
 1

A General Self-adaptive Task Scheduling System for
Non-dedicated Heterogeneous Computing

Ming Wu, Xian-He Sun

Department of Computer Science
Illinois Institute of Technology
Chicago, Illinois 60616, USA

{wuming, sun}@iit.edu

Abstract

The efforts to construct a national scale grid computing

environment has brought unprecedented computing
capacity. Exploiting this complex infrastructure requires
efficient middleware to support the execution of a
distributed application, composed of a set of subtasks, for
best performance. This presents the challenge how to
schedule these subtasks in shared heterogeneous systems.
Current work has several limitations. Most scheduling
systems are based on determined estimation of task
completion time. Current application-level scheduling
algorithms are too closely coupled with application
internal structures. The application performance may
suffer when some resources represent abnormal usage
pattern during applications execution. To address these
issues, we develop a prototype of Grid Harvest Service
(GHS) to provide dynamic and self-adaptive task
scheduling. Experimental results show GHS outperforms
current systems in scheduling large applications in a non-
dedicated heterogeneous environment.

1. Introduction

In order to provide high performance computation

power to serve the increasing need of large applications,
people strive to improve the single machine's capacity or
construct a distributed system composed of a scalable set
of machines. Compared to the former, in which
improvement is mainly up to hardware technology
development, the construction of a distributed system for
resource collaboration is more complex. Some of well-
known existing or ongoing distributed systems composed
of heterogeneous resources are Condor [1], NetSolve [2],
Nimrod [3], Globus and the Grid computation
environment [4]. While these systems, especially the Grid,
bring unprecedented computing power for users, how to
deliver this great computing power is still an elusive
problem. One of the major puzzles is how to schedule

applications in these systems. In general, scheduling
applications in a distributed system is a NP-hard problem.
Many heuristic scheduling algorithms and systems are
proposed to address this issue. However, most of
scheduling algorithms so far proposed are for dedicated
systems. By dedicated, we refer resources in the system
serve the application in a dedicated fashion. This is against
the situation that most of current distributed systems are
resource-sharing environments [5].

Good schedules in a shared environment involve the
integration of application specific information and system
specific information. We study a performance-prediction
based task scheduling system, which provides task
allocation and scheduling based on application-level and
system-level performance prediction. The effects of
system specific information, such as utilization, job
service rate and job arrival rate, and application-specific
information, such as workload, divisibility, parallel
processing, on the application performance have been
identified. Our preliminary results demonstrate the
effectiveness of our scheduling mechanism for long-term
applications. Our earlier work [6] focuses on the task
scheduling for parallel processing which assumes that the
total workload of a parallel application could be arbitrarily
partitioned. In this study, we extend our scheduling policy
for a class of widely used Grid applications, the
parameter-sweep applications. It is composed of a set of
independent and indivisible tasks [7].

A key question is that how to maintain the parallel
application performance when some of resources assigned
for subtasks represent abnormal status from their historical
information. A successful scheduling depends on the
accuracy of system status prediction, which is deducted
from the resource historical information. The application
performance suffers under the situation of resource
abnormality and there is a fair chance that a resource may
show different usage pattern from its history in a large
distributed system. To provide a robust task scheduler to
work in this dynamic situation, we introduce a self-
adaptive task scheduling algorithm, which monitors the
long-running application progress and detects possible

 2

resource abnormality. The self-adaptive scheduling
algorithm will select appropriate resources and reassign
tasks on abnormal machines to these selected resources
based on application-level prediction.

Our goal in task scheduling system is to provide a
general-purpose and robust scheduling approach. The task
scheduling is divided into three parts, allocator, predictor
and scheduler. Allocator decides how to allocate subtasks
of a divisible application for each machine in a group of
machines, where a divisible application refers to an
application that could be partitioned into a set of subtasks.
Predictor estimates the application execution time
distribution on each machine. Scheduler decides which set
of machines is the best among all sets of machines.

In the following sections, we will show that different
task allocation methods and scheduling algorithms are
used for different situations. Even for the same situation,
different task allocation approaches could be applied. In
this way, we provide a flexible task scheduling mechanism
for the need of different application scheduling scenarios.
Our proposed scheduling system is much flexible as, on
one hand it could be easily integrated with other
scheduling systems, while on the other hand other work in
different aspects of task scheduling can be easily
incorporated into our work.

