
iCACHE: An Importance-Sampling-Informed Cache
for Accelerating I/O-Bound DNN Model Training

Weijian Chen, Shuibing He⇤, Yaowen Xu, Xuechen Zhang†,
Siling Yang, Shuang Hu, Xian-He Sun‡, and Gang Chen

Zhejiang University †Washington State University Vancouver ‡Illinois Institute of Technology
⇤Corresponding Author: Shuibing He (heshuibing@zju.edu.cn)

Abstract—Fetching a large amount of DNN training data from
storage systems incurs long I/O latency and fetch stalls of GPUs.
Importance sampling in DNN training can reduce the amount
of data computing on GPUs while maintaining a similar model
accuracy. However, existing DNN training frameworks do not
have a cache layer that reduces the number of data fetches and
manages cached items according to sample importance, resulting
in unnecessary data fetches, poor cache hit ratios, and random
I/Os when importance sampling is used.

In this paper, we design a new importance-sampling-informed
cache, namely, iCACHE, to accelerate I/O bound DNN training
jobs. iCACHE only fetches parts of samples instead of all samples
in the dataset. The cache is partitioned into two regions: H-
cache and L-cache, which store samples of high importance
and low importance respectively. Rather than using recency or
frequency, we manage data items in H-cache according to their
corresponding sample importance. When there is a cache miss in
L-cache, we use sample substitutability and dynamic packaging
to improve the cache hit ratio and reduce the number of random
I/Os. When multiple concurrent jobs access the same datasets in
H-cache, we design a model to assign the relative importance
values to cached samples to avoid cache thrashing, which may
happen when there is no coordination among the concurrent
training jobs. Our experimental results show that iCACHE has a
negligible impact on training accuracy and speeds up the DNN
training time by up to 2.0⇥ compared to the state-of-the-art
caching systems.

I. INTRODUCTION

Deep neural networks (DNNs) have been attracting attention
in computer vision [41], natural language processing [31],
robotics [37], and many other fields. DNN training often needs
to fetch data from I/O systems and compute them for updating
parameters [4], [5]. Recent research shows that I/O has become
the bottleneck in DNN training [27], [36]. This is because
AI accelerators, such as GPUs and ASICs, have evolved at a
faster pace than storage devices. Another reason is that DNN
model training needs to access ever-increasing datasets. For
example, the Google OpenImages dataset used in the Open
Images Challenge is about 18 TB [12]. And training data
items are shuffled every epoch to ensure that they are accessed
in a random order, leading to poor I/O efficiency of storage
systems.

Importance sampling (IS) [18], [20], [23], [24] is an ap-
proach to accelerate DNN training by skipping the calculation
of some items while maintaining a similar accuracy. It assigns
each data item an importance value to reflect its influence on
DNN model accuracy. We refer to data items of high and low

importance values as H-samples and L-samples respectively.
When importance sampling is used, H-samples are computed
in a higher probability while L-samples are computed in a
lower probability. However, all existing sampling approaches
are computing-oriented IS (CIS) algorithms because they only
focus on reducing computing on GPUs instead of I/O. They
still need to fetch all items to memory and thus perform poorly
for I/O-bound DNN Training. For example, when training
ResNet18 with CIFAR10 on a parallel file system, a history-
based CIS algorithm [18] can only accelerate the overall
training by 1.02⇥ though the computing time is reduced by
1.3⇥ (Section II-B).

Data caching is another widely used method to accelerate
DNN training [27], [36], [53]. By caching reused samples
in the fast memory of training servers, it avoids a number
of slow I/O accesses from storage. However, existing cache
algorithms for deep learning need to serve all fetches from data
loaders, losing the opportunity to optimize I/O performance
by serving fewer fetches with negligible accuracy degrada-
tion. Moreover, they do not consider sample importance. For
example, CoorDL [36] never replaces data items in its MinIO
cache. Therefore, it is possible that the MinIO cache does
not have space for H-samples after it is full. Quiver [27]
exploits substitutability to avoid memory thrashing. However,
it is likely H-samples are substituted by L-samples leading to
poor accuracy of DNN models after training.

None of the existing approaches can reduce the amount
of data fetched and consider sample importance in the I/O
of DNN training. In this paper, we propose the idea of
I/O-oriented importance sampling (IIS) and apply it to data
caching. IIS only fetches a subset of samples instead of all the
original samples from the cache or storage. Simply caching H-
samples for DNN training does not work well in the context
of importance sampling. The existing cache replacement al-
gorithms are designed to explore temporal locality based on
recency or frequency. However, importance sampling accesses
data items randomly and based on their impact on the model
accuracy. Therefore, we need a new importance-sampling-
informed cache replacement algorithm to achieve a higher hit
ratio in the cache.

There are three challenges in the design of the new cache
system. First, the importance values of data items may change
across epochs. We need an efficient algorithm to keep a maxi-
mum number of H-samples in the cache when the importance

978-1-6654-7652-2/23/$31.00 ©2023 IEEE

2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

values of samples are changed. Second, caches have limited
space. If we only cache H-samples, data loaders still need to
access L-samples randomly with poor I/O efficiency. Third,
caches needs to serve multiple jobs. We can only achieve sub-
optimal performance if there is no coordination between jobs.

To address these issues, we design and implement iCACHE,
a new importance-sampling-informed cache software to ac-
celerate DNN training when I/O is its performance bottle-
neck. Specifically, iCACHE is partitioned into two regions:
H-cache and L-cache which store H-samples and L-samples
respectively. We use a small-top heap (H-heap) for cache man-
agement. When H-cache is full, the data item corresponding
to the node at the top of the heap will be evicted if its
importance value is smaller than that of the incoming one.
To efficiently refill the cache when importance values are
changed, we manage a shadow heap for H-heap. After the
importance values are updated, the H-heap becomes read-only
and is used only for item eviction from the cache. The changes
(i.e., insertions/evictions and value updates) to the H-heap
are recorded in the shadow heap. To reduce the amount of
random I/Os for L-samples, iCACHE uses dynamic packaging
to load L-samples to L-cache in batch. When L-samples to be
accessed are not in the L-cache, we apply substitutability to
replace the missing L-samples with those already in the cache,
thus reducing the number of small random I/Os and keeping
a high training accuracy. When multiple jobs accessing the
same dataset are serviced by iCACHE, for cache management,
we design an approach to evaluate the cost-effectiveness of
caching for each job. Then we recompute relative importance
values for data items given all the values from the jobs
that are deemed to benefit from the cache. iCACHE uses the
relative importance value for cache management to achieve
job coordination.

In summary, this paper offers the following contributions:
• We propose the idea of I/O-oriented importance sampling

(IIS) and integrate it into the cache system, iCACHE,
which can mitigate the I/O bottleneck in DNN training
by reducing the number of samples to be fetched for each
epoch training.

• We design a cache replacement algorithm based on sam-
ple importance, a dynamic packaging technique, and a
multi-job handling mechanism to further boost the I/O
system performance.

• We implement iCACHE in PyTorch [40] and evaluate it
with eight DNN models on two datasets. The evaluation
shows that iCACHE outperforms the state-of-the-art DNN
cache systems Quiver [27] and CoorDL [36] by up to
2.0⇥ and 1.9⇥ on the model training time and 2.3⇥
and 3.9⇥ on the I/O time while achieving an equivalent
training accuracy. The codebase of iCACHE is available
at https://github.com/ISCS-ZJU/iCache.

II. BACKGROUND AND MOTIVATION

A. I/O-Bound DNN Model Training
DNN training is an iterative process and the model accuracy

converges gradually. All training samples in datasets are re-

MobileNet ResNet18 ShuffleNet EfficientNet
0

20
40
60
80

100

Ti
m

e
br

ea
kd

ow
n

(%
)

2565121024
2048 2565121024

2048 2565121024
2048 2565121024

2048

Others I/O time

Fig. 1. Training time with varying batch sizes on four A100 GPUs.

quired to be read multiple times. It is called one epoch when
all training samples are accessed exactly once. Each epoch
consists of multiple iterations. Each iteration trains with a mini
batch of data items, and the batch size is set by the user.

Because data sizes of input training datasets are increasing
at a rapid speed in DNN model training [27], in this paper,
we assume all training data cannot be stored in local storage
systems and they need to be read from a remote storage server
(or a parallel file system). This is a typical configuration in
modern HPC-AI data centers [9], [28], [39]. I/O performance
is affected by network bandwidth, which is shared among
multiple jobs accessing the server simultaneously.

