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Abstract 
 
The efforts to construct a national scale grid computing 

environment has brought unprecedented computing 
capacity. Exploiting this complex infrastructure requires 
efficient middleware to support the execution of a 
distributed application, composed of a set of subtasks, for 
best performance. This presents the challenge how to 
schedule these subtasks in shared heterogeneous systems. 
Current work has several limitations. Most scheduling 
systems are based on determined estimation of task 
completion time. Current application-level scheduling 
algorithms are too closely coupled with application 
internal structures. The application performance may 
suffer when some resources represent abnormal usage 
pattern during applications execution. To address these 
issues, we develop a prototype of Grid Harvest Service 
(GHS) to provide dynamic and self-adaptive task 
scheduling. Experimental results show GHS outperforms 
current systems in scheduling large applications in a non-
dedicated heterogeneous environment. 
 
 
1. Introduction 

 
In order to provide high performance computation 

power to serve the increasing need of large applications, 
people strive to improve the single machine's capacity or 
construct a distributed system composed of a scalable set 
of machines. Compared to the former, in which 
improvement is mainly up to hardware technology 
development, the construction of a distributed system for 
resource collaboration is more complex. Some of well-
known existing or ongoing distributed systems composed 
of heterogeneous resources are Condor [1], NetSolve [2], 
Nimrod [3], Globus and the Grid computation 
environment [4]. While these systems, especially the Grid, 
bring unprecedented computing power for users, how to 
deliver this great computing power is still an elusive 
problem. One of the major puzzles is how to schedule 

applications in these systems. In general, scheduling 
applications in a distributed system is a NP-hard problem. 
Many heuristic scheduling algorithms and systems are 
proposed to address this issue. However, most of 
scheduling algorithms so far proposed are for dedicated 
systems. By dedicated, we refer resources in the system 
serve the application in a dedicated fashion. This is against 
the situation that most of current distributed systems are 
resource-sharing environments [5].  

Good schedules in a shared environment involve the 
integration of application specific information and system 
specific information. We study a performance-prediction 
based task scheduling system, which provides task 
allocation and scheduling based on application-level and 
system-level performance prediction. The effects of 
system specific information, such as utilization, job 
service rate and job arrival rate, and application-specific 
information, such as workload, divisibility, parallel 
processing, on the application performance have been 
identified. Our preliminary results demonstrate the 
effectiveness of our scheduling mechanism for long-term 
applications. Our earlier work [6] focuses on the task 
scheduling for parallel processing which assumes that the 
total workload of a parallel application could be arbitrarily 
partitioned. In this study, we extend our scheduling policy 
for a class of widely used Grid applications, the 
parameter-sweep applications. It is composed of a set of 
independent and indivisible tasks [7]. 

A key question is that how to maintain the parallel 
application performance when some of resources assigned 
for subtasks represent abnormal status from their historical 
information. A successful scheduling depends on the 
accuracy of system status prediction, which is deducted 
from the resource historical information. The application 
performance suffers under the situation of resource 
abnormality and there is a fair chance that a resource may 
show different usage pattern from its history in a large 
distributed system. To provide a robust task scheduler to 
work in this dynamic situation, we introduce a self-
adaptive task scheduling algorithm, which monitors the 
long-running application progress and detects possible 
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resource abnormality. The self-adaptive scheduling 
algorithm will select appropriate resources and reassign 
tasks on abnormal machines to these selected resources 
based on application-level prediction. 

Our goal in task scheduling system is to provide a 
general-purpose and robust scheduling approach. The task 
scheduling is divided into three parts, allocator, predictor 
and scheduler. Allocator decides how to allocate subtasks 
of a divisible application for each machine in a group of 
machines, where a divisible application refers to an 
application that could be partitioned into a set of subtasks. 
Predictor estimates the application execution time 
distribution on each machine. Scheduler decides which set 
of machines is the best among all sets of machines.  

In the following sections, we will show that different 
task allocation methods and scheduling algorithms are 
used for different situations. Even for the same situation, 
different task allocation approaches could be applied. In 
this way, we provide a flexible task scheduling mechanism 
for the need of different application scheduling scenarios. 
Our proposed scheduling system is much flexible as, on 
one hand it could be easily integrated with other 
scheduling systems, while on the other hand other work in 
different aspects of task scheduling can be easily 
incorporated into our work. 

