claimed bandwidth
because the effective bandwidth is usually affected by other
factors (e.g., the available PCIe links on the motherboard
and the number of GPUs in the system). Most values in a

TABLE 1
Comparison of CSWAP+ With Existing Tensor Swapping Frameworks for GPU-Based Deep-Learning Systems

Technique Compression unit/location Targeted Tensor Tensor selection Portability

vDNN [14] N/A Sparse & Dense N/A Yes
Other swapping [11], [13], [15], [38], [39]. N/A Sparse & Dense N/A Yes
cDMA [17] Memory Controller Sparse No No
vDNN++ [21] CPU Sparse No Yes
CSWAP [18] GPU Sparse Yes Yes
CSWAP+ GPU Sparse & Dense Yes Yes

Fig. 4. Architecture overview of CSWAP+. The execution plan includes
compression decision and GPU settings for (de)compression opera-
tions. The network profile consists of DNN type, tensor sparsity (P for
dense DNNs), size, and execution time of layers. The control command
manages tensor profiles.

4488 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on November 21,2022 at 17:10:59 UTC from IEEE Xplore. Restrictions apply.

DNN profile are unique and fixed under the same GPU and
system configurations. To minimize the profiling overhead,
we execute the tensor profiler to collect the sparsity only once
in each epoch. Then the profiling data are stored in an in-
memory database for retrieval with low latency.

The execution advisor is executed to fetch DNN profiles to
decide which compression algorithms to use and whether
to compress a tensor for swapping. Finally, the swapping
executor selects proper tensors, exploits multiple GPU
threads to execute compression in parallel before swapping
from GPUs to CPUs, and executes decompression after
swapping back from CPUs to GPUs.

5.2 Efficient Tensor Compression Algorithms

To compress tensors, CSWAP+ needs efficient compression
algorithms that are easy to be implemented on GPUs.
CSWAP+ executes tensor (de)compression using multipro-
cessing units in the GPU in parallel to further reduce the
(de)compression time. CSWAP+ integrates both lossless and
lossy compression into the framework. In this section, we
will discuss the corresponding algorithms for lossless and
lossy compression, respectively.

5.2.1 Lossless Compression for Sparse Tensors

CSWAP+ applies a lossless compression algorithm to sparse
tensors that are not in use and to be swapped out from
GPUs. This compression is relatively straightforward and
the DNN training accuracy keeps unchanged as the default
training without compression because no float accuracy loss
occurs in the compression.

CSWAP+ currently supports four lossless algorithms: run-
length encoding (RLE) [22], compressed sparse row
(CSR) [23], LZ4 [24], and zero-value compression (ZVC) [17].
RLE stores data sequences where the same value occurs in
many consecutive positions as a single value and counts to
reduce data size. For example, it can compress an original
sequence (A0000000) to (A70), decreasing the sequence length
from 8 to 3. However, it will increase the original sequence
sizewhen the length of consecutive zeros cannot be efficiently
reduced. CSR compresses an original sequence as a non-zero
value sequence and an additional index representing the loca-
tions of non-zero values. For example, a sequence
(A00B0C000) can be compressed as (ABC) and (035). LZ4 uses
a dictionary-matching stage to reduce data size. For example,
a string (abcde_bcde) can be compressed as (abcde_(5,4)), where
5 denotes the position how far back the redundant string

(bcde) can be found and 4 denotes the length of the matched
string. Similar to CSR, ZVC stores a float sequence as non-
zero values and additional indexes. Instead of using a float as
an index for each non-zero value, it utilizes a 32-bit bitmap as
the index for 32 consecutive floats. It improves computation
speed because of fewer index operations and higher com-
pressibility for less index space overhead.

There is a tradeoff between computation and compress-
ibility for these compression algorithms. The efficiency of
an algorithm also depends on the sequence patterns. These
algorithms are widely used since they have a relatively high
compression ratio. Because PCIe bandwidth is limited, we
observe that CSWAP+ favors the most efficient algorithm
(i.e., ZVC). This is because ZVC uses a compact bitmap data
structure to index compressed data. For example, its mem-
ory overhead is only 3% compared to 50% for CSR (i.e.,
compressing data of 50% sparsity). As a result, swapping
using ZVC for sparse tensors achieves lower latency. Cur-
rently we implemented these four compressors for GPUs
and study their performance. We wish to support more
compression algorithms in future work.

5.2.2 Lossy Compression for Dense Tensors

Different from the lossless compression, the lossy compres-
sion may significantly degrade the model training accuracy
due to the nature of the compression algorithm, therefore the
lossy compression scheme needs to be designed carefully.

In CSWAP+, we choose ZFP [36] as the lossy compressor
because of its higher throughput than SZ compressor [44],
[47] and its configurable interface. ZFP provides a parame-
ter, i.e., P in Table 2, for users to control the desired com-
pression ratio for the tensor, making our design flexible to
achieve a trade-off between swapping performance and
model accuracy. A large P means a small compression ratio,
and vice versa. ZFP provides a maximum value of P , i.e.,
MAX, as the upper bound of P . For a given P , the tensor
size after compression is P

MAX of its original size.
However, there are two challenges to set the proper P for

the tensor compression during the entire training process.
First, a small P may bring a large compression ratio, i.e.,
high swapping performance owing to the small compressed
tensor size, but it may be at the cost of low DNN training
accuracy, and vice versa. Second, a fixed P for all epochs
may lead to sub-optimal performance or accuracy. The
DNN training consists of multiple epochs. We experimen-
tally observe that the model training accuracy is more

TABLE 2
Parameters in the Swapping Cost Model

Notation Parameter Profiling frequence

Sizet Size of tensor t Once
BWh2d Effective PCIe bandwidth from CPU to GPU Once
BWd2h Effective PCIe bandwidth from GPU to CPU Once
Hiddent

f Overlapped swapping latency in forward propagation of tensor t Once

Hiddent
b Overlapped swapping latency in backward propagation of tensor t Once

P Lossy compressor parameter for dense DNNs Once per epoch
Sparsityt Sparsity of tensor t for sparse DNNs Once per epoch
Timetc Compression time of tensor t Offline

Timetdc Decompression time of tensor t Offline

CHEN ETAL.: ACCELERATING TENSOR SWAPPING IN GPUS WITH SELF-TUNING COMPRESSION 4489

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on November 21,2022 at 17:10:59 UTC from IEEE Xplore. Restrictions apply.

sensitive to the float accuracy at the beginning epochs but
less sensitive at the latter epochs (Section 6.4). Therefore, a
fixed P cannot achieve the best trade-off between training
performance and accuracy.