In training, DNN framework needs to (1) load a mini batch
of data items from a remote storage system to host memory;
(2) pre-process the data items (e.g., rotation, cropping, and
deformation) using CPUs; and (3) train the DNN model using
the pre-processed data and GPUs. In each epoch, data loaders
need to feed all samples in a random order to the training pro-
cess with equal probability and exactly once. This is because
global randomness is essential to guarantee model accuracy.
As a result, loading a mini batch produces a large number of
random reads issued to the back-end storage systems. When
the training process is blocked by data loaders, it is called data
stall. In this scenario, the training process is I/O bound and
GPU and CPU utilization will be low.

Although data prefetching, data caching, batch size adjust-
ment, and multi-GPU training are widely used to accelerate
DNN training, they are inefficient for I/O-bound tasks for
the following reasons. (1) Prefetching is effective only when
computing time is longer than I/O time. With powerful GPUs
like A100 and H100, the computing time can be less than
I/O time [36]. (2) Caching policies are usually based on
traditional temporal/spatial locality, thus they are insufficient
for DNN workloads with strong randomness [27]. (3) Batch
size adjustment and multi-GPU training are mainly used to
boost computing performance instead of I/O time.

To verify this, we train four DNN models on a server with
four A100 GPUs with various batch sizes. The dataset is
CIFAR10 and placed in a remote OrangeFS file system. The
system configuration is described in Section V-A. We enable
the built-in prefetching technique in PyTorch and implement
an LRU-based cache system. The cache size is 20% of the
training dataset, as Quiver [27] does. Figure 1 shows that even
with existing performance optimizing techniques, I/O is still a
bottleneck for multi-GPU training cases. For example, the I/O
bottleneck becomes more prominent because the ratio of the

MobileNet
ResNet18

ShuffleNet
EfficientNet

0

500

1000

1500

2000
Tr

ai
ni

ng
 ti

m
e

(s
ec

)

ORI CIS ORI CIS ORI CIS ORI CIS

Other time I/O time

(a) Computing-bound training.
MobileNet

ResNet18
ShuffleNet

EfficientNet
0

1000

2000

3000

Tr
ai

ni
ng

 ti
m

e
(s

ec
)

ORI CIS ORI CIS ORI CIS ORI CIS

Other time I/O time

(b) I/O-bound training.

Fig. 2. Training time with and without the historical-value based CIS
algorithm in computing. “ORI” means the original training system without
CIS.

I/O time to the total training time increases from 44% to 89%
on average while the batch size increases from 256 to 2048.

B. Computing-Oriented IS Approaches are Inefficient for I/O
Bound Training

Importance sampling accelerates DNN model training by
feeding fewer samples on GPUs for updating parameters.
When it is applied in model training, the random order of
sample computed may be changed to reflect the principle
that H-samples should be computed more frequently than L-
samples. Recently, much research focuses on finding impor-
tance criteria to estimate the importance of samples, including
model loss [18], [32], last-layer gradient [20], self-defined
upper bound [24], or training another light model [49].

However, all existing IS algorithms are originally designed
to only reduce the computing time of unimportant samples
for computing-bound tasks, where I/O is not a performance
bottleneck; they still load all samples from cache or storage.
Such computing-oriented IS (CIS) approaches are efficient for
computing-bound training, but perform poorly for I/O bound
tasks because they cannot reduce the I/O time of the training
process. To validate this, we measure the training time of
the above four popular DNN models on CIFAR10 with and
without a historical-value-based CIS algorithm [18]. We use
a single A100 GPU for training and set the batch size to the
default 256. We also enable PyTorch’s prefetching technique.
As Figure 2(a) shows, when CIFAR10 is placed in a local
DRAM-based tmpfs (without a cache), CIS can reduce the
computing time and the total training time by 1.3⇥ and 1.2⇥.
However, when we use a LRU-based cache that holds 20% of
the training data and place CIFAR10 in a remote OrangeFS,
CIS can only reduce the total training time by 1.02⇥, as
shown in Figure 2(b). This is because CIS only shortens
the computing time but I/O is the bottleneck in the latter
case. The I/O bottleneck is caused by many factors, including
dataset size exceeding local cache, low IOPS from remote
storage nodes, data loading requiring considerable host CPU
resources, and so on.

Inspired by the idea of CIS, it is feasible to apply I/O-
oriented importance sampling (IIS) to fetch fewer samples
from the cache or storage to accelerate I/O bound DNN model
training with acceptable accuracy degradation.

(a) Varying importance values. (b) Sample selection during training.

Fig. 3. The varying importance values and the selected samples by the
importance sampling algorithm during training. One dot in (b) means the
sample is selected once.

C. Importance-Sampling-Informed Cache and Challenges

None of the existing cache systems are designed for DNN
model training based on importance sampling. OS page cache
explores temporal locality and uses recency or frequency for
managing the data items when it is full [19], [34]. When data
items are randomly accessed and the time of revisiting the
same data items in the page cache is long, the page cache will
have a high miss ratio. CoorDL [36] keeps all data samples
in the cache with no eviction to avoid thrashing. The cache
is used to store both H-samples and L-samples. When it is
full, H-samples will not be stored in the cache, leading to
a higher miss ratio of H-samples, which are accessed more
frequently than L-samples. When Quiver [27] is used, an H-
sample which is not in the cache may be substituted by an
L-sample, reducing the model accuracy.

There are three challenges in the design of the importance-
sampling-informed cache.

Varying importance values. The importance value of one
sample changes across epochs during training [18], [32].
To verify this, we record the importance values of three
samples (i.e., Sample 0 to Sample 2) with a model loss-based
importance sampling algorithm [18] when training ResNet18
on CIFAR10. As Figure 3 shows, the same sample is se-
lected from time to time with varying importance values. The
importance value of the same sample changes because it is
determined by the sample content and the model’s paremeters
(e.g., weights) which are updated by the SGD algorithm
iteratively [7]. Therefore, the H-samples in the previous epoch
may become L-samples. Since samples are selected according
to their relative importance values, it is not practical to set
an importance threshold to decide whether to place a sample
in the cache or not. We need a judicious cache management
algorithm to keep a maximum number of H-samples in the
cache without significantly affecting model accuracy when the
importance values of samples are changed.

Random I/Os after cache misses. A cache has limited
capacity. It cannot always store all H-samples. When cache
misses happen, it is required to read H-samples randomly. Fur-
thermore, although H-samples are accessed more frequently
than L-samples, training frameworks still need to access L-
samples to improve sample diversity for high training ac-
curacy. The performance of loading L-samples from storage
systems may become the I/O bottleneck causing data stalls. A

widely used method of mitigating this problem is packaging
the training dataset into many large files, each of which
contains a certain number of L-samples [2]. However, it
is not practical in this case because importance sampling
specifies the order of samples to be trained. They are probably
distributed in different data packages and will cause a serious
read amplification problem if we directly use the existing
packaging algorithms.

Cache misses caused by no job coordination. Multiple
jobs accessing the same dataset is a common scenario in
DNN training with different hyper-parameters [27], [36] or
different models [27]. To effectively use the cache space, these
jobs may share the cache. In this scenario, a training sample
will receive different importance values from different jobs.
Thus, it is difficult to decide whether the sample should be
cached/replaced if we only consider its own importance values.
When there is no coordination between the jobs, an evicted
sample may be immediately fetched again from the storage
system by another job, resulting in memory thrashing.

III. DESIGN OF ICACHE

In this section, we present the design of iCACHE. We first
introduce the system overview of iCACHE and then elaborate
on its three key components.

A. System Overview
iCACHE is an intelligent cache system for accelerating DNN

model training. It supports both single-node with multiple
GPUs training and multi-node distributed training, both of
which are popular deep learning training configurations [2],
[3], [27], [36], [44]. To illustrate the details, we first show
the single-node architecture in Figure 4. It consists of client
modules, cache managers, and servers.

iCACHE client and server. The client modules are inte-
grated into the deep learning frameworks (e.g., PyTorch and
TensorFlow). It mainly plays the role of request forwarding.
When data loaders of DNN applications start to randomly
select samples to read, the clients will forward the request
to iCACHE servers by calling the RPC interface. One client
belongs to a unique DNN training job and is transparent to
the users.