The rest of this paper is organized as follows: Section 2 
describes the related work. Section 3 introduces our 
proposed task-scheduling system design. We then proceed 
to study the system-level prediction and application-level 
prediction. Various scenarios of task allocation and 
scheduling are then discussed. Experimental results are 
presented in Section 4. We compare GHS scheduling 
system with current scheduling systems and verify the 
efficiency of the self-adaptive scheduling algorithm. 
Finally we conclude and summarize our work in section 5. 
 
2. Related work 

 
Related earlier work in task scheduling policy mainly 

focused on dedicated systems, which cannot be assumed in 
non-dedicated computing environment like Grid. A 
resource reservation strategy [8] is proposed to address 
this problem. The shared resources are reserved in advance 
for one user's dedicated occupancy. It is useful for time 
urgent application and could be applied on space-shared 
supercomputers because they can provide dedicated nodes 
for running the applications. However, it is not feasible on 
time-shared resources such as PC and workstation in a 
heterogeneous system because private owners usually 
don't want their machine dedicated for grid tasks. Task 
scheduling in such a shared non-dedicated computing 
environment offers a big challenge. A task scheduling 
mechanism based on determined prediction of machine 
availability has been investigated in [7]. This method 
might be simple and good as it is useful for scheduling 

short-running applications in a single machine or a small 
system. However, due to the internal limitation of its 
determined prediction method, it is not suitable for 
scheduling distributed applications in a large system since 
the prediction error caused by fluctuation of resource 
status increases with the number of resources running 
applications. Yan Alexander Li and John K. Antonio 
developed a probabilistic approach to estimate the 
execution time of a parallel application in a heterogeneous 
computing system. However, their model is based on the 
assumption that the execution time distribution of 
individual task is pre-known [9]. And the effect of system-
specific information on the application performance is not 
reflected in their work. 

Different task scheduling policies are applied in various 
heterogeneous computing environments. GASA (Grid 
Advance Reservation API) [8] is a subsystem of Globus 
project. It provides mechanism for resource reservation so 
that applications can receive a certain level of service from 
a resource. As we mentioned before, this policy doesn't 
favor the privilege of the private owners of shared 
resources. Condor system [1] provides a matchmaking 
mechanism to allocate resources with ClassAds. Legion 
system [10] also supports resource reservation. It focuses 
on providing basic mechanisms for building application-
level scheduling algorithms rather than construct 
scheduling algorithm itself. A simple random selection 
policy is provided as the default scheduling mechanism. 
Currently, the scheduling algorithms in the AppLeS [8] 
project are supported by the short-term system prediction 
provided by NWS services. Although they consider the 
availability of resources in making the scheduling 
decision, none of them fully identify the effect of 
"sharing" characteristics of resources on the execution 
time of applications. Their scheduling algorithms are too 
closely coupled with application internal structures They 
don't consider rescheduling during the application 
execution when some resources show abnormality.  

 
3. Task scheduling system 

 
Prediction of application and system performance is 

necessary for a good schedule. Some of current scheduling 
systems did involve some prediction work. However due 
to the determined approach of their simple performance 
models, the effect of various system parameters on the 
application performance is not available in their systems. 
The performance prediction in GHS is based on 
probabilistic modeling. The effect of system-specific 
information on application performance has been 
identified by our general performance model  [11]. How to 
apply the prediction for task scheduling so that the make 
span of applications could be minimized is our goal. The 
application-level prediction and related measurement 
mechanism has been discussed in [6]. 
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 In this study, a system-level prediction approach has 
been introduced to extend our work in prediction. A task 
allocation component is separated from scheduling and 
different allocation methods are discussed. By dividing 
task scheduling into three parts, task allocator, predictor 
and task scheduler, a general task scheduling mechanism 
has been provided. It could be easily integrated by other 
scheduling system and we can also easily introduce other 
people's work into GHS. To reduce the performance loss 
brought by abnormal resource usage pattern, an adaptive 
scheduling algorithm is investigated. In this paper, we 
focus on scheduling computation-intensive applications. 
Other people's work in communication cost estimation 
[12] could be introduced into GHS. More efforts will be 
made in considering communication-intensive applications 
in the future. 