Algorithm 1. Determine the Parameter Range Through
Bisection Search

Require: Time modelðt; P Þ: the time cost model to predict com-
pression and decompression time; Benefitðt; P Þ: get the
time benefit when swapping tensor t compressed under
the compressor parameter P ; Hiddenðt; P Þ: judge whether
tensor swapping is fully overlapped with DNN computing;

1: Top ¼ 0, Bottom ¼MAX
2: for t = 0; 1; . . . ; N � 1 do "N tensors
3: left ¼ 1, right ¼MAX "initialization.
4: while left < right do "search for the upper bound.
5: Mid ¼ ðleftþ rightþ 1Þ=2
6: Timetc, Timetdc Time modelðt;MidÞ
7: cost = Timetc þ Timetdc
8: if Benefitðt;MidÞ < cost then
9: right ¼Mid� 1
10: else
11: left ¼Mid
12: end if
13: end while
14: top ¼MAXðtop; leftÞ "get the Top
15: left ¼ 1, right ¼MAX "initialization.
16: while left < right do "search for the lower bound.
17: Mid ¼ ðleftþ rightþ 1Þ=2
18: Timetc, Timetdc Time modelðt;MidÞ
19: cost = Timetc þ Timetdc
20: ifHiddenðt;MidÞ ¼¼ False then
21: right ¼Mid� 1
22: else
23: left ¼Mid
24: end if
25: end while
26: bottom ¼MINðbottom; leftÞ "get the Bottom
27: end for
28: if Top >Bottom then
29: return Top;Bottom; True
30: end if
31: return Top;Bottom; False

To overcome these issues, we first propose a scheme to
shrink the wide parameter range for improving swapping
performance. The main idea is to drop parameters that can-
not yield any performance benefits. It divides the parameter
range into three parts: 0–Bottom, Bottom–Top, and
Top–MAX. We assume that a parameter larger than Topwill
not bring performance benefits since the compression ratio
is too low to reduce swapping latency. We also assume a
parameter smaller than Bottom should be excluded since
the swapping time has been fully hidden by the computing
time and thus further reducing the tensor size is useless.
The practical parameter should fall into Bottom–Top.

Algorithm 1 shows the detailed process to calculate the
parameter range. After the initialization (Line #1), CSWAP+
finds Bottom and Top for each tensor using a bisection
method. Specifically, to get the Top, CSWAP+ updates the
Mid constantly until the time benefit (Benefitðt;MidÞ) is
just larger than the compression and decompression

overhead (i.e., cost) (Line #3-14). The time benefit is calcu-
lated as the swapping overhead reduction when the tensor
is compressed. To get Bottom, CSWAP+ updates the Mid
until this tensor swapping is just fully hidden in the DNN
computing through Hiddenðt;MidÞ function (Line #15-26).
Finally, if Top is larger than Bottom, CSWAP+ uses the lossy
compressor for DNN tensors and returns True (Line #28-
30). Otherwise, CSWAP+ will not execute the lossy compres-
sion because compression does not yield any benefits for
the DNN training (Line #31).

Once the parameter range is determined, we then design a
sliding down scheme to choose the parameter within the
range for optimized model training accuracy. The idea is to
gradually decrease the parameter as the number of epoch
increases. Specifically, we set P to Top in the first epoch, and
then decrease it by ¢P each interval until it reaches Bottom.
The P of each epoch can be calculated by Equation (1), where
Epochcur denotes the current epoch’s number (i.e., 0, 1, ..., n-
1). ¢P is calculated by Equation (2), where Epoch denotes
the number of user-customized epochs (i.e., n). For example,
supposing Top is 100, Bottom is 20, and the model needs to
train 90 epochs, then¢P is set to 1. Therefore, we will initial-
ize P as 100 at the beginning, and decrease it to 99 in the next
epoch, until it reaches 20 in the 81st epoch. Then, the parame-
ter stays at 20 until the end of the training. Compared to the
schemes with a fixed parameter, such a dynamic method can
improve tensor swapping performance with nearly no accu-
racy loss, as shown in Section 6.4

P ¼ maxðTop� Epochcur �¢P;BottomÞ (1)

¢P ¼
�
Top�Bottom

Epoch
þ 0:5

�
;¢P 2 integer: (2)

5.3 Determining Cost-Effectiveness of Tensor
Compression

For both sparse and dense tensors, with the changing tensor
compression ratio and size, the cost-effectiveness of tensor
compression for swapping should be dynamically deter-
mined. To achieve this goal, we build a model of swapping
cost to evaluate the cost-effectiveness of tensor compression
at runtime. The related parameters are listed in Table 2.
Given a tensor twith Sizet and Sparsityt or P , we determine
its cost-effectiveness of compression by comparing the
swapping cost with compression T to the swapping cost
without compression T 0. If T 0 > T , a compression plan for
the tensor t will be generated and forwarded to the swap-
ping executor; otherwise, no compression is needed.

As shown in Fig. 1a, T 0 is the data transfer time that can-
not be hidden from DNN propagation time (i.e., the portion
with shade and slash in the timeline). Consequently, we use
the Equation (3) to compute T 0. Hiddent

f and Hiddent
b are

the DNN forward and backward propagation times, respec-
tively. They are collected by the tensor profiler. If the swap-
ping latency can be hidden behind the DNN propagation
time, the value of T 0 can be effectively 0

T 0 ¼ max

�
Sizet

BWd2h
�Hiddent

f ; 0

�
þmax

�
Sizet

BWh2d

�Hiddent
b; 0

�
: (3)

4490 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on November 21,2022 at 17:10:59 UTC from IEEE Xplore. Restrictions apply.

Equation (4) computes the tensor swapping cost when
compression is used. Timetc and Timetdc are determined by
the tensor characteristics and compression algorithms. They
are computed by the tensor profiler using a machine learning
model as described in Section 5.4. Of and Ob are the portion
of the compressed data transfer time that cannot be effec-
tively hidden from the DNN propagation time (as Equa-
tions (5)–(7)). If the compressed tensor is adequately small,
Timetc and Timetdc will dominate in T .