A client module maintains an H-list to record H-samples
for the training job. H-list is generated by the importance
sampling algorithm. It is a list of vectors < ID, IV >,
where ID corresponds to a sample’s identity and IV is its
importance value. Both the ID and IV are 64 bits (8B), thus
the space overhead of H-list is trivial. We take a cache for
ImageNet-1K (with 1281167 samples in 140GB) as an exam-
ple. Assume the cache holds 20% samples, then the cached
data size is 140GB*20%=28GB, and the importance mapping
overhead is 1281167*20%*16B=3.9MB, which is just 0.014%
(3.9MB/(28GB+3.9MB)) of the whole cache space. The IVs
are computed according to the importance sampling algorithm.
Although many algorithms exist, we choose the loss-based
importance sampling algorithm [18] in our current design for
its simplicity and efficiency. We wish to study other algorithms

7/

Training dataset

Cache clientDL framework

Cache
Manager

Cache client

Multi-job handling
($4.4)

H-cache

L-cache

Cache client

Importance-informed
replacement ($4.2)

Dynamic packaging
($4.3)

Storage system

Deep learning applications

Control flow Data flow

Server

Fig. 4. The single-node architecture overview of iCACHE.

in future work. Since the importance value of one sample
changes across epochs during training, we periodically updates
importance values (Section III-B).

As mentioned in Section II-B, existing CIS algorithms can
not reduce I/O time because they still need to load all samples
from the storage or cache system. Therefore, we propose I/O-
oriented IS (IIS) to reduce the number of fetched items in each
epoch. Specifically, IIS decides the samples to be trained for
the current epoch based on their historical importance values
before the start of each epoch, then fetches and trains them.
Thus, samples that have not been selected do not need to
be loaded. In this way, both I/O and computing time can
be reduced. At the end of each iteration, the host reads the
losses of mini-batch samples from GPU memory and uses
them to update the importance values of mini-batch samples.
After each epoch, if a sample is selected and trained on GPUs,
the host will get its updated importance value regardless of
whether it is in cache or not. Otherwise, its importance value
will be unchanged. The host then builds the H-list based on
the updated importance values and uses the H-list to guide the
DNN training in the next epoch.

The functionality of the iCACHE server is to provide a
user-level cache, which stores training datasets in memory to
accelerate the I/O-bound DNN training.

Cache manager. It is designed to manage the cache based
on the importance values of samples. Since the importance
values referenced by the sampling process are periodically
updated by the historical-value based IS algorithm, the cache
manager periodically pulls the H-list from clients to achieve a
decent trade-off between cache performance and its manage-
ment overhead. Additionally, the manager needs to dynami-
cally pack samples which are later loaded to L-Cache. The
minimum I/O unit is a package of samples.

Finally, when multiple jobs access the same dataset, the
manager needs to determine how to manage data items based
on multiple importance values corresponding to the same
sample but from different jobs and the cost-effectiveness of
caching for these jobs. In this scenario, it uses a multi-job

handling algorithm to adjust the importance values of samples
in H-list to reduce the total training time of all the jobs.

H-cache. It stores H-samples recorded in H-list. Its capacity
determines how many data items can be stored in H-cache.
When its capacity is not large enough to cache all H-samples,
an importance-informed cache replacement algorithm is ap-
plied to manage it. The general idea is that the data items of
higher importance value have a lower chance of being evicted
from the cache. And the importance value is provided by H-
list. If the importance values of H-samples are changed leading
to a lower hit ratio of H-cache, it needs to refill the cache
with new H-samples. When importance sampling is used for
training, the importance-informed cache replacement achieves
a higher cache hit ratio than the commonly used LRU-based
cache replacement algorithm and its variants.

The size of H-cache is determined based on the following
equation: Sizehcache = Sizecache⇤ FrequenceHI

FrequenceLI+FrequenceHI

.
FrequenceHI and FrequenceLI are the frequency of ac-
cesses to H-samples and L-samples respectively. Sizecache is
the cache size. A higher FrequenceHI

FrequenceLI

automatically increases
the cache space allocated for H-samples and reduces the space
for L-samples. The iCACHE manager tracks the number of
accesses to H-samples and L-samples. The minimum size of
L-cache is equal to the number of data items in one package.

L-cache. The purpose of L-cache is to further reduce the
number of small random I/Os for accessing L-samples. It is
designed to cache only the L-samples, which are not in the
H-list. Another benefit of L-cache is to maintain a high model
accuracy. Basically, we manage L-cache with substitutability,
a unique characteristic of the DNN I/O process [27]; it means
when a read request is missed in the cache, it can be served
by another randomly picked sample in the cache. While the
missed samples from L-cache can be substituted with the one
in H-cache, serving them with another one in L-cache can keep
a high degree of sample diversity and yields better training
accuracy (See Section V-E). The L-samples are packaged in
advance by an asynchronous thread. In addition, because the
importance values of data items are constantly changing across
epochs, it also needs to re-packing the L-samples accordingly.
The size of L-cache is equal to Sizecache � Sizehcache.

B. Importance-Informed Cache Algorithm
We use a key-value store to manage data items in H-cache.

The key denotes sample ID and the value stores the data item
of a sample. iCACHE also manages a small-top-heap (H-heap)
for cache management. The heap objects are also key-value
pairs, whose key is the importance value of a data item and
value is a reference to the item in the key-value store. The
objects in H-heap are sorted based on their importance values.
The object at the top of the heap is called top-node. The size of
a heap object is 16 B. The space usage of H-heap is correlated
to the number of H-samples and is generally less than 0.5%
of H-cache capacity.

When the requested data items are H-samples but do not
exist in H-cache, the server needs to read them from storage
systems and return them to clients. It also needs to decide

Algorithm 1 Importance-Informed Caching Algorithm.
Require: bs: batch size;

batch id: sequence of training sample’s ID for one
batch produced by IIS;

H� list: the current H-list in server, which is pulled
from the client;

1: batch data []
2: for i 0, 1, . . . , (bs� 1) do
3: id batch id[i]
4: if id in H � list then . The sample is an H-sample.
5: if id in H cache then
6: data read from H cache(id)
7: else
8: data read from storage(id)
9: if H cache is not full then

10: insert sample into H cache(id, data)
11: else
12: iv cur get importance(id)
13: iv min min imp in H heap()
14: if iv cur > iv min then
15: delete and insert H cache(id, data)
16: end if
17: end if
18: end if
19: else . The sample is an L-sample.
20: if id in L cache then
21: data read from L cache(id)
22: else . Substitution.
23: data randomly fetch from L cache()
24: end if
25: end if
26: batch data.append(data)
27: end for

return batch data

whether to cache the sample when H-cache is full. One chal-
lenge is that LRU-based cache replacement algorithms do not
work effectively in training with importance sampling because
they do not consider sample importance. Our observation
shows that H-samples are accessed more frequently than L-
samples in each epoch and across multiple epochs. Therefore,
we need a new importance-informed cache replacement to
improve the cache hit ratio in training.

Specifically, when H-cache is not full, the H-sample read
from storage systems will be inserted into H-cache directly.
iCACHE then creates a heap object corresponding to the H-
sample and inserts it into the heap. When it is full, the
importance value of an incoming H-sample is compared to
that of top-node. The top-node will be evicted if its importance
value is smaller than that of the incoming sample. Otherwise,
the incoming sample will not be admitted. If the top-node is
evicted, iCACHE will create a new heap object corresponding
to the incoming H-sample and insert it into the heap. A high-
level algorithm for the importance-sampling cache manage-
ment is shown in Algorithm 1.

Importance-informed cache replacement algorithm performs
better than traditional LRU-like algorithms exploiting temporal
and spatial locality. Let’s take Figure 5 as an example. We
assume that the capacity of H-cache is three and three data
items (#1, #2, #3) have been cached consecutively. When item

1 2 3
LRU-cache

4

storage
(a)

1 2 3
iCache

4

storage
(b)

Fig. 5. The comparison of LRU and iCACHE. The squares in darker color
denote samples with higher importance values.

#4 is accessed, the LRU-like replacement algorithm will evict
item #1 because it is least recently used (shown in Figure 5(a)).
If we further assume item #2 has the least importance value
thus is the top-node in the heap, we will have a higher prob-
ability of accessing #1 than accessing #2 in future references.
Hence, a higher cache hit ratio will be achieved by evicting
sample #2 (shown in Figure 5(b)). We will experimentally
demonstrate the effectiveness of importance-informed cache
over LRU-based cache in Section V-C.

The second challenge in the design of iCACHE is the
importance values of data items change as the model is trained,
leading to variation of a cache hit ratio. To solve this issue,
iCACHE periodically updates H-list by pulling it from cache
clients. Because of the overhead of building a small-top-heap,
we do not update H-heap in place. Instead, iCACHE manages
a shadow heap, which has the same structure as H-heap. After
H-list is updated, the current H-heap becomes read-only and
we continue using it for eviction purposes. But new heap
objects are inserted into the shadow heap with their updated
importance value. After the shadow heap is rebuilt completely
against the updated H-list, it can be directly used as a new
H-heap. Then the original H-heap is released. In this way, the
update of importance values in the heap can be performed
asynchronously and does not affect the critical I/O path of the
training process.