The rest of this paper is organized as follows: Section 2
describes the related work. Section 3 introduces our
proposed task-scheduling system design. We then proceed
to study the system-level prediction and application-level
prediction. Various scenarios of task allocation and
scheduling are then discussed. Experimental results are
presented in Section 4. We compare GHS scheduling
system with current scheduling systems and verify the
efficiency of the self-adaptive scheduling algorithm.
Finally we conclude and summarize our work in section 5.

2. Related work

Related earlier work in task scheduling policy mainly

focused on dedicated systems, which cannot be assumed in
non-dedicated computing environment like Grid. A
resource reservation strategy [8] is proposed to address
this problem. The shared resources are reserved in advance
for one user's dedicated occupancy. It is useful for time
urgent application and could be applied on space-shared
supercomputers because they can provide dedicated nodes
for running the applications. However, it is not feasible on
time-shared resources such as PC and workstation in a
heterogeneous system because private owners usually
don't want their machine dedicated for grid tasks. Task
scheduling in such a shared non-dedicated computing
environment offers a big challenge. A task scheduling
mechanism based on determined prediction of machine
availability has been investigated in [7]. This method
might be simple and good as it is useful for scheduling

short-running applications in a single machine or a small
system. However, due to the internal limitation of its
determined prediction method, it is not suitable for
scheduling distributed applications in a large system since
the prediction error caused by fluctuation of resource
status increases with the number of resources running
applications. Yan Alexander Li and John K. Antonio
developed a probabilistic approach to estimate the
execution time of a parallel application in a heterogeneous
computing system. However, their model is based on the
assumption that the execution time distribution of
individual task is pre-known [9]. And the effect of system-
specific information on the application performance is not
reflected in their work.

Different task scheduling policies are applied in various
heterogeneous computing environments. GASA (Grid
Advance Reservation API) [8] is a subsystem of Globus
project. It provides mechanism for resource reservation so
that applications can receive a certain level of service from
a resource. As we mentioned before, this policy doesn't
favor the privilege of the private owners of shared
resources. Condor system [1] provides a matchmaking
mechanism to allocate resources with ClassAds. Legion
system [10] also supports resource reservation. It focuses
on providing basic mechanisms for building application-
level scheduling algorithms rather than construct
scheduling algorithm itself. A simple random selection
policy is provided as the default scheduling mechanism.
Currently, the scheduling algorithms in the AppLeS [8]
project are supported by the short-term system prediction
provided by NWS services. Although they consider the
availability of resources in making the scheduling
decision, none of them fully identify the effect of
"sharing" characteristics of resources on the execution
time of applications. Their scheduling algorithms are too
closely coupled with application internal structures They
don't consider rescheduling during the application
execution when some resources show abnormality.

3. Task scheduling system

Prediction of application and system performance is

necessary for a good schedule. Some of current scheduling
systems did involve some prediction work. However due
to the determined approach of their simple performance
models, the effect of various system parameters on the
application performance is not available in their systems.
The performance prediction in GHS is based on
probabilistic modeling. The effect of system-specific
information on application performance has been
identified by our general performance model [11]. How to
apply the prediction for task scheduling so that the make
span of applications could be minimized is our goal. The
application-level prediction and related measurement
mechanism has been discussed in [6].

 3

 In this study, a system-level prediction approach has
been introduced to extend our work in prediction. A task
allocation component is separated from scheduling and
different allocation methods are discussed. By dividing
task scheduling into three parts, task allocator, predictor
and task scheduler, a general task scheduling mechanism
has been provided. It could be easily integrated by other
scheduling system and we can also easily introduce other
people's work into GHS. To reduce the performance loss
brought by abnormal resource usage pattern, an adaptive
scheduling algorithm is investigated. In this paper, we
focus on scheduling computation-intensive applications.
Other people's work in communication cost estimation
[12] could be introduced into GHS. More efforts will be
made in considering communication-intensive applications
in the future.