T ¼ Timetc þ Timetdc þOf þOb (4)

Of ¼ max

�
Sizetcomp

BWd2h
�Hiddent

f ; 0

�
(5)

Ob ¼ max

�
Sizetcomp

BWh2d
�Hiddent

b; 0

�
(6)

Sizetcomp ¼
Sizet � P

MAX ; DNN 2 Density

Sizet � ð1� SparsitytÞ; DNN 2 Sparsity

�
(7)

CSWAP+ uses the swapping cost model in DNN training.
At beginning of the DNN training, the tensor profiler collects
the effective data transfer bandwidth of the PCIe link of the
current system, judges the tensor type (i.e., sparse or dense),
and records the tensor size (Sizet). Then it detects the tensor
compression ratio and records the hidden latency (Hiddent).
Based on these data, the execution advisor makes a prelimi-
nary decision for all tensors. During the training, the tensor
may change. To calculate the exact compression ratio, for
sparse tensors, CSWAP+ will collect the tensor sparsity in
each epoch, while recording P in each epoch for dense ten-
sors. The execution advisor then asks the tensor profiler for the
latest results generated by the cost model, including Timetc
and Timetdc. T

0 and T are then re-computed for updating ten-
sor compression decisions.

5.4 Prediction of (De)Compression Time

To dynamically determine the tensor compression plan, the
execution advisor of CSWAP+ needs to predict the compres-
sion time Timetc and decompression time Timetdc given ten-
sor size, sparsity for sparse tensors (or P for dense tensors),
and compression algorithms. We experimentally observe
that the tensor size and compression ratio have a linear rela-
tionship with Timetc and Timetdc. This is because the com-
pression (decompression) time is dominated by the data
searching time, which is greatly related to the compression
ratio. Therefore, CSWAP+ models the relationship offline
using linear regression algorithms [49]. The (de)compres-
sion time model is then used to predict Timetc and Timetdc
online. To have comprehensive coverage of tensor charac-
teristics, we develop a synthetic tensor generator which can
output tensors of different sizes and compression ratios.

Specifically, we use the following steps to build and
deploy a (de)compression time model. We first collect data
samples for training the time model. Each training sample
includes the following measures: tensor size, tensor com-
pression ratio, compression algorithm, Timetc and Timetdc.
For lossless compressors, we calculate the compression ratio
with tensor sparsity (i.e., Sparsityt). In the experiments, we
find that randomly sampling the tensor size and compres-
sion ratio will likely over-fit the models. To solve the

problem, we only train models using samples whose spar-
sity falls between 20% and 80% because we observe that ten-
sor sparsity is mostly located in this range as shown in
Fig. 2. For lossy compressors, we use 1� P=MAX to calcu-
late the compression ratio. We scan all the possible values
of P to make the performance model cover all compression
ratios because each of them may appear.

Second, to improve the model accuracy, CSWAP+ trains
n sub-models. Sub-model i is trained using samples whose
compression ratio is in ½Ratiobase þR � i=n; Ratiobase þR �
ðiþ 1Þ=nÞ, where 0 � i <n, and R is a percentage to repre-
sent the compression ratio range. For example, for the
sparse tensors with range [20%, 80%] sparsity, we will set
Ratiobase as 20% and R as 60%. For dense tensors, we will
set Ratiobase as 0 and R as 100%. After training, the sub-
models are combined to form a holistic model which is
then deployed for inference. In training, we vary the tensor
size from 20 MB to 2000 MB in addition to the changes of
tensor sparsity or parameter P . Third, the (de)compression
time model is stored in the in-memory database for
retrieval.

6 EVALUATION

To demonstrate the performance of CSWAP+, we imple-
ment its prototype in Torch 1.5.1. To achieve parallel
swapping, we create an asynchronized cuda stream using
cudaStreamCreateWithFlags() and use cudaMemcpyAsync()
to transfer data. Furthermore, we add GPUcompression()
as the kernel compression function into CSWAP+, then set
GPUdecompression() for decompressing. However, the fre-
quent GPU/CPU memory allocation/free decreases the
performance severely. To solve this problem, we use
memory pool functions in Torch, getCUDADeviceAllocator
() and getPinnedMemoryAllocator() to avoid using the ex-
pensive cudaMalloc() and cudaMallocHost() functions.

Experimental Platforms. Our experiments are conducted
on two CPU-GPU hybrid servers. The first is equipped with
a 2.60 GHz Intel(R) Xeon(R) Gold 6126 CPU and 32 GB
main memory. Besides that, it has an NVIDIA Tesla V100
GPU with 32 GB GPU memory. The second server has two
2.10 GHz Intel(R) Xeon(R) Gold 5218R CPUs, 128 GB main
memory, an RTX 2080Ti GPU, and 11 GB GPU memory.
The CPU and GPU on a server are connected via the PCIe
3.0�16 bus. The first server (V100) has a higher peak com-
pute capability than the second one (2080Ti). In both serv-
ers, we run Ubuntu-18.04, CUDA 10.0.13, CuDNN 7, and
Torch 1.5.1.

Workloads and Datasets. To show the effectiveness of our
approach for extensive workloads, we evaluate CSWAP+
with four linear sparse DNN models (i.e., AlexNet [1],
Plain20 [50], VGG16 [26], and MobileNet [51]), and two non-
linear models (i.e., ResNet [27] and SqueezeNet [52]). We
use ReLU and Leaky ReLU Activations in the DNN models
to generate sparse and dense tensors, respectively. In the
evaluation section, we name the models with ReLU as sparse
DNNs and the models with Leaky ReLU as dense DNNs. We
tune the parameters of these DNN models (e.g., learning
rate and optimizer) based on the specifications in the related
papers and documents [1], [26], [27], [50], [51], [52] and con-
figured training batch sizes are shown in Table 3.

CHEN ETAL.: ACCELERATING TENSOR SWAPPING IN GPUS WITH SELF-TUNING COMPRESSION 4491

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on November 21,2022 at 17:10:59 UTC from IEEE Xplore. Restrictions apply.

We use two representative datasets to cover different
data sizes. The CIFAR10 [53] dataset is a collection of 60,
000 (50, 000 for training and 10, 000 for testing) labeled color
images (32 � 32 pixels each). The ImageNet [54] is a large
dataset. It has 1.4 million 224 � 224 pixel images across
21841 non-empty synsets.

DNN Frameworks for Comparison. We compare CSWAP+
with the state-of-the-art GPU memory swap frameworks,
vDNN [14], vDNN++ [21], and cDMA [17]. The vDNN
scheme offloads all convolution input tensors from GPUs
to CPUs and prefetches them back through overlapping
data transfer with computation. However, there is no
data (de)compression in the tensor swapping between
GPUs and CPUs. The vDNN++ scheme only compresses
sparse tensors on host CPUs to reduce the size of pinned
memory. Although there are two other techniques in
vDNN++, we omit them in our implementation since
they are orthogonal to our design of CSWAP+. To make
(de)compression more efficient, we use 64 threads in
CPUs to compress and decompress the tensors when the
sparsity is more than 60%. Because cDMA [17] relies on
the specific (de)compression units which are not available
in markets, we implement an emulated cDMA scheme,

i.e., static compression (SC), which uses GPUs to emulate
the (de)compression units in memory controllers and
applies the lossless and lossy compression algorithms
without effectiveness analysis. In the evaluation, we com-
pare CSWAP+ to SC instead of cDMA.