C. Dynamic Packaging
Because iCACHE only stores H-samples in H-cache, L-

samples that are not in H-list may still incur small random
I/Os. We design a new approach, named dynamic packaging,
to reduce data stall time caused by accessing L-samples. The
idea is to maintain a small L-cache for storing L-samples.
The L-samples are loaded in the memory in the unit of a
package to improve I/O efficiency. The package size is at
least 1 MB exploiting the spatial locality of storage systems.
When an L-sample is requested, iCACHE returns the data item
from L-cache if it is a hit. Otherwise, instead of reading
the requested L-sample from the storage system, we apply
substitutability and return a cached L-sample that has not been
accessed at the current epoch. The IDs of L-samples that are
missed in the cache will be recorded and later loaded from
storage systems by the loading thread. Our results show that
applying substitutability on L-samples has a very minor impact
on the model accuracy while significantly reducing data stall
time. Because we replace any missed L-samples with other
L-samples in L-cache, we can achieve a hit ratio of 100% in
L-cache. Consequently, L-heap is not needed for L-samples.

11/

L-cache

Memory
Storage

Packaging

H-cache
Loading

Existing packages
Fig. 6. Illustration of packing thread and loading thread. The white area in
the package represents samples with low importance values and the dark area
denotes samples with high importance values.

Specifically, iCACHE uses two concurrent threads (i.e.,
packaging thread and loading thread) working together to
achieve dynamic packaging, as shown in Figure 6. At the
beginning of epoch 1, there are no packages in the storage sys-
tem. Once H-list is generated, the packaging thread randomly
selects L-samples. It then packs them into large file packages
and stores them in the storage system. Then the loading thread
chooses one package and caches all data items in the package
in L-cache. Next, when a requested sample is not in H-list
and missed in L-cache, iCACHE directly randomly chooses
a cached L-sample which has not been accessed to replace
the requested one. When all data items in L-cache have been
accessed once, new packages will be read into L-cache by the
loading thread.

After H-list is updated, the ratio of L-samples in the existing
packages is changed in the following training epochs. We
need to periodically repack the samples to make sure that a
package consists of a large number of L-samples to fill L-
cache quickly in fewer I/Os. To achieve this goal, the samples
that are previously missed in L-cache will be re-packed in the
packages to increase sample diversity. Then the rest of space
will be filled with L-samples that are randomly selected from
the existing packages. At the same time, the loading thread
will load the reorganized packages into memory. Then it stores
L-samples in L-cache.

Both the loading thread and packaging thread run asyn-
chronously. The package reorganization introduces three bene-
fits. First, L-samples can be read in the form of large packages,
which alleviates random small I/Os. Second, because of the
dynamic repackaging, we can guarantee that a large number of
L-samples are stored into L-cache for every I/O, thus improv-
ing the effective storage bandwidth. Third, compared to the
existing fixed packaging strategy [2], package reorganization
may improve model accuracy because it can increase the
randomness of samples being trained.

D. Multi-Job Handling
When multiple jobs use the same dataset for DNN model

training, the same training sample may be repeatedly accessed
by all the jobs. However, iCACHE may receive different
importance values of the same data item for two reasons. First,
different DNN model architectures lead to different fit capa-
bilities for the same data item. Second, the importance values
of samples generally tend to decrease as the training proceeds

because the loss decreases as the training converges [11]. Some
jobs that require less computation time may proceed to the
next training epochs earlier than other jobs. These jobs will
generate smaller importance values corresponding to the same
samples.

To address this issue, we design a module in iCACHE
for multi-job handling. It periodically evaluates the cost-
effectiveness of caching for each job. We define cache-eligible
jobs as the jobs that are deemed to benefit from cache. Then
it computes an adjusted importance value for each data item
given all the importance values collected from the cache-
eligible jobs. Finally, the adjusted importance value will be
used by iCACHE for cache management (e.g., heap rebuilding
and cache eviction).

Cache benefit estimation. At the beginning of each epoch,
iCACHE uses 40 mini-batches to estimate the caching benefit
(Ratiobenefit) which is quantified as a ratio of execution
time without cache Tcacheless and execution time with cache
Tcache. Tcacheless is measured when all I/Os are served on
storage systems without cache for the first 20 mini-batches.
Tcache is measured when iCACHE is enabled for the job
for the second 20 mini-batches. For a particular job, if its
Ratiobenefit is higher than a threshold (1.5 in our current
design), it is deemed as cost-effective and becomes cache-
eligible. Then iCACHE will use its H-list in computing the
adjusted importance value.

Adjusted importance value computation. After receiving
H-lists from all the concurrent jobs accessing the same dataset,
we compute the relative importance value of every data item
in two steps. (1) We compute the relative importance value of
data item i for each training job using the percentile position
of IVi in the whole training set and denote it with RIVi. (2)
For data item i, we compute its AIVi =

P
N�1
j=0 Ratio

j

benefit
⇤

RIV
j

i
where AIVi is the aggregated importance value of data

item i, N is the number of concurrent jobs that access the
dataset and are cache-eligible, Ratio

j

benefit
is the caching

benefit of job j, and RIV
j

i
is the relative importance value of

data item i from job j.

E. Distributed iCACHE

A distributed deep learning training application usually uses
data parallelism to achieve training across multiple nodes.
To support this scenario, we extend iCACHE to a distributed
cache. Each node is equipped with a local cache client, a
cache server, and a cache manager whose functionalities are
introduced in III-A. To cache as much data as possible, the
data item stored by each node is not duplicated. To determine
on which node a specific data item is cached, a distributed key-
value store is shared among all training nodes, which records
key-value pairs formed by the data item ID and the node ID
where it is located.

The ideas of I/O-oriented importance sampling, importance-
informed cache, dynamic packaging, and multi-job handling
in a single node can be naturally applied to the distributed
cache system. Besides, the distributed cache needs to con-
sider remote cache in the data flow of the distributed cache

management. Specifically, when a cache client requests a data
item, the cache manager will first check whether the data
exists in the local cache. If so, it returns the data from the
local node; otherwise, the cache manager will judge whether
the data exists in the cache space of other nodes by looking
up the distributed key-value store. If it exists, the data item
will be read from other nodes; otherwise, the request will be
forwarded to the shared underlying storage system.

IV. IMPLEMENTATION

We implement the client of iCACHE in Python based on
PyTorch 1.8.0 [40]. We provide a new iCacheImageFolder

interface in the original torch.utils.Dataset class, which
uses the gRPC [46] framework to communicate with the
iCACHE server. The client gets samples from the server
through the rpc loader interface and sends the H-list of
samples to the server through the update ivpersample in-
terface. For the server, we implement it in Go language.
We use the key-value structure to organize the samples in
H-cache and L-cache. In addition to providing the usual
functions of lookup/access/insert, the server also provides
an interface to receive importance values and modules to
handle dynamic packaging and multi-job coordination in
cache management. In all, the client is implemented with
around 2000 LOC and the server is with around 3500
LOC. iCACHE is easy to deploy. Users only need to re-
place the original Dataset.ImageFolder interface with
Dataset.iCacheImageFolder after starting the iCACHE
server with a Go command.

V. EVALUATION

A. Experimental Setup

System configurations. We conduct the experiments on a
training server with 2⇥ AMD EPYC 7742 CPUs (64 cores),
512 GB DRAM, 10Gbps Ethernet, 8⇥ NVIDIA A100 GPUs,
one Intel SSD of 1 TB. The operating system is 64-bit Ubuntu
18.04.5. We train the DNN models using PyTorch 1.8.0 on the
server and place the training datasets in an OrangeFS parallel
file system [1] in the same data center.

Workloads and datasets. We use a small dataset CI-
FAR10 [26] and a large dataset ImageNet [10]. With CIFAR10,
we train ShuffleNet [50], ResNet18 [13], MobileNet [14],
and ResNet50 [13]. With ImageNet, we train VGG11 [22],
MnasNet [43], SqueezeNet [16], and DenseNet121 [15]. These
eight models are widely used in the prior work [27], [29], [36].
We do not consider natural language processing models (e.g.,
BERT) because they are typically computation-bound [36].

Compared systems. We compare iCACHE with Default,
Base, Quiver [27], CoorDL [36], and iLFU. Default repre-
sents the existing PyTorch framework with a user-level LRU
cache. Base is the version with the user-level LRU cache and
the computing-oriented importance sampling (CIS) to only
reduce computing. Both Base and iCACHE use the loss-based
algorithm [18] to determine the sample importance. Quiver
performs similarly to Default but sample substitutability is

TABLE I
MODEL ACCURACY ON CIFAR10.