 
3.1 System architecture 

 
A block diagram of GHS system design is shown below 

in Figure 1. A user submits an application with its 
characteristics (application type, workload) to the Task 
Manager. It inquires the Task Scheduler for qualified 
scheduling solution: By accessing the resource 
information which could be provided by Resource 
Information Service, the Task Scheduler finds a list of 
potential resources. The Task Scheduler searches possible 
task allocation plans. The Task Allocator decides how to 
map tasks among resources based on the prediction of 
system status provided by system-level predictor. The map 
of tasks on machines will be forwarded to Application-
level Predictor to estimate the application performance. A 
best scheduling solution satisfying the evaluation criteria 
is returned to the Task Manager. When the user is satisfied 
with the expected application performance, the application 
will be submitted for running in the distributed 
computation environment through the Task Execution 
Service. The Task Manager monitors the application 
execution and may invocate the Task scheduler to 
reschedule the application in the system. The resource 
information is collected through various Sensors (Network 
sensors, IO sensors and CPU sensors) and stored in the 
Resource Information Service, which provides the access 
of resource information for the System-level Predictor and 
the Task Scheduler. 
 
3.2 Predictor 

 
Based on the observation of machine usage pattern 

[13,14], we assume that the local job processing follows 
M/G/1 queuing system, which is determined by system 
parameters λ , ρ , σ , where ρ  is the system utilization, 
λ  is the arrival rate of the local jobs and σ  is the 
standard deviation of service time of local jobs. These 
parameters may vary throughout a day in a real system. 

How to capture these dynamic characteristics of resources 
is the primary goal of the system-level predictor.  

To estimate the values of system parameters in the 
incoming time interval, we basically choose the mean-
based method, which uses arithmetic average of 
measurement of a parameter as an estimate of its mean 
value. Similar methods are used in NWS and RPS project.  
The difference lies in the selection of the sample space.  
Instead of using only the average of measurements of a 
system parameter during the previous N number of 
continual time intervals as the estimate of the system 
parameter value for the next time interval, we also 
consider the average of measurements during the previous 
N number of "similar" time intervals. For example, if we 
predict a system parameter for the time period from 5 pm 
to 7 pm, the average of parameter values measured during 
the continuous previous 2 hours periods before 5 pm and 
the average of parameter values measured from 5 pm to 7 
pm in previous days are both collected for estimation. We 
notice that other forecast models, such as LAST model, 
AR model, and ARIMA model, can also be used in our 
algorithm. 

The goal of application-level predictor is to estimate 
the application execution time in a shared distributed 
system. The difference between our application-level 
predictor and other people’s work is that we estimate the 
application make-span based on probabilities analysis 
instead of determined approach used by other scheduling 
systems. So the effect of both system specific information 
and application-specific information on the application 
performance is identified in our application-level 
prediction. These system parameters, λ , ρ  and σ , 
reflect the sharing characteristics of resources in a non-
dedicated distributed system. The workload and 
divisibility of an application reflect the general 
characteristics of applications. If an application is a single 
indivisible task, the cumulative distribution function of the 

Figure 1. A framework of GHS task 
scheduling system 
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application completion time on a machine can be 
calculated as [SuWu03]: 
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where )(SU  is the sum of the busy periods of the machine 
owner’s local jobs. We denote τ  the computing capacity 
of the machine and w  the workload of the application. If 
the workload of the application is divisible, we can use 

)Pr()Pr( tTtT k ≤∏=≤ to calculate the cumulative 
distribution function of the application completion time 
(T). We assume that the sub-workload on each machine, 

kw , is pre-known before running application-level 
predictor. The calculation of kw  is actually finished by the 
Task Allocator component.  
 
3.3 Task allocator 

 
When an application is a single indivisible task, we 

choose a machine where the sum of the expectation and 
variance of application execution time is minimal. In 
general, however, an application in a distributed system is 
likely to be solved concurrently for best performance. This 
may happen in two scenarios. The first is that the 
application is divisible, which means the application can 
be partitioned into subtasks arbitrarily. Another scenario is 
that the application consists of independent indivisible 
subtasks. We cannot further partition these indivisible 
subtasks. There are still two situations generally to be 
concerned. One is that subtasks have no dependency 
among each other. We define such an application as a 
meta-task. Another situation is that there are dependencies 
among subtasks. In this paper, we study the meta-task 
scheduling. An ideal example of such applications is the 
class of parameter-sweep applications, which is composed 
of a set of independent tasks [7].  