6.1 General Results

Figs. 5 and 6 show the system throughputs of different
frameworks on different GPUs and datasets across sparse
DNNs and dense DNNs, respectively. For comparison, the
throughput (samples/ms) is normalized to that of vDNN.

6.1.1 Results for Sparse DNNs

Fig. 5a shows the system throughput when training the
sparse DNNs on V100 with the CIFAR10 dataset. Overall,
CSWAP+ outperforms vDNN and vDNN++ by 25% and
190% on average with sparse DNNs. We also have the fol-
lowing observations. First, compared to vDNN, CSWAP+
improves the model training time by up to 31% for sparse
models. CSWAP+ is better than vDNN because it uses
dynamic compression to reduce tensor transfer time while
vDNN transfers the original tensors regardless of their com-
pression ratio, leading to high data transfer cost in swap-
ping. Second, compared to vDNN++ on sparse models,
CSWAP+ increases system throughput by up to 470% on
AlexNet and reduces the model training time by up to
445ms on ResNet. This is because vDNN++ only com-
presses and decompresses tensors on the host side after ten-
sor swapping. It does not reduce data transfer time by
compressing tensors in GPUs.

Fig. 5b shows the system throughput when training the
models with the same dataset CIFAR10 but on a different
GPU 2080Ti, which has lower peak compute capability than
V100. The system throughput is decreased by 9% on aver-
age for all the sparse models compared to the results on

TABLE 3
Batch Size Configurations for Different Models, GPUs(V100 or

2080Ti), and Datasets (CIFAR10 or ImageNet)

DNN
Model

CIFAR10-
V100

ImageNet-
V100

CIFAR10-
2080Ti

ImageNet-
2080Ti

AlexNet 2560 512 2560 256
VGG16 2560 128 2560 32
MobileNet 2560 128 1280 32
Plain20 2560 32 1024 -
ResNet 2560 64 1280 16
SqueezeNet 2560 512 1280 128

Fig. 5. The performance comparison of four different GPU virtual memory management frameworks. We conduct the experiments with six sparse
DNN models on two datasets (CIFAR10 and ImageNet) and two GPUs (V100 and 2080Ti). The caption of each subfigure denotes its dataset and
GPU configuration.

4492 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on November 21,2022 at 17:10:59 UTC from IEEE Xplore. Restrictions apply.

V100. The decreased throughput stems from two reasons.
First, effective data transfer bandwidths are not the same
for the two GPU platforms because they have different GPU
and CPU memory configurations. We have examined such
bandwidths using the NVIDIA bandwidthTest tool [55]. The
effective host to device and device to host bandwidths are
10.6 GB/s and 11.7 GB/s respectively on V100 and 11.8 GB/
s and 12.9 GB/s respectively on 2080Ti. The higher effective
data transfer bandwidth in 2080Ti alleviates the data trans-
fer bottleneck in the DNN training process. Second, 2080Ti
has a lower performance than V100. The computation time
of DNN models on 2080Ti is relatively longer. As a result,
CSWAP+ has a better chance to hide the data transfer time
behind the computation time, decreasing the data transfer
overhead.

To show the effectiveness of CSWAP+ on different data-
sets, we train the models on the large dataset ImageNet.
Figs. 5c and 5d show the system throughput of CSWAP+ for
all the models on V100 and 2080Ti, respectively. Overall,
compared to the CIFAR10 dataset, ImageNet leads to simi-
lar performance trends on the two GPU platforms. The
experiments show that the model training time is reduced
by 20.3% and 16.9% on average on V100 and 2080Ti respec-
tively. These results show that our approach is effective for
the ImageNet dataset. In Fig. 5d, we do not display the per-
formance results for the Plain20 model. This is because
Plain20 is a large model and 2080Ti only has 11GB GPU
memory, which cannot meet the memory requirement of
Plain20 even when the batch size is set to one.

6.1.2 Results for Dense DNNs

Fig. 6 shows the throughput results on dense DNNs under
CSWAP+ and vDNN frameworks. In the figure, we do not
show the results of vDNN++ because vDNN++ cannot
work for dense tensors.

Fig. 6a shows the results on V100 with the CIFAR10 data-
set. We have two observations. First, compared to vDNN,
CSWAP+ achieves an average 22.5% throughput improve-
ment with lossy compression. The improvement occurs
because CSWAP+ reduces tensor transfer cost in swapping
through dynamic lossy compression. Second, CSWAP+
brings different improvements for different models. For
example, CSWAP+ improves the training throughput by 29%
and 31% for AlexNet and Plain20, respectively, while it
only achieves the improvement by up to 21% on other dense
models. The main reason is that the data swapping time

dominates in the training time for AlexNet and Plain20
(71% and 73% of the total model training time). For other
models, the data transfer time accounts for less than 50% of
the training time.

Fig. 6b shows the throughputs of different swapping
frameworks on 2080Ti under the same dataset CIFAR10.
Similar to the previous results in Fig. 6a, CSWAP+ still out-
performs vDNN: CSWAP+ improves the DNN training
throughput by 13% on average. However, CSWAP+ achieves
relatively less throughput improvement on 2080Ti com-
pared to the improvements on V100 (13% versus 22.5%).
The improvement decreases mainly because the lower GPU
performance on 2080Ti increases the computing time and
thus brings more chances to hide the data transfer time,
making the benefits of data compression in data swapping
less significant.

Figs. 6c and 6d show the experimental results on Image-
Net. CSWAP+ yields similar trends on the two GPU plat-
forms with ImageNet compared to CIFAR10. Overall, The
dense model training time is reduced by 19.7% and 16.5%
on average under V100 and 2080Ti, respectively. These
results indicate that CSWAP+ is effective for the ImageNet
dataset with lossy compression. Moreover, we also observe
that CSWAP+ obtains more performance benefits on the
DNNs whose swapping times dominate their overall train-
ing times than other models. For example, CSWAP+ performs
the best on AlexNet and improves its training throughput
by 43% and 37% on V100 and 2080Ti, respectively.