Models Top-1 Acc.(%) Top-5 Acc.(%)
Default iCACHE Default iCACHE

ShuffleNet 87.76 86.96 99.59 99.57
ResNet18 92.70 92.14 99.81 99.80
MobileNet 92.37 92.01 99.87 99.77
ResNet50 89.91 89.36 99.68 99.69

TABLE II
MODEL ACCURACY ON IMAGENET.

Models Top-1 Acc.(%) Top-5 Acc.(%)
Default iCACHE Default iCACHE

VGG11 67.06 65.67 87.46 86.13
MnasNet 58.59 57.25 81.78 80.16

SqueezeNet 54.69 53.83 77.72 77.91
DenseNet121 75.35 74.79 92.57 92.39

used to enhance cache management. It also proposes coor-
dinated eviction and co-operative cache handling for multi-
job training. CoorDL is based on Default but it does not
evict the already cached data in each epoch. Besides, it
allows pre-processed data in memory to be shared among
multiple jobs. To demonstrate the efficiency of iCACHE over
traditional caching methods, we also implement iLFU, which
applies the I/O-oriented importance sampling (IIS) with the
least frequently used (LFU) cache management. In contrast,
iCACHE applies IIS and manages the cache with our designs.
Besides, we add the Oracle comparison which means all
accesses to the cache are hit to show the lower bound of
training time. As Quiver is not open-source, we re-implement
it as faithfully as possible according to the descriptions in the
paper. For CoorDL, we evaluate it by referring to its open-
source implementation [35]. We enable prefetching in PyTorch
in all experiments.

By default, the cache size is 20% of the dataset, the initial
ratio of Sizehcache to Sizelcache is 9:1, the number of workers
to fetch data is 6, the batch size is 256, and the training datasets
are striped over four servers with a stripe size of 64 KB in
OrangeFS.

B. Accuracy Results
We first present the accuracy comparison for the four models

on CIFAR10 with different cache schemes. Table I shows
iCACHE achieves the comparable Top-1 and Top-5 accuracy
compared to Default for all models. More specifically, iCACHE
has 0.80%, 0.56%, 0.36%, and 0.55% accuracy losses on

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

Epoch

Ac
cu

ra
cy

 (%
)

Default iCache

(a) ResNet18 on CIFAR10

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

Epoch

Ac
cu

ra
cy

 (%
)

Default iCache

(b) SqueezeNet on ImageNet

Fig. 7. The Top-5 accuracy comparison.

ResNet18 ResNet50 ShuffleNet MobileNet
0

20

40

60

80

Tr
ai

ni
ng

 ti
m

e(
s)

Default Base Quiver CoorDL iLFU iCache Oracle

(a) Training time of one epoch on CIFAR10

VGG11 MnasNet SqueezeNet DenseNet121
0

1000
2000
3000
4000
5000
6000

Tr
ai

ni
ng

 ti
m

e(
s)

Default Base Quiver CoorDL iLFU iCache Oracle

(b) Training time of one epoch on ImageNet

Fig. 8. The training time per epoch.

ResNet18 ResNet50 ShuffleNet MobileNet
0

20

40

60

80

I/O
 ti

m
e(

s)

Default Base Quiver CoorDL iLFU iCache Oracle

Fig. 9. I/O time of training one epoch on CIFAR10.

Top-1 accuracy and 0.02%, 0.01%, 0.10%, and -0.01% ac-
curacy losses on Top-5 accuracy for ShuffleNet, ResNet18,
MobileNet, and ResNet50, respectively. The accuracy loss is
constrained within 1%. Table II shows the model accuracy on
ImageNet. The accuracy loss of iCACHE yields satisfactory
accuracy with less than 2% losses compared to Default.

Figure 7(a) and Figure 7(b) plot the Top-5 accuracy con-
vergence curves for ResNet18 on CIFAR10 and SqueezeNet
on ImageNet in 90 epochs, respectively. We can see that the
curves of iCACHE are closely matched with the curves of
Default, which provides the highest accuracy.

C. Performance Results

Figure 8 shows the average training time per epoch for the
DNN models. The average training time is defined as the total
training time divided by the number of epochs. We have three
observations.

First, iCACHE outperforms all other five cache systems.
On CIFAR10, it achieves maximum speedups of 2.3⇥, 2.3⇥,
2.0⇥, 1.9⇥, 1.6⇥ over Default, Base, Quiver, CoorDL, and
iLFU for the four models, respectively. On ImageNet, the
maximum speedups are 2.2⇥, 2.1⇥, 1.7⇥, 1.8⇥, and 1.5⇥ for
the other four models. We also observe that on VGG11 and
DenseNet121, iCACHE performs almost the same as Oracle.
This shows iCACHE can efficiently alleviate the I/O bottleneck
of these two models.

Base +IIS +HC ALL0

20

40

60

80
Ti

m
e

el
ap

se
d

(s
ec

)

(a) ShuffleNet on CIFAR10.

Base +IIS +HC ALL0

20

40

60

80

Ti
m

e
el

ap
se

d
(s

ec
)

(b) ResNet50 on CIFAR10.

Fig. 10. The performance impact on total training time with IIS, H-Cache,
and L-cache in iCACHE.

Second, different DNN models yield varied performance
improvements. For example, iCACHE achieves the highest
improvement (i.e., 2.3⇥) for ShuffleNet on CIFAR10, but
smaller speedups for other three models. This is because
ShuffleNet requires less GPU computation than other models,
making the training more I/O bound.

Third, Base has the minimum performance benefit, com-
pared to Quiver, CoorDL, iLFU, and iCACHE. This is because
Base can only reduce computation time with CIS while the
other four can further reduce I/O time in the I/O bound model
training.

Figure 9 presents the I/O time per epoch in DNN training.
Because of the space limitation, we only show the results
for CIFAR10. Compared to Default, iCACHE reduces the I/O
time by 2.4⇥ on average for the four models, while Quiver,
CoorDL, and iLFU achieve an average speedup of 1.2⇥,
1.3⇥, and 1.4⇥ respectively. The benefit of iCACHE comes
from the reduced data fetches using IIS and the improved
cache hit ratio using the importance-aware cache management
policies. Although iLFU also reduces data fetches by IIS, the
LFU policy is reactive to the changes of sample importance,
resulting in a lower cache hit ratio. This explains why iCACHE
has the best performance. Note that Base has a 1.3⇥ longer
average I/O time than Default. This is because Base only
reduces the computing time using CIS and does not change
the data fetching time, resulting in less I/O time hidden by the
computing time in the training pipeline.

D. Impact of Individual Techniques

Figure 10 shows the impact of each optimization in iCACHE
on the total training time. Base is the system with the
computing-oriented importance sampling (CIS) and an LRU
cache (CIS+LRU). +IIS denotes the version where I/O-
oriented importance sampling (IIS) is used to reduce the
number of fetches. +HC denotes the variant where H-cache
is managed according to sample importance. All denotes the
version with all optimizations including L-cache is enabled.
In the experiments, we train ShuffleNet and ResNet50 with
CIFAR10.

Figure 10(a) shows +IIS achieves a speedup of 1.4⇥ over
Base for ShuffleNet. The primary reason is that Base can
only reduce the computation while +IIS can further reduce the
number of I/Os by up to 31.4%. When H-cache is enabled,

Base +IIS +HC ALL0

1

2

3

S
pe

ed
up

0

50

100

H
it

ra
tio

 (%
)

I/O Time Hit ratio

(a) ShuffleNet on CIFAR10.

Base +IIS +HC ALL0

1

2

3

S
pe

ed
up

0

50

100

H
it

ra
tio

 (%
)

I/O Time Hit ratio

(b) ResNet50 on CIFAR10.

Fig. 11. The impact on I/O time and hit ratio with IIS, H-Cache, and L-cache
in iCACHE.

TABLE III
MODEL ACCURACY ON CIFAR10.

Models Top-1 Acc.(%) Top-5 Acc.(%)
Def STHC STLC Def STHC STLC

ResNet18 92.70 91.89 92.14 99.81 99.77 99.80
ShuffleNet 87.76 86.73 86.96 99.59 99.52 99.57

the importance-sampling-informed algorithm caches more H-
samples and significantly increases the hit ratio in iCACHE.
Thus, +HC achieves a speedup of 1.7⇥ compared to Base.
When L-cache is further enabled, All achieves a speedup of
2.3⇥. This is because L-samples that are missed in memory
are substituted by other L-samples in L-cache, further reducing
the data loading time.