For a given set of resources, the Task Allocator decides 
how to partition/group subtasks of an application and then 
map them to a set of resources to reach optimal 
performance. If the workload of an application is divisible, 
the task allocation is a partition problem. If an application 
is composed of indivisible subtasks, the task allocation 
becomes a task grouping issue. We have developed two 
allocation algorithms respectively for the two classes of 
applications. In the former situation, a mean-time 
allocation algorithm is applied. The workload is assigned 
to each resource based on the expected mean execution 
time of subtasks on the resource. Figure 2 gives the 
details of mean-time task allocation algorithm where kρ  is 
the utilization of resource k and kτ  its processing power. 

 

When an application is composed of indivisible 
subtasks, the Task Allocation component uses the min-min 
algorithm to group subtasks and map each subtask group 
to one of resources for optimal performance based on the 
estimation of subtask execution time.  Suppose we have an 
application composed of a number of independent tasks, 

},...,,{ 21 pTTT  with workload },...,,{ 21 pwww  and a list of 
machines },...,,{ 21 qMMM , Figure.3 shows the min-min 
task group allocation algorithm in details. 
 

 
3.4 Self-adaptive scheduling 
 

The Task Scheduler is responsible for finding a 
potential machine set for users' applications in a 
heterogeneous environment. It is supported by the Task 
Allocator and the Application-Level Predictor. Our Task 
Scheduler supports different scheduling scenarios 
according to the application characteristics. Our Task 
Scheduler can support different task scheduling scenarios: 
single sequential task scheduling, optimal parallel 
processing with a given number of subtasks, optimal 
parallel processing and meta-task scheduling. A heuristic 
task-scheduling algorithm is proposed to find an 
acceptable solution with a reasonable cost. In this study, 
we focus on self-adaptive scheduling. 

In the grid computation environment, most of resources 
are shared. There is a fair chance that some of resource 
may represent abnormal performance from their historical 
records, especially when the size of machine set is large. If 
the performance of some of resources running subtasks of 
the scheduled application is degraded, the completion time 
of application will increase. How to decide whether we 
should reschedule the application and which resource we 
should choose are the problems we need to consider. A 
self-adaptive task scheduling algorithm is thus proposed to 

Assumption: a parallel task with workload W, and a 
list of resources },...,,{ 21 qMMM .  

Objective:  map subtask kw  to each machine 

},...,,{ 21 qMMM . 

-----------------------------------------------------------------
Begin 
For each machine kM  )1( qk ≤≤  

kkm

k
kk

k
Ww τρ

τρ
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)1(
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−
−
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End For 
Return kw  )1( qk ≤≤ ; 
End 

Figure 2. Mean-time task 
partition algorithm 
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address this issue. The basic idea is to assign subtasks on a 
resource showing abnormal performance to other 
appropriate resources. The subtasks could be either 
migrated or restarted on the selected machine, which is up 
to migration cost and whether migration is possible. The 

selection of machines is decided based on the estimation 
of the whole application completion time on the updated 
machine set. The criterion of introducing a new scheduling 
plan is whether the new plan brings performance gain for 
the application performance. Because there is no general 
performance model to estimate migration cost and the 
communication cost of process migration may be 
overlapped with the computation of subtasks, we ignore 
the effect of migration cost in the rescheduling decision. 
The consideration of migration cost is our future work. 

The estimate of application performance is based on the 
measurement of system parameters. The details of 
measure mechanism have been given in our previous work 
[SuWu03]. We can use the same technique to measure kλ , 

kσ  and kτ  because the running of the scheduled 
application doesn’t affect these system parameters. 
However, for system utilization, kρ , we can not use 
vmstat utility to measure it since the resource utilization is 
theoretically close to 100% during the application 

execution. We use the ps utility to measure the subtask 
CPU time. The ratio of the subtask CPU time and its real 

system time will be used as the estimate of kρ .  
When the system parameters indicate the abnormality 

of resources, we need to estimate the application 
performance in the new situation. An extension of formula 
(1) is used to calculate the cumulative distribution function 
of the application execution time in this situation. 
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it  denotes the execution time of subtasks on machine i  so 

Objective: Monitor the execution of an application in a set 
of machines and reallocate subtasks of the application if 
necessary. 
-------------------------------------------------------------------------
Begin 
Repeat 
Measure the prediction error of the system utilization, 

kPU , on machine kM . 