6.2 Effectiveness of Dynamic Tensor Compression

To further evaluate the effectiveness of CSWAP+, we com-
pare its training time to that with SC, which is a replica of
cDMA using GPUs. Note that cDMA cannot work for dense
tensors, so we empower cDMA with the capability of com-
pressing dense tensors by replacing the lossless algorithm
with a lossy compressor to analyze the effectiveness of the
dynamic compression in CSWAP+. While CSWAP+ performs
(de)compression in tensor swapping based on the cost-
effectiveness analysis of tensor compression, SC blindly
compresses all tensors in DNNs by switching off effective-
ness analysis. We train the models on V100 and 2080Ti with
CIFAR10 and ImageNet.

We show the experimental results in Fig. 7. We can
observe that for the models containing sparse tensors,
CSWAP+ improves the performance by 5.5% and 5.1% on
average compared to SC for all the models except Plain20

Fig. 6. The performance comparison of CSWAP+ and vDNN on dense DNNs. We conduct the experiments with six models using Leaky ReLU activa-
tions on two datasets (CIFAR10 and ImageNet) and two GPUs (V100 and 2080Ti).

CHEN ETAL.: ACCELERATING TENSOR SWAPPING IN GPUS WITH SELF-TUNING COMPRESSION 4493

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on November 21,2022 at 17:10:59 UTC from IEEE Xplore. Restrictions apply.

on V100 and 2080Ti, respectively. The maximal perfor-
mance improvement brought by CSWAP+ can be 12.5% and
10.7% on the two GPUs respectively. Because tensors in all
ReLU layers of Plain20 are sparse and have a larger size on
average than other models, CSWAP+ determines that tensors
in all the layers of Plain20 need to be compressed. As a
result, CSWAP+ has the same performance as SC. For the
models with dense tensors, CSWAP+ improves the perfor-
mance by 9% and 8.4% on average on the two GPU plat-
forms. Similarly, since the 11GB memory on 2080Ti GPU
cannot support the Plain20 training, we do not show the
result with ImageNet on 2080Ti GPU.

Fig. 8 shows the number of layers whose tensors are com-
pressed with CSWAP+ during the training of AlexNet, VGG16,
MobileNet, and SqueezeNet. For lossless compression, we

have two observations from Fig. 8a. First, the number of such
layers tends to increase while epochs are increased. Let’s use
VGG16 as an example, as shown in Fig. 9a, the number of its
layers executing tensor (de)compression is increased from 5
at epoch 0 to 9 at epoch 48. This is because as epochs are
increased, the tensors in more layers become sparse enough
to trigger the (de)compression operations in CSWAP+ for
reducing data transfer overhead in swapping. However,
some layers may never be compressed during the model
training. Taking the VGG16 as an example, since the tensor in
MAX4 always has low sparsity (i.e., lower than 45%) and the
tensors in ReLU7 and ReLU8 are relatively small, which
make the compression cost-ineffective, these layers are never
be compressed, as shown in Fig. 9a. Second, models have dis-
tinct characteristics that lead to varied tensor compression
decisions. For instance, the number of layers executing tensor
(de)compression for MobileNet does not change too much as
the epochs are increased because its tensor sparsity changes
slightly as shown in Fig. 8a. For SqueezeNet, there exist two
tensors whose sparsity is decreased between epoch 5 and
epoch 17 and is increased after epoch 17. The reason for the
fluctuation is that their model convergence may change dur-
ing training.

Fig. 8b shows the experimental results for lossy compres-
sion. We observe that as the epoch number increases, more
tensors are compressed for lossy compression. This is
because CSWAP+ adapts a gradually increasing compression
ratio (by decreasing the parameter P) during the training,
which will reduce the swapping time and increase the swap-
ping benefit, thus more tensors are worth being compressed

Fig. 7. Performance improvement of CSWAP+ over the static compres-
sion (SC) scheme.

Fig. 8. The number of layers executing tensor compression for four DNN
models for every epoch in their training processes.

Fig. 9. VGG16 layer-wise compression detail. The x-axis denotes the
training epoch and y-axis represents all the layers in the model. The
black dot denotes that the tensor of this layer needs to be compressed
while the white dot means that the tensor is only transferred without
compression.

4494 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on November 21,2022 at 17:10:59 UTC from IEEE Xplore. Restrictions apply.

as the number of epoch increases. Fig. 9b shows the details of
layer-wise compression on VGG16. It is also notable that
some tensors are not compressed from beginning to end (i.e.,
one tensor for MobileNet and two for SqueezeNet). This is
because the swapping of these tensors can be fully hidden
into the normal DNN training without compression. Besides
the fourmodels, the other threemodels show their own char-
acteristics concerning the number of layers having com-
pressed tensors. Because of the space limitation, we do not
show their curves in Fig. 8.

6.3 (De)Compression Time Model Verification

An important component of CSWAP+ is the (de)compression
time model, which influences the effectiveness of its execu-
tion advisor (Section 5). We compare the linear regression
(LR) model in CSWAP+ for (de)compression time modeling
to three other regression models including Bayesian regres-
sion (BR) [56], support vector machine (SVM) [57], and deci-
sion tree (DT) [58] from scikit-learn [59]. To evaluate
prediction accuracy, we use relative absolute error (RAE)

which is defined as

PN

i¼1 jŷi�yijPN

i¼1 j �yi�yij
, where N is the size of test

samples, ŷi and yi are predicted and measured values
respectively, and �yi is the mean value of yi.

CSWAP+ currently supports four lossless compression algo-
rithms, i.e., RLE, CSR, LZ4, andZVC, and a lossy compression
algorithm, i.e., ZFP. For each lossless algorithm,we generate a
total of 3000 sparse tensors, whose compression ratio ranges
between 20% to 90%. For the lossy algorithm, we generate the
same number of samples with all compression ratios (i.e., 0 to
100%). The sample sizes are varied from 20MB to 2000MB as
real DNN training tensors. We train all the models with the
same collected 3000 test samples for fairness. As shown in
Fig. 10, LR achieves the best prediction accuracy. Its mean rel-
ative absolute error for compression and decompression time
prediction is only 2.7% on average, which is 61% and 64%
smaller than those of BR and SVM respectively.

We also evaluate the compression decision accuracy
based on the swapping cost model for both sparse and
dense tensors, which relies on the LR model. CSWAP+ uses
the swapping cost model to make a tensor compression
decision. If the decision based on the swapping cost model
matches the decision based on the measured time at run-
time for a tensor compression, we regard the decision as
correct. We define decision accuracy as the ratio of the num-
ber of correct decisions to the number of all decisions. We
train the six DNN models and show the decision accuracy
in Fig. 11. We observe that the decision accuracy using the
swapping cost model is 93.5% on average.