Figure 11 demonstrates the I/O time and cache hit ratio with
individual techniques. Figure 11(a) shows that the cache hit
ratio has increased significantly for ShuffleNet on CIFAR10.
When enabling the HC technique, the hit ratio is increased
from 2% to 25%. This is because +HC increases temporal
locality, thus H-samples are more likely to be kept in H-cache
without cache thrashing. After L-cache is enabled, the hit ratio
is further increased to 37%. This is because L-samples can be
substituted with others in L-cache.

We have similar observations on the trend of speedup
and cache hit ratio for ResNet50 on CIFAR10, as shown in
Figure 10(b) and Figure 11(b).

E. Impact of Sample Substitution on Model Accuracy

To accelerate model training without significant accuracy
degradation, iCACHE does not substitute H-samples with other
samples when they are missed in the cache. However, when
L-samples are missed, we can substitute them with samples in
either H-cache or L-cache. Since either case shows the same
I/O performance, we study its impact on model accuracy.

Table III shows the model accuracy with different sample
substitution policies. Def denotes the policy without sam-
ple substitution. STHC and STLC represent the policy to
substitute the missed sample with H-sample and L-sample
respectively. For ResNet18, the Top-1 model accuracy drops
0.81% and 0.56% with STHC and STLC compared to Def. For
ShuffleNet, STHC and STLC yield a 1.03% and 0.80% Top-
1 accuracy drop. These results show STLC has less impact
on model accuracy. Similar trends can be observed in Top-5

1 2 3 40

20

40

60

80

of GPUs

Tr
ain

ing
 tim

e
(s

)
Default iCache

Fig. 12. Performance of iCACHE
on multi-GPUs.

2S-Res18
2S-Res50

4S-Res18
4S-Res500

100
200
300
400
500
600
700
800

Tr
ai

ni
ng

 ti
m

e
(s

)

Default iCache

Fig. 13. Distributed training on CI-
FAR10. The label “nS” means the
system with “n” servers.

accuracy for other models on CIFAR10 and ImageNet. Thus,
iCACHE takes this substituting method.

F. Single-Job Multi-GPU Training
Figure 12 shows the per-epoch training time of ResNet50 on

multi-GPUs with CIFAR10. We can find iCACHE always takes
less training time than Default for all GPU configurations.
Compared to Default, iCACHE achieves an average speedup
of 2.3⇥ with different numbers of GPUs. This shows iCACHE
is effective in multi-GPU training. Another observation is that
the total training time of Default remains similar as the
number of GPUs increases. This is because increasing GPUs
reduces a small amount of computing time but also incurs the
communication overhead among multiple GPUs. In contrast,
iCACHE has a slight performance improvement because it can
reduce a lot of I/O time with the IIS and importance-aware
cache management techniques, making the training process
less I/O bound.

G. Multi-Server Distributed Training
Figure 13 shows the system performance of iCACHE in

a distributed cloud platform with two and four nodes. Each
server is equipped with one GPU and a cache space of 20%
of the whole training data. As we do not have the permission to
install the kernel module of OrangeFS on the cloud platform,
we store the training data in an NFS server, similar to the
approach in other cloud deep learning systems [17], [38],
[42]. The maximum read bandwidth of the NFS is about
10Gb/s. Although our scale is small, we argue that it is
sufficient to demonstrate the efficiency of our system. Due
to space limitations, we only show the results on CIFAR10
for ResNet18 and ResNet50. The results of other models lead
to similar observations as described below.

First, iCACHE performs better in distributed training than
Default. Specifically, iCACHE speeds up at least 8.6⇥ and
7.6⇥ under 2-server and 4-server configurations. The main
reasons are similar to that of the single-server training scenario
described in Section V-C. Besides, we observe that the 4-server
training time is lower than 2-server time by around 1.5x.

Second, the speedup of iCACHE with the 4-server config-
uration is less than that with 2-server setting. For instance,
the speed up is reduced from 9.3⇥ to 8.5⇥ for ResNet18.
This is because a larger joint cache space results in a smaller
improvement of cache hit ratio. Specifically, the cache hit

Default INDA INDB iCache
0

20

40

60

80

Tr
ain

ing
 tim

e
(s

)

ShuffleNet ResNet50

(a) Time.
Default INDA INDB iCache

0

20

40

Hi
t r

at
io

(%
)

ShuffleNet ResNet50

(b) Hit ratio.

Fig. 14. The average training time per epoch and cache hit ratio with different
caching schemes for multi-job execution.

ratio is increased by 42% and 23% on 2-server and 4-server,
respectively.

H. Multi-Job Training
To demonstrate the effectiveness of the multi-job handling

module, we run ShuffleNet and ResNet50 simultaneously on
the same CIFAR10 dataset. These two jobs share the cache
space. We evaluate the performance of each job with four
caching schemes. They are Default (using LRU to manage
cache space), INDA (using the importance values from an
individual model, i.e., ShuffleNet, to make caching decisions),
INDB (using the importance values from ResNet50), and
iCACHE with the policy discussed in Section III-D.

Figure 14(a) shows the average training time per epoch of
each job. We have three observations. First, INDA, INDB,
and iCACHE perform better than Default. This is because the
former three schemes reduce the number of samples fetched
from storage and improve the cache hit rate. Second, for
INDA and INDB, they only perform well for the individual
model but are suboptimal for the other model. For example,
compared to INDB, INDA speeds up the ShuffleNet train-
ing by 1.4⇥ but it slowdowns ResNet50 by 1.2⇥. This is
because the cache gives higher priority to data items from one
job, causing a higher cache miss ratio for the other job. Third,
iCACHE achieves the minimum system completion time for
both jobs among the four schemes. Specifically, it achieves
1.1⇥ and 1.2⇥ speed up compared to INDA and INDB,
respectively. This result shows the efficiency of the multi-job
handling module in iCACHE.

Figure 14(b) presents the cache hit ratio for each job. We
observe that ShuffleNet has a higher hit ratio than ResNet50
when using iCACHE. This is because iCACHE automatically
perceives that ShuffleNet has a heavier I/O bottleneck than
ResNet50, and the benefit of caching is higher.

I. Parameter Sensitivity Analysis
Number of prefetching workers. PyTorch employs multi-

ple workers to prefetch training data from storage systems.
Figure 15 shows the training time per epoch with various
number of workers. We train ResNet18 on CIFAR10. As
shown, iCACHE achieves a speedup over Default from 3.9⇥ to
1.2⇥ while the number of workers is increased from 2 to 16.
This is because the proportion of data stall time decreases from
96.7% to 28.9% when the number of workers increases. Thus,
the I/O benefits brought by iCACHE diminishes. However,

2 4 8 160

100

200

300

400

of fetching workers

Tr
ai

ni
ng

 ti
m

e
(s

)
Default iCache

Fig. 15. Performance impact of num-
ber of workers.

Cache Speedup Hit ratio
Ours Default

20% 1.7 ⇥ 0.37 0.02
40% 1.9 ⇥ 0.55 0.09
60% 2.1⇥ 0.69 0.23
80% 2.4⇥ 0.83 0.48

Fig. 16. Performance impact of
cache size.

since NVIDIA’s AI-optimized servers (i.e., DGX-2) or general
commercial cloud servers typically provide users with 3-
4 CPU cores (6-8 vCPUs) per GPU [36], the number of
workers set by users are usually limited to eight. Therefore,
the prefetching effect is limited and iCache is still useful.

Cache size. Figure 16 shows the training performance with
various cache sizes for ResNet18 on CIFAR10. First, we can
observe that with iCACHE the minimum speedup of training
time is 1.7⇥ as the cache size increases from 20% to 80%.
This demonstrates that iCACHE is effective for reducing data
stall time when the cache sizes are varied. Second, the cache
hit ratio increases as the cache size increases for both iCACHE
and Default. However, even when the cache size is 80% of the
dataset size, iCACHE still achieves a 1.7⇥ higher cache hit
ratio than Default. This explains why iCACHE has a superior
performance.

VI. DISCUSSION

PM-based cache. iCACHE currently builds the cache using
DRAM, but it is not limited to that; emerging large-capacity
persistent memory (PM) is another option. However, PM
requires specific hardware (e.g., CPUs) [8], [45] and it has
relatively lower performance than DRAM [30], thus DRAM
is still the dominant memory. We will explore the PM-based
cache in future work.

Other importance sampling methods. Although we
choose the loss-based algorithm [18] to evaluate the impor-
tance of samples, other algorithms (e.g. using a lightweight
model for evaluation [49]) can also be modified and integrated
into iCACHE. Specifically, we can still decide which samples
will be trained before the start of each epoch training based
on the historical importance value, reducing the data to be
fetched from the storage layer. We can also implement the
aforementioned techniques to increase the cache hit rate.