If  ThrottlePU k >  then Calculate )( originalTE ; 

List a set of machines that are current lightly loaded, 
},...,,{ 21 qMMM ; 

If reallocation is one-to-one then 
  For each machine, iM , suppose it is the machine which 

the subtask will be assigned. Calculate i
reassignTE )(  with 

formula (2) 
  End For 
  Find the machine iM , which has the maximum 

j
reassignoriginal TETE )()( −  

  If  0)(()( >− j
reassignoriginal TETE  then  

   Migrate the subtask on machine kM  to machine iM . 
  End If 
End If 
If reallocation is one-to-all then 
   Sort the list of idle machines in a decreasing order with 

kk τρ )1( − , 
  Use bi-section search to find appropriate machine set P, 

which has the maximum P
reassignoriginal TETE )()( −  

   If  0)(()( >− P
reassignoriginal TETE  then  

migrate the subtask on machine k  to the machine set P .
   End If 
End If 
Until the application is completed 
End 

Figure 4. Self-adaptive task 
scheduling algorithm 

Assumption: an application composed of a number of 
independent subtasks, },...,,{ 21 pTTT  and a list of machines 

},...,,{ 21 qMMM . Each subtask is indivisible. 

Objective:  find a task group },...,,{
21 qkkkk TTTTG = for 

machine kM  )1( qk ≤≤ . 
-------------------------------------------------------------------------
Begin 
/* kW  means the current workload on machine kM  */ 

0=kW , φ=kTG , )1( qk ≤≤ ; 1=i ; 

While pi <   

1=j ; 
 While qj <  

)]1(*/[)( , jjiji wTE ρτ −= ; 

1+= jj ; 
 End While 

Choose machine kM ′  where 

)()]1(*/[ ,kikkk TEW ′′′′ +− ρτ is minimal.  

 }{ ikk TTGTG ∪= ′′ , ikk wWW += ′′ ;
 1+= ii ; 
End While 
Return kTG  and kW  )1( qk ≤≤ ; 
End 

Figure 3. Min-min task group 
allocation algorithm 
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far and '
iw  denotes the workload of subtasks on machine i  

that haven’t been completed. }{max '
max ii wtmumw += . 

During the execution of the application, we check 
running information of subtasks on each machine 
periodically. We compare the difference between the 
expected kρ  and the real kρ . If the difference is more than 
a throttle, we assume the resource suffers abnormality. 
The set of the monitor period is related to the set of the 
throttle. In the next section, we conducted experiments 
with different monitor periods and throttles. Using formula 
(2), we calculate the mean of the completion time of the 
scheduled application with and without reassignment in 
the new situation. We denote the former as )( originalTE  and 
the later )( reassignTE . If 0)()( >− reassignoriginal TETE , that 
indicates move/migration will benefit the application 
performance. We select resources that can bring the most 
performance gain if we assign subtasks on an abnormal 
resource to them. A detailed description of the self-
adaptive scheduling algorithm is given in Figure 4. In this 
algorithm, we assume there are two situations of task 
reallocation. The first is one-to-one task reallocation, 
which means that all uncompleted subtasks on an 
abnormal machine will be moved as a unit to another 
machine if the reallocation can benefit the application 
running time. The second is one-to-all task reallocation, 
which means that the uncompleted tasks on an abnormal 
machine could be moved separately to any possible 
machine to favor application make-span. In this situation, 
we invoke the min-min task group allocation algorithm 
discussed in Section 3.2 to map the uncompleted tasks on 
an abnormal machine into other machines. We set 0=kW , 

φ=kTG  for the identified abnormal machines and 
=kW {the sum of workload of completed tasks} and 
=kTG {the set of completed tasks} for other machines. 