6.4 DNN Training Accuracy Under Lossy
Compression

In CSWAP+, we use a sliding down scheme to set the com-
pressor parameter from Top to Bottom for dense tensors
during the training (Section 5.2.2). To verify the effective-
ness of such dynamic lossy compression, we compare its
accuracy with four counterparts: the default framework
without any accuracy loss, ZFP parameter fixed schemes
(i.e., ZFP-64 and ZFP-32), and the Inverse Scheme which
increases the value of lossy compressor parameter P as the
epoch number is increased.

We train the VGG16 model using the Leaky ReLU activa-
tion and record the training accuracy at the end of each
epoch. As Fig. 12 shows, CSWAP+ achieves the comparable
DNN accuracy as the default framework. Furthermore,
CSWAP+ brings better DNN accuracy than the schemes with
a fixed parameter: it has 89.3% accuracy while ZFP-64 and
ZFP-32 achieve 88.2% and 87.5% in the end, respectively.
CSWAP+ outperforms the two counterparts because CSWAP+
adopts the gradually decreasing parameter, which may
always lead to negligible accuracy loss during the entire
training process, while the two baselines use a fixed param-
eter, which may lead to more accuracy loss in the beginning
training epochs.

To explain why we design CSWAP+ as a sliding down
scheme, we also compare CSWAP+ with the Inverse Scheme.
It is notable that CSWAP+ always achieves better accuracy
than the Inverse Scheme in all the training periods (i.e.,
1.7% more accuracy). CSWAP+ achieves higher accuracy
than Inverse Scheme because the DNN training accuracy is
more sensitive to the float accuracy in the beginning epochs
and becomes less sensitive to it in the latter epochs. The slid-
ing down scheme used in CSWAP+ gradually decreases the

Fig. 10. The accuracy of (de)compression time predication using LR,
BR, SVM, and DTmodels.

Fig. 11. The compression decision accuracy based on the LR model.

Fig. 12. The VGG16 accuracy with different compression schemes on
CIFAR10. ZFP-32 and ZFP-64 denote that the compressor parameter is
fixed at 32 and 64.

CHEN ETAL.: ACCELERATING TENSOR SWAPPING IN GPUS WITH SELF-TUNING COMPRESSION 4495

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on November 21,2022 at 17:10:59 UTC from IEEE Xplore. Restrictions apply.

value of P and increases the compression ratio. In this way,
it will take less float accuracy loss at the beginning of the
training, leading to less training accuracy loss. In contrast,
the Inverse Scheme gradually increases the value of P ,
which will cause more float accuracy losses in the beginning
of the training process and thus lead to more training accu-
racy degradation. We only show the result of VGG16
because other DNNs show a similar trend.

6.5 DNN Training Accuracy for Different Activations

There are several popular activation functions used in deep
learning, such as ReLU, ELU, Tanh, and PReLU. The first
activation generates sparse tensors and the latter three gen-
erate dense tensors. To verify the effectiveness of the lossy
compression in CSWAP+, we evaluate the training accuracy
of DNNs with the lossy compression in CSWAP+ for different
activation functions.

We train VGG16 with ReLU, ELU, Tanh, and PReLU acti-
vations for 50 epochs. We compare CSWAP+ to Default,
which does not use compression in swapping. As shown in
Fig. 13, for all activations, CSWAP+ achieves comparable
accuracy as Default. Specifically, it achieves the average
accuracy of 87.01% across the four DNNs while Default
yields 87.05% accuracy. This result shows that CSWAP+
works effectively for all the activations and thus can benefit
different DNNs. Moreover, we observe that the lossy com-
pression in CSWAP+ also works well for sparse tensors. For
example, applying the lossy compression to the sparse ten-
sors generated by ReLU causes nearly no accuracy loss, as
shown in Fig. 13a. In this paper, we use the lossless com-
pression for sparse tensors because the performance
improvement of the lossless compressor is larger than that
of the lossy compressor, as shown in Figs. 5 and 6.

6.6 Overhead Discussion

CSWAP+ introduces the following overheads. However, the
overheads are either negligible compared to the overall
training time or can be amortized over the training.

Runtime Overhead. The profiling of tensor characteristics in
CSWAP+ introduces overhead to the model training process.
To make an effective decision with minimum runtime over-
head, CSWAP+ is set with a fine-grained detecting cycle (i.e.,
each epoch). Because the hidden time and tensor size do not
change across epochs, CSWAP+ only needs to update
Sparsityt/P , Timetc, and Timetdc periodically to make
dynamic decisions. For sparse DNNs, CSWAP+ utilizes GPU
multi-cores to profile tensor sparsity (e.g., only 8ms overhead

every 10 sec for training VGG16). Besides, one prediction of
Timetc or Timetdc is only 1 ms which is negligible compared to
the overall training time.

Offline Overhead. CSWAP+ needs to determine the com-
pression ratio of each epoch for dense DNN models. It cal-
culates the parameter range once by running Algorithm 1
within an average of 280ms. Further, CSWAP+ needs to train
a (de)compression time model of tensor compression offline
as discussed in Section 5.4. It only takes on average 6
minutes to generate all training samples and 25ms to build
the time model because of the lower complexity of the linear
regression method used in the paper.

7 CONCLUSION

In this paper, we present CSWAP+, a self-tuning compression
framework to reduce data transfer overhead in tensor swap-
ping. First, it does not require additional (de)compression
units in memory controllers of GPUs or expertise in setting
GPU parameters for effectively executing (de)compression.
Second, it integrates both lossless and lossy compressions
into the framework and accelerates DNN training with neg-
ligible model accuracy loss. Third, it uses the cost model of
tensor swapping to selectively apply (de)compression to
tensors according to the cost-effectiveness of tensor com-
pression at runtime. We experimentally demonstrate that
CSWAP+ offers lower swapping latency and higher training
throughput for both sparse and dense DNN models than
the existing tensor swapping frameworks.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” Commun. ACM,
vol. 60, pp. 84–90, 2017.

[2] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recom-
mender system: A survey and new perspectives,” ACM Comput.
Surv., vol. 52, pp. 1–38, 2019.

[3] H. Ze, A. Senior, and M. Schuster, “Statistical parametric speech
synthesis using deep neural networks,” in Proc. Int. Conf. Acoust.
Speech Signal Process., 2013, pp. 7962–7966.

[4] J. Devlin, M.-W. Chang, K. Lee, K. T. Google, and A. I. Language,
“BERT: Pre-training of deep bidirectional transformers for lan-
guage understanding,” 2018, arXiv:1810.04805.