Local storage cache. Although iCACHE only uses DRAM
as cache space and does not use local storage, this does not
affect the validity of the core idea of iCACHE. In addition,
AI training data in industry often cannot be fully cached in
local storage [9]. For example, the production training dataset
of recommendation system DNN models in Meta can reach
29.18PB [52], but the local storage capacity in each node is
typically only a few TB at most, necessitating the need to
retrieve a large amount of data from remote storage servers or
parallel file systems.

VII. RELATED WORK

A. Cache Management for DNN Training

Existing cache optimizations for DNN include expanding
the cache capacity, improving the cache hit ratio considering
the access pattern of DNN training, and sharing the data in
the cache between training jobs.

Considering larger cache can hold more training samples
from a back-end parallel file system, DeepIO [53] and Co-
orDL [36] use RDMA or TCP to connect DRAM of multiple
nodes to form a shared memory to expand the cache capacity.
Fanstore [51] forms a global cache layer on burst buffers
across nodes via MPI. iCACHE is a specially designed single-
node cache system but can be easily extended to a multi-node
environment.

To improve the cache hit ratio, CoorDL [36] and
MONARCH [9] do not evict the already cached samples
because all samples are accessed in the training process in
each epoch. This method has a limited cache hit ratio, which
is determined by the ratio of cache capacity and dataset
size. Quiver [27] proposes to replace the missed samples
with samples in the cache applying the substitutability of
data items in training. In contrast, iCACHE only substitutes
unimportant samples (i.e., L-samples) missed in the cache
because replacing important samples changes the distribution
of H-samples decided by importance sampling algorithms,
which may impact the final model accuracy. The latter is a key
to accelerating training convergence and maintaining training
accuracy.

When multiple jobs are trained on the same dataset, a
unified cache is designed to share data items between the
jobs in OneAccess [21] and CoorDL [36]. iCACHE only
shares samples that all jobs consider important. Not only does
our approach reduce data redundancy in the cache but also
accelerates the convergence of I/O-bound jobs with negligible
accuracy loss of DNN models.

B. Storage Optimizations for DNN Training

To solve the performance issues caused by randomly read-
ing small samples from storage systems, much work uses
static data packaging, such as TFRecord in TensorFlow [2],
Webdataset in AIStore [3], chunk data in DIESEL [44],
Quiver [27], and DLFS [54]. Different from the existing ap-
proaches which pre-packs all data, we use dynamic packaging
in iCACHE. It selects unimportant samples to pack at runtime.
Thus, samples in packages are not static, thus improving the
randomness of data access in training.

Google proposes a technique called data echoing [6] to
eliminate the impact of data stalls caused by inefficient access
from storage. The main idea is reusing fetched data while
waiting for the next training batch to be loaded into memory.
MET [47] employs a similar concept and presents techniques
to automatically tune reusing factors. Meta proposes feature
flattening, coalesced reads, feature reordering, and other tech-
niques to improve the data storage and ingestion pipeline
of recommendation model training [52]. ReFlex [25] allows

clients to access remote flash with high performance as local
flash, which can be used in deep learning to speed up remote
training data accesses. These techniques are orthogonal to our
work and can be combined to further reduce stress on storage
systems.

C. Other Works in Context
DLFS [54] is a user-level, read-optimized file system for

deep learning that accesses local or remote targets in an
OS-bypass manner. It also accelerates metadata retrieval by
making each node maintain global metadata. Yang et al. [48]
proposed a locality-aware data loader which re-distributes data
among nodes in distributed data-parallel training to reduce
data communication when fetching data from remote nodes.
Macedo et al. [33] decouples storage optimizations from deep
learning frameworks to enhance the applicability and porta-
bility of the optimizations, getting coordinated and holistic
control of global resources. These optimization methods are
also orthogonal to our work.

VIII. CONCLUSION

In this paper, we describe the design and implementa-
tion of iCACHE, a novel cache system to reduce data stall
time for I/O-bound DNN training jobs. We are the first to
propose I/O-oriented importance sampling and apply it to
cache systems. iCACHE consists of both H-cache and L-
cache, which store samples with high importance and low
importance respectively. We use importance values of samples
to manage data items in H-cache to improve the cache hit
ratio. When there is a cache miss in L-cache, we use sample
substitutability and dynamic packaging to reduce the number
of random I/Os. Finally, it provides multi-job coordination
to avoid cache thrashing considering the cost-effectiveness of
caching of jobs. Our experimental results show that iCACHE
has a negligible impact on training accuracy and speeds up the
DNN training time by up to 2.0⇥ compared to the state-of-
the-art caching systems. As deep learning applications become
more and more popular, we hope iCACHE will inspire the
next generation of memory and storage systems designed for
artificial intelligence.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for their
constructive suggestions. This work was supported in part
by the National Key Research and Development Program of
China No.2021ZD0110700, the National Science Foundation
of China No. 62172361, the Program of Zhejiang Province
Science and Technology No. 2022C01044, the Zhejiang Lab
Research Project No. 2020KC0AC01, and the US National
Science Foundation under CNS 1906541.

REFERENCES

[1] “Orange File System,” http://www.orangefs.org/, 2021.
[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A System for Large-Scale
Machine Learning,” in Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation, 2016, pp. 265–283.

[3] A. Aizman, G. Maltby, and T. Breuel, “High Performance I/O for Large
Scale Deep Learning,” in Proceedings of the International Conference
on Big Data, 2019, pp. 5965–5967.

[4] P. Chen, S. He, X. Zhang, S. Chen, P. Hong, Y. Yin, and X.-H. Sun,
“Accelerating Tensor Swapping in GPUs With Self-Tuning Compres-
sion,” IEEE Transactions on Parallel and Distributed Systems, vol. 33,
no. 12, pp. 4484–4498, 2022.

[5] P. Chen, S. He, X. Zhang, S. Chen, P. Hong, Y. Yin, X.-H. Sun, and
G. Chen, “CSWAP: A Self-Tuning Compression Framework for Accel-
erating Tensor Swapping in GPUs,” in IEEE International Conference
on Cluster Computing. IEEE, 2021, pp. 271–282.

[6] D. Choi, A. Passos, C. J. Shallue, and G. E. Dahl, “Faster Neural Net-
work Training With Data Echoing,” arXiv preprint arXiv:1907.05550,
2019.

[7] J. Chung, K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Ubershuffle: Communication-Efficient Data Shuffling for SGD via
Coding Theory,” Advances in Neural Information Processing Systems,
2017.

[8] Z. Dang, S. He, P. Hong, Z. Li, X. Zhang, X.-H. Sun, and G. Chen,
“NVAlloc: Rethinking Heap Metadata Management in Persistent Mem-
ory Allocators,” in Proceedings of the 27th ACM International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, 2022, pp. 115–127.

[9] M. Dantas, D. Leitao, C. Correia, R. Macedo, W. Xu, and J. Paulo,
“MONARCH: Hierarchical Storage Management for Deep Learning
Frameworks,” in Proceedings of the 2021 IEEE International Conference
on Cluster Computing. IEEE, 2021, pp. 657–663.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-Scale Hierarchical Image Database,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–
255.

[11] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning: Adaptive
Computation and Machine Learning Series,” Cambridge Massachusetts,
2017.

[12] Google, “Open images dataset,” https://github.com/cvdfoundation/open-
images-dataset, 2018.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[14] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient Convolutional
Neural Networks for Mobile Vision Applications,” arXiv preprint
arXiv:1704.04861, 2017.

[15] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and
K. Keutzer, “Densenet: Implementing Efficient Convnet Descriptor
Pyramids,” arXiv preprint arXiv:1404.1869, 2014.

[16] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-Level Accuracy with 50x Fewer
Parameters and¡ 0.5 MB Model Size,” arXiv preprint arXiv:1602.07360,
2016.

[17] K. R. Jayaram, V. Muthusamy, P. Dube, V. Ishakian, C. Wang, B. Herta,
S. Boag, D. Arroyo, A. Tantawi, A. Verma, F. Pollok, and R. Khalaf,
“FfDL: A Flexible Multi-Tenant Deep Learning Platform,” in Proceed-
ings of the 20th International Middleware Conference, 2019, pp. 82–95.

[18] A. H. Jiang, D. L.-K. Wong, G. Zhou, D. G. Andersen, J. Dean, G. R.
Ganger, G. Joshi, M. Kaminksy, M. Kozuch, Z. C. Lipton, and P. Pillai,
“Accelerating Deep Learning by Focusing on The Biggest Losers,” arXiv
preprint arXiv:1910.00762, 2019.