 
4. Experiment results 

 
To verify the efficiency of our scheduling algorithms, 

we compare GHS schedule with the AppLeS schedule, a 
currently widely used task scheduling mechanism in Grid 
computing. AppLeS schedule is based on NWS short-term 
system prediction. Experiments are conducted to test the 
performance of AppLeS task scheduling and GHS task 
scheduling for long-term applications. The results show 
GHS outperforms AppLeS for scheduling long-running 
applications and it requires less number of resources 
running the scheduled application than AppLeS. We then 
test the efficiency of our self-adaptive scheduling 
algorithm. Simulation results show the self-adaptive 
algorithm can identify the abnormality of resources and 
reduce the make-span of the scheduled application through 

dynamically reassigning subtasks during the application 
execution. 

 
4.1 Comparison of GHS schedule and AppLeS 

schedule 
AppLeS makes scheduling decision by estimating the 

mean of short-term subtask execution time based on the 
availability of resources. The effects of other system 
specific factors are not analyzed due to the inherent 
limitation of these methods. GHS task scheduling system 
provides long-term application-level performance 
prediction in heterogeneous non-dedicated distributed 
computation environment. The effects of machine 
utilization, computing power, local job service and parallel 
processing on the completion time of parallel task are 
individually identified. 

To test the performance of AppLeS task scheduling and 
GHS task scheduling for long-term applications, we 
conduct experiments to compare the completion time of 
applications based on AppLeS task scheduling and GHS 
task scheduling. Here we consider the parameter sweep 
application because AppLeS doesn't support optimal 
parallel processing. To remove the difference caused by 
system-level prediction, we assume that the system 
parameters are pre-known by both scheduling systems. 
The comparison of application completion time (seconds) 
and the number of machine set with the two different 
scheduling systems is given in Table 1. The experiment 
results show that the application completion time with 
GHS is reduced by 10%-20% compared with that with 
AppLeS system while only about one half of machines 
used in AppLeS system are required for task scheduling in 
GHS. That indicates that GHS scheduling system has the 
real potential to identify a smaller set of machines to 
execute long-running applications in a shorter time. 
 
4.2 Self-adaptive scheduling 

 
In section 3.4, we have discussed how to reschedule 

when we find that a resource showing irregular situation. 
To testify the efficiency of the rescheduling algorithm, we 
have to answer the following questions: 

1. Whether the algorithm can identify the abnormal 
machine? What is the error rate? 

2. Whether the self-adaptive scheduling algorithm 
can reduce the application performance loss due 
to resource abnormality? 

3. What is the appropriate utilization throttle to 
benefit the application performance? 

 To answer these questions, we go through a series of 
simulations. The arrival rate of local jobs on each 
machine’s follows Poisson distribution. The local jobs’ 
lifetime is simulated with 2.0/x [15]. The arrival rate and 
service rate are randomly generated for each machine in an 



 

adjustable range. During the execution of the application, 
we randomly select some machines and change their local 
job arrival rates and service rates. The number of machine 
showing abnormality during the application execution 
could be also adjusted. The workload of the application is 
divisible. 

 
 A perfect identification of abnormal machines means 

that we successfully identify all abnormal machines while 
we don't make any mistake to take any normal machine as 
an abnormal machine. So we use two metrics to describe 
the capability of the self-adaptive scheduling algorithm 
identifying abnormal machines, right identification of 
abnormal machine rate (RIAM) and right identification of 
normal machine rate (RINM). RIAM denotes the ratio of 
the number of identified abnormal machines to the number 
of actual abnormal machines. RINM is defined as 1- 

nf NN /  where 
fN  denotes the number of identified 

abnormal machines which are actually normal machines 
and nN  denotes the number of normal machines. To 
evaluate the efficiency of the self-adaptive algorithm in 
reducing the completion time of an application in the case 
of machines showing abnormal, we define the 
performance loss reduction rate (PLRR) as 

regular

adaptiveselfregular

T
TT −− .  adaptiveselfT −

 denotes the completion 

time of a scheduled application with the self-adaptive 
algorithm. regularT  denotes the completion time of the 
scheduled application with the normal compile-time 
scheduling. Table 2 gives measured RIAM, RINM and 
PLRR with different utilization throttles. We set two 
system monitor periods, one hour and two hours. The 
utilization of a normal machine is between 15% and 40%. 
The utilization of an abnormal machine is between 60% 
and 75%. The size of the machine set is 20. Two machines 
are randomly selected to become irregular from a random 

time during the application running. For each monitor 
period setting, we run simulation 30 times. The simulation 
results show that RIAM decrease with the increase of 
utilization throttle while the RINM increase with the 
increase of utilization throttle. From Table 2, we can find 
that the self-adaptive algorithm efficiently reduce the 
application performance loss. It works best when the 
utilization throttle is set between 10%-30%. When the 
utilization throttle is out of this range, either low or high, 
the gain is comparably smaller.  