[5] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4:
Inception-ResNet and the impact of residual connections on
learning,” 2016, arXiv:1602.07261.

[6] N. Shazeer et al., “Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer,” 2017, arXiv:1701.06538.

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016.

[8] TensorFlow, “Introduction to tensors,” 2020. [Online]. Available:
https://www.tensorflow.org/guide/tensor

[9] NVIDIA, “NVIDIA V100 Tensor Core GPU,” 2020. [Online].
Available: https://www.nvidia.com/en-us/data-center/v100/

[10] Z. Zhang, C. Chang, H. Lin, Y. Wang, R. Arora, and X. Jin, “Is net-
work the bottleneck of distributed training?,” in Proc. Workshop
Netw. Meets AI ML, 2020, pp. 8–13.

[11] C.-C. Huang, G. Jin, and J. Li, “SwapAdvisor: Push deep learn-
ing beyond the GPU memory limit via smart swapping,” in
Proc. Int. Conf. Archit. Support Program. Lang. Oper. Syst., 2020,
pp. 1341–1355.

[12] J. Ren, J. Luo, K. Wu, M. Zhang, and D. Li, “Sentinel: Runtime
data management on heterogeneous main memory systems for
deep learning,” 2019, arXiv:1909.05182.

[13] L. Wang et al., “SuperNeurons: Dynamic GPU memory manage-
ment for training deep neural networks,” in Proc. ACM SIGPLAN
Symp. Princ. Pract. Parallel Program., 2018, pp. 41–53.

Fig. 13. The accuracy of VGG16 using different activations on CIFAR10.
The Default baseline means the DNN training without enabling CSWAP+.

4496 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on November 21,2022 at 17:10:59 UTC from IEEE Xplore. Restrictions apply.

https://www.tensorflow.org/guide/tensor
https://www.nvidia.com/en-us/data-center/v100/

[14] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“VDNN: Virtualized deep neural networks for scalable, memory-
efficient neural network design,” in Proc. Annu. Int. Symp. Micro-
archit., 2016, pp. 1–13.

[15] M. Hildebrand, J. Khan, S. Trika, J. Lowe-Power, and V. Akella,
“AutoTM: Automatic tensor movement in heterogeneous memory
systems using integer linear programming,” in Proc. Int. Conf.
Archit. Support Program. Lang. Oper. Syst., 2020, pp. 875–890.

[16] T. D. Le, Y. Negishi, H. Imai, and K. Kawachiya, “TFLMS: Large
model support in TensorFlow by graph rewriting,” 2018,
arXiv:1807.02037.

[17] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon, and S. W.
Keckler, “Compressing DMA engine: Leveraging activation spar-
sity for training deep neural networks,” in Proc. Int. Symp. High-
Perform. Comput. Archit., 2018, pp. 78–91.

[18] P. Chen et al., “CSWAP: A self-tuning compression framework for
accelerating tensor swapping in GPUs,” in Proc. IEEE Int. Conf.
Cluster Comput., 2021, pp. 271–282.

[19] A. F. Agarap, “Deep learning using rectified linear units (ReLU),”
2018, arXiv:1803.08375.

[20] B. Xu, N. Wang, T. Chen, andM. Li, “Empirical evaluation of recti-
fied activations in convolutional network,” 2015, arXiv:1505.00853.

[21] S. B. Shriram, A. Garg, and P. Kulkarni, “Dynamic memory man-
agement for GPU-based training of deep neural networks,” in
Proc. Int. Parallel Distrib. Process. Symp., 2019, pp. 200–209.

[22] A. H. Robinson and C. Cherry, “Results of a prototype television
bandwidth compression scheme,” Proc. IEEE, vol. 55, no. 3,
pp. 356–364, Mar. 1967.

[23] A. Alabaichi, A. H. Alhusiny, and E. MohammedThabit, “A novel
compressing a sparse matrix using folding technique,” Res.
J. Appl. Sci. Eng. Technol., vol. 14, pp. 310–319, 2017.

[24] NVIDIA, “NVIDIA/nvcomp: A library for fast lossless compres-
sion/decompression on the GPU,” 2020. [Online]. Available:
https://github.com/NVIDIA/nvcomp

[25] Pytorch, “Pytorch/pytorch: Tensors and dynamic neural net-
works in python with strong GPU acceleration,” 2020. [Online].
Available: https://github.com/pytorch/pytorch

[26] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” 2014, arxiv: 1409.1556.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[28] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accu-
rate deep network learning by exponential linear units (ELUs),”
in Proc. Int. Conf. Learn. Representations, 2016, pp. 1–14.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classi-
fication,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1026–1034.

[30] Quora, “Dead neurons,” 2020. [Online]. Available: https://www.
quora.com/What-are-the-disadvantages-of-using-the-ReLu-when-
using-Neural-Networks

[31] Amihaeseisergiu, “ResNet with ELU,” 2022. [Online]. Available:
https://github.com/Amihaeseisergiu/Cifar-10-ResNet-ELU-Cutout

[32] Tianxiaomo, “YoLo,” 2022. [Online]. Available: https://github.
com/Tianxiaomo/pytorch-YOLOv4/blob/master/models.py

[33] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2010,
pp. 248–255.

[34] PyTorch, “Pytorch/vision,” 2020. [Online]. Available: https://
github.com/pytorch/vision/tree/master/torchvision

[35] W.C.Wang, Y.H. Chang, T.W.Kuo, C. C.Ho, Y.M.Chang, andH. S.
Chang, “Achieving lossless accuracy with lossy programming for
efficient neural-network training on NVM-based systems,” ACM
Trans. Embedded Comput. Syst., vol. 18, 2019, Art. no. 68.

[36] ZFP, “ZFP compression algorithm,” 2019. [Online]. Available:
https://github.com/LLNL/zfp

[37] S. Patel, T. Liu, and H. Guan, “FreeLunch: Compression-based
GPU memory management for convolutional neural networks,”
in Proc. IEEE/ACM Workshop Memory Centric High Perform. Com-
put., 2021, pp. 1–8.

[38] X. Chen, D. Z. Chen, and X. S. Hu, “MoDNN: Memory optimal
DNN training on GPUs,” in Proc. Des. Autom. Test Eur. Conf.
Exhib., 2018, pp. 13–18.

[39] X. Peng et al., “Capuchin: Tensor-based GPU memory manage-
ment for deep learning,” in Proc. Int. Conf. Archit. Support Program.
Lang. Operating Syst., 2020, pp. 891–905.