[19] S. Jiang and X. Zhang, “LIRS: An Efficient Low Inter-Reference Re-
cency Set Replacement Policy to Improve Buffer Cache Performance,”
SIGMETRICS Perform. Eval. Rev., 2002.

[20] T. B. Johnson and C. Guestrin, “Training Deep Models Faster with
Robust, Approximate Importance Sampling,” Advances in Neural In-
formation Processing Systems, 2018.

[21] A. Kakaraparthy, A. Venkatesh, A. Phanishayee, and S. Venkataraman,
“The Case for Unifying Data Loading in Machine Learning Clusters,”
in Proceedings of the 11th USENIX Workshop on Hot Topics in Cloud
Computing, 2019, pp. 283–296.

[22] Karen Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arxiv: 1409.1556, 2014.

[23] A. Katharopoulos and F. Fleuret, “Biased Importance Sampling for Deep
Neural Network Training,” arXiv preprint arXiv:1706.00043, 2017.

[24] A. Katharopoulos and F. Fleuret, “Not all Samples are Created Equal:
Deep Learning with Importance Sampling,” in Proceedings of the
International Conference on Machine Learning, 2018, pp. 2525–2534.

[25] A. Klimovic, H. Litz, and C. Kozyrakis, “Reflex: Remote flash ⇡ local
flash,” in Proceedings of the 27th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2017, p. 345–359.

[26] A. Krizhevsky, “Learning Multiple Layers of Features From Tiny
Images,” Tech. Rep., 2009.

[27] A. V. Kumar and M. Sivathanu, “Quiver: An Informed Storage Cache
for Deep Learning,” in Proceedings of the 18th USENIX Conference on
File and Storage Technologies, 2020, pp. 283–296.

[28] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,
A. Mahesh, M. Matheson, J. Deslippe, M. Fatica, Prabhat, and M. Hous-
ton, “Exascale Deep Learning for Climate Analytics,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, 2018, pp. 649–660.

[29] G. Lee, I. Lee, H. Ha, K. Lee, H. Hyun, A. Shin, and B.-G. Chun,
“Refurbish Your Training Data: Reusing Partially Augmented Samples
for Faster Deep Neural Network Training,” in Proceedings of USENIX
Annual Technical Conference, 2021, pp. 537–550.

[30] Z. Li, B. Jiao, S. He, and W. Yu, “PHAST: Hierarchical Concurrent Log-
Free Skip List for Persistent Memory,” IEEE Transactions on Parallel
and Distributed Systems, 2022.

[31] X. Liu, P. He, W. Chen, and J. Gao, “Multi-Task Deep Neural Networks
for Natural Language Understanding,” arXiv preprint arXiv:1901.11504,
2019.

[32] I. Loshchilov and F. Hutter, “Online Batch Selection for Faster Training
of Neural Networks,” arXiv preprint arXiv:1511.06343, 2015.

[33] R. Macedo, C. Correia, M. Dantas, C. Brito, W. Xu, Y. Tanimura,
J. Haga, and J. Paulo, “The Case for Storage Optimization Decoupling
in Deep Learning Frameworks,” in 2021 IEEE International Conference
on Cluster Computing, 2021, pp. 649–656.

[34] N. Megiddo and D. S. Modha, “ARC: A Self-Tuning, Low Overhead
Replacement Cache,” in Proceedings of the 2nd USENIX Conference on
File and Storage Technologies, 2003, pp. 248–255.

[35] Microsoft, “Analyzing and Mitigating Data Stalls in DNN Training,”
https://github.com/msr-fiddle/DS-Analyzer, 2021.

[36] J. Mohan, A. Phanishayee, A. Raniwala, and V. Chidambaram, “Ana-
lyzing and Mitigating Data Stalls in DNN Training,” Proceedings of the
VLDB Endowment, 2021.

[37] H. A. Pierson and M. S. Gashler, “Deep Learning in Robotics: a Review
of Recent Research,” Advanced Robotics, 2017.

[38] C. Pinto, Y. Gkoufas, A. Reale, S. Seelam, and S. Eliuk, “Hoard: A
Distributed Data Caching System to Accelerate Deep Learning Training
on the Cloud,” arXiv preprint arXiv:1812.00669, 2018.

[39] S. Pumma, M. Si, W. C. Feng, and P. Balaji, “Scalable Deep Learning
via I/O Analysis and Optimization,” ACM Transactions on Parallel
Computing, vol. 6, no. 2, pp. 1–34, 2019.

[40] PyTorch, “PyTorch/Vision,” https://github.com/pytorch/vision/tree/
master/torchvision, 2021.

[41] C. Seifert, A. Aamir, A. Balagopalan, D. Jain, A. Sharma, S. Grottel,
and S. Gumhold, “Visualizations of Deep Neural Networks in Computer
Vision: A Survey,” in Proceedings of the Transparent Data Mining for
Big and Small Data, 2017, pp. 123–144.

[42] S. Shi, X. Zhou, S. Song, X. Wang, Z. Zhu, X. Huang, X. Jiang, F. Zhou,
Z. Guo, L. Xie, R. Lan, X. Ouyang, Y. Zhang, J. Wei, J. Gong, W. Lin,
P. Gao, P. Meng, X. Xu, C. Guo, B. Yang, Z. Chen, Y. Wu, and X. Chu,
“Towards Scalable Distributed Training of Deep Learning on Public
Cloud Clusters,” Proceedings of Machine Learning and Systems, vol. 3,
pp. 401–412, 2021.

[43] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and
Q. V. Le, “Mnasnet: Platform-Aware Neural Architecture Search for
Mobile,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 2820–2828.

[44] L. Wang, S. Ye, B. Yang, Y. Lu, H. Zhang, S. Yan, and Q. Luo,
“DIESEL: A Dataset-Based Distributed Storage and Caching System
for Large-Scale Deep Learning Training,” in Proceedings of the 49th
International Conference on Parallel Processing, 2020, pp. 1–11.

[45] R. Wang, S. He, W. Zong, Y. Li, and Y. Xu, “XPGraph: XPline-Friendly
Persistent Memory Graph Stores for Large-Scale Evolving Graphs,”
in IEEE/ACM International Symposium on Microarchitecture. IEEE,
2022, pp. 1308–1325.

[46] X. Wang, H. Zhao, and J. Zhu, “GRPC: A Communication Cooperation
Mechanism in Distributed Systems,” ACM SIGOPS Operating Systems
Review, 1993.

[47] C. Xu, S. Bhattacharya, M. Foltin, S. Byna, and P. Faraboschi, “Data-
Aware Storage Tiering for Deep Learning,” in 2021 IEEE/ACM Sixth
International Parallel Data Systems Workshop, 2021, pp. 23–28.

[48] C.-C. Yang and G. Cong, “Accelerating Data Loading in Deep Neural
Network Training,” in Proceedings of the 26th International Conference
on High Performance Computing, Data, and Analytics, 2019, pp. 235–
245.

[49] J. Zhang, H.-F. Yu, and I. S. Dhillon, “Autoassist: A Framework
to Accelerate Training of Deep Neural Networks,” arXiv preprint
arXiv:1905.03381, 2019.

[50] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An Extremely
Efficient Convolutional Neural Network for Mobile Devices,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 6848–6856.

[51] Z. Zhang, L. Huang, J. G. Pauloski, and I. T. Foster, “Efficient I/O for
Neural Network Training With Compressed Data,” in Proceedings of
the IEEE International Parallel and Distributed Processing Symposium,
2020, pp. 409–418.

[52] M. Zhao, N. Agarwal, A. Basant, B. Gedik, S. Pan, M. Ozdal, R. Komu-
ravelli, J. Pan, T. Bao, H. Lu, S. Narayanan, J. Langman, K. Wilfong,
H. Rastogi, C.-J. Wu, C. Kozyrakis, and P. Pol, “Understanding Data
Storage and Ingestion for Large-Scale Deep Recommendation Model
Training,” in Proceedings of the 49th Annual International Symposium
on Computer Architecture, 2022, pp. 1042–1057.

[53] Y. Zhu, F. Chowdhury, H. Fu, A. Moody, K. Mohror, K. Sato, and
W. Yu, “Entropy-Aware I/O Pipelining for Large-Scale Deep Learning
on HPC Systems,” in Proceedings of the 26th International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems, 2018, pp. 145–156.

[54] Y. Zhu, W. Yu, B. Jiao, K. Mohror, A. Moody, and F. Chowdhury,
“Efficient User-Level Storage Disaggregation for Deep Learning,” in
Proceedings of the IEEE International Conference on Cluster Comput-
ing, 2019, pp. 1–12.