 We believe that the more the average utilization 
difference between abnormal machines and normal 
machines, the more benefit we can get through the self-
adaptive scheduling algorithm. Our simulation results 
indicate that the PLRR increases when either the average 
utilization of abnormal machine increases or the average 
utilization of normal machines decreases. Table 3 shows 
measured PLRR when we set different utilization 
differences. The monitor period is two hours. The 
utilization throttle is 20%. The PLRR is the average of 30 
times of running simulation. We find that the PLRR 
increase around 65% when we increase the utilization 
difference from 10% to 70%. 
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Table 2. The measured RIAM, RINM and 
PLRR with different utilization throttles 

Monitor period        
(two hour) 

Monitor period 
(one hour) Utilization 

Throttle 
RIAM RINM PLRR RIAM RINM PLRR

5% 1.0 0.01 0.24 1.0 0.00 -0.38 

10% 1.0 0.71 0.58 1.0 0.06 0.3 

20% 1.0 1.0 0.51 1.0 0.98 0.54 

30% 0.91 1.0 0.47 0.97 1.0 0.53 

40% 0.63 1.0 0.31 0.85 1.0 0.44 

50% 0.18 1.0 0.26 0.56 1.0 0.22 
Table 1. Comparison of task completion time 
and the number of machine set used by 

AppLeS system and GHS system 

Workload 
(Maximum machine 

number) 

13801.7
(25) 

27619.2
(50) 

53779.5
(100) 

108642.5
(200) 

215141.0
(400) 

Task 
completion 

time (s) 
496.4 557.7 712.8 874.5 1140.4

GHS Number of 
machine 

set 
13 26 57 99 113 

Task 
completion 

time (s) 
547.4 637.4 818.3 1022.7 1266 

AppLeS Number of 
machine 25 50 100 200 400 
7

 Conclusion and future work 

n this paper, we study task scheduling of a parallel or 
ributed application with a divisible workload in a 
rogeneous environment. We present prediction 
hanisms both in system-level and application-level 
d on a new performance model. Different task 

cation algorithms are introduced for scheduling 
llel program and meta-task. To reduce performance 
 caused by possible machine "mutation", a self-
ptive task scheduling algorithm is developed. Initial 
erimental testing was conducted at the Sun  
puteFarm at IIT to compare GHS task scheduling 

em with other current performance prediction based 
 scheduling system. The results show that GHS 
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provides a general-purpose scheduling mechanism for 
long-term applications. The dynamic and self-adaptive 
scheduling algorithm we propose adequately captures the 
dynamic nature of distributed computing and therefore 
provides a robust scheduling by reallocating tasks in the 
represent of resource abnormalities, which is not 
addressed by current scheduling systems. The performance 
loss can be reduced by 50%-60%. The experiment results 
demonstrate that GHS outperforms current systems in 
scheduling long-term applications in a heterogeneous 
computing environment. The task completion time with 
GHS scheduling system decreases by 10%-20% compared 
with that with AppLeS scheduling system while only 
about one half of machines used in AppLeS system are 
required for application running in GHS system. 

 
Table 3. The measured PLRR with different 

utilization difference 
Utilization 
difference 10% 20% 30% 40% 50% 60% 70% 

PLRR -0.02 0.08 0.21 0.32 0.45 0.56 0.65 

 
We propose and implement a prototype of long-term, 

application-level task scheduling system for shared 
heterogeneous computing environment based on 
probabilistic approach. It is a satisfactory complement of 
existing performance evaluation and task scheduling tools. 
The three parts of task scheduling, task allocator, 
scheduler and predictor, can be easily integrated into 
existing toolkits for better service. To improve the 
applicability and accuracy of GHS scheduling system, the 
communication and the migration cost in task allocation 
will be considered in the future work. 
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