[40] Wikipedia, “LZ4 (compression algorithm),” 2020. [Online].Available:
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)

[41] P. Deutsch, “RFC1952: GZIP file format specification version 4.3,”
RFC Editor, pp. 1–13, 1996.

[42] P. Lindstrom and M. Isenburg, “Fast and efficient compression of
floating-point data,” IEEE Trans. Vis. Comput. Graphics, vol. 12,
no. 5, pp. 1245–1250, Sep./Oct. 2006.

[43] Blosc, “Blosc, an extremely fast, multi-threaded, meta-compressor
library,” 2017. [Online]. Available: https://github.com/Blosc/c-
blosc

[44] J. Tian et al., “CuSZ: An efficient GPU-based error-bounded lossy
compression framework for scientific data,” in Proc. ACM Int.
Conf. Parallel Archit. Compilation Techn., 2020, pp. 3–15.

[45] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, and S.-F.
Chang, “An exploration of parameter redundancy in deep net-
works with circulant projections,” in Proc. IEEE Int. Conf. Comput.
Vis., 2015, pp. 2857–2865.

[46] S. Yang, W. Chen, X. Zhang, S. He, Y. Yin, and X.-H. Sun, “AUTO-
PRUNE: Automated DNN pruning and mapping for ReRAM-
based accelerator,” in Proc. ACM Int. Conf. Supercomput., 2021,
pp. 304–315.

[47] S. Jin, S. Di, X. Liang, J. Tian, D. Tao, and F. Cappello, “DeepSZ: A
novel framework to compress deep neural networks by using
error-bounded lossy compression,” in Proc. 28th Int. Symp. High-
Perform. Parallel Distrib. Comput., 2019, pp. 159–170.

[48] S. He et al., “HOME: A holistic GPU memory management frame-
work for deep learning,” IEEE Trans. Comput., to be published,
Jun. 09, 2022, doi: 10.1109/TC.2022.3180991.

[49] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to
Linear Regression Analysis. Hoboken, NJ, USA: Wiley, 2012.

[50] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC: AutoML
for model compression and acceleration on mobile devices,” in
Proc. Eur. Conf. Comput. Vis., 2018, pp. 248–255.

[51] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.

[52] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy
with 50x fewer parameters and <0.5MB model size,” 2016,
arXiv:1602.07360.

[53] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Citeseer, pp. 1–60, 2009.

[54] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[55] NVIDIA, “NVIDIA/Cuda-samples: Samples for CUDA develop-
ers which demonstrates features in CUDA toolkit,” 2020. [Online].
Available: https://github.com/NVIDIA/cuda-samples

[56] A. E. Raftery, D. Madigan, and J. A. Hoeting, “Bayesian model
averaging for linear regression models,” J. Amer. Statist. Assoc.,
vol. 92, pp. 179–191, 1997.

[57] W. S. Noble, “What is a support vector machine?,” Nature Biotech-
nol., vol. 24, pp. 1565–1567, 2006.

[58] S. R. Safavian and D. Landgrebe, “A survey of decision tree classi-
fier methodology,” IEEE Trans. Syst., Man, Cybern., vol. 21, no. 3,
pp. 660–674, May/Jun. 1991.

[59] sklearn, “scikit-learn: Machine learning in Python — scikit-learn
0.23.2 documentation,” 2020. [Online]. Available: https://scikit-
learn.org/stable/

Ping Chen is currently working toward the PhD
degree in the College of Computer Science and
Technology, Zhejiang University, China. His res-
earch focuses on intelligent computing andmemory
management for AI systems.

CHEN ETAL.: ACCELERATING TENSOR SWAPPING IN GPUS WITH SELF-TUNING COMPRESSION 4497

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on November 21,2022 at 17:10:59 UTC from IEEE Xplore. Restrictions apply.

https://github.com/NVIDIA/nvcomp
https://github.com/pytorch/pytorch
https://www.quora.com/What-are-the-disadvantages-of-using-the-ReLu-when-using-Neural-Networks
https://www.quora.com/What-are-the-disadvantages-of-using-the-ReLu-when-using-Neural-Networks
https://www.quora.com/What-are-the-disadvantages-of-using-the-ReLu-when-using-Neural-Networks
https://github.com/Amihaeseisergiu/Cifar-10-ResNet-ELU-Cutout
https://github.com/Tianxiaomo/pytorch-YOLOv4/blob/master/models.py
https://github.com/Tianxiaomo/pytorch-YOLOv4/blob/master/models.py
https://github.com/pytorch/vision/tree/master/torchvision
https://github.com/pytorch/vision/tree/master/torchvision
https://github.com/LLNL/zfp
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://github.com/Blosc/c-blosc
https://github.com/Blosc/c-blosc
http://dx.doi.org/10.1109/TC.2022.3180991
https://github.com/NVIDIA/cuda-samples
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/

Shuibing He (Member, IEEE) received the PhD
degree in computer science and technology from
the Huazhong University of Science and Technol-
ogy, in 2009. He is now a ZJU100 Young professor
with the College of Computer Science and Technol-
ogy, Zhejiang University, China. His research areas
include Intelligent computing, high-performance
computing, memory, and storage systems. He is a
member of the ACM.

Xuechen Zhang (Member, IEEE) received the MS
and PhD degrees in computer engineering from
Wayne State University. He is currently an associate
professor with the School of Engineering and Com-
puter Science, Washington State University Van-
couver. His research interests include the areas of
file and storage systems and high-performance
computing. He is amember of theACM.

Shuaiben Chen received the MS degree from the
College of Computer Science and Technology, Zhe-
jiang University, China. His research areas include
intelligent computing and systems for AI.

Peiyi Hong is currently working toward the MS
degree in the College of Computer Science and
Technology, Zhejiang University, China. Her res-
earch areas include intelligent computing and
systems for AI.

Yanlong Yin received the PhD degree in computer
science from the Illinois Institute of Technology, in
2014. He is now the project director of cloud com-
puting platform with the R&D Department, Beijing
Institute of Open Source Chip, China. His research
interests include parallel computing, cloud comput-
ing, and parallel file systems.

Xian-HeSun (Fellow, IEEE) received theBSdegree
in mathematics from Beijing Normal University,
China, in 1982, and the MS and PhD degrees in
computer science fromMichigan State University, in
1987 and 1990, respectively. He is a distinguished
professor with the Department of Computer Sci-
ence, Illinois Institute of Technology (IIT), Chicago.
His research interests include parallel and distrib-
uted processing,memory and I/O systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

4498 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on November 21,2022 at 17:10:59 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