3.1 System architecture

A block diagram of GHS system design is shown below

in Figure 1. A user submits an application with its
characteristics (application type, workload) to the Task
Manager. It inquires the Task Scheduler for qualified
scheduling solution: By accessing the resource
information which could be provided by Resource
Information Service, the Task Scheduler finds a list of
potential resources. The Task Scheduler searches possible
task allocation plans. The Task Allocator decides how to
map tasks among resources based on the prediction of
system status provided by system-level predictor. The map
of tasks on machines will be forwarded to Application-
level Predictor to estimate the application performance. A
best scheduling solution satisfying the evaluation criteria
is returned to the Task Manager. When the user is satisfied
with the expected application performance, the application
will be submitted for running in the distributed
computation environment through the Task Execution
Service. The Task Manager monitors the application
execution and may invocate the Task scheduler to
reschedule the application in the system. The resource
information is collected through various Sensors (Network
sensors, IO sensors and CPU sensors) and stored in the
Resource Information Service, which provides the access
of resource information for the System-level Predictor and
the Task Scheduler.

3.2 Predictor

Based on the observation of machine usage pattern

[13,14], we assume that the local job processing follows
M/G/1 queuing system, which is determined by system
parameters λ , ρ , σ , where ρ is the system utilization,
λ is the arrival rate of the local jobs and σ is the
standard deviation of service time of local jobs. These
parameters may vary throughout a day in a real system.

How to capture these dynamic characteristics of resources
is the primary goal of the system-level predictor.

To estimate the values of system parameters in the
incoming time interval, we basically choose the mean-
based method, which uses arithmetic average of
measurement of a parameter as an estimate of its mean
value. Similar methods are used in NWS and RPS project.
The difference lies in the selection of the sample space.
Instead of using only the average of measurements of a
system parameter during the previous N number of
continual time intervals as the estimate of the system
parameter value for the next time interval, we also
consider the average of measurements during the previous
N number of "similar" time intervals. For example, if we
predict a system parameter for the time period from 5 pm
to 7 pm, the average of parameter values measured during
the continuous previous 2 hours periods before 5 pm and
the average of parameter values measured from 5 pm to 7
pm in previous days are both collected for estimation. We
notice that other forecast models, such as LAST model,
AR model, and ARIMA model, can also be used in our
algorithm.

The goal of application-level predictor is to estimate
the application execution time in a shared distributed
system. The difference between our application-level
predictor and other people’s work is that we estimate the
application make-span based on probabilities analysis
instead of determined approach used by other scheduling
systems. So the effect of both system specific information
and application-specific information on the application
performance is identified in our application-level
prediction. These system parameters, λ , ρ and σ ,
reflect the sharing characteristics of resources in a non-
dedicated distributed system. The workload and
divisibility of an application reflect the general
characteristics of applications. If an application is a single
indivisible task, the cumulative distribution function of the

Figure 1. A framework of GHS task
scheduling system

Scheduler

Allocator

Query
Resource lists

Task Manager User

Application

Resources, tasks

Map tab

Map tab
Estimation

Sensor

Sensor

Sensor

Application-
level Predictor

System-level
Predictor

Resource
Information

Service

Task Execution

Resources

 4

application completion time on a machine can be
calculated as [SuWu03]:









≥
>−≤−+

=≤

−−

otherwise
wtif

SwtSUee
tT

ww

,0

/
0|/)(Pr()1(

)Pr(

//

τ
ττλτλ

 (1)

where)(SU is the sum of the busy periods of the machine
owner’s local jobs. We denote τ the computing capacity
of the machine and w the workload of the application. If
the workload of the application is divisible, we can use

)Pr()Pr(tTtT k ≤∏=≤ to calculate the cumulative
distribution function of the application completion time
(T). We assume that the sub-workload on each machine,

kw , is pre-known before running application-level
predictor. The calculation of kw is actually finished by the
Task Allocator component.

3.3 Task allocator

When an application is a single indivisible task, we

choose a machine where the sum of the expectation and
variance of application execution time is minimal. In
general, however, an application in a distributed system is
likely to be solved concurrently for best performance. This
may happen in two scenarios. The first is that the
application is divisible, which means the application can
be partitioned into subtasks arbitrarily. Another scenario is
that the application consists of independent indivisible
subtasks. We cannot further partition these indivisible
subtasks. There are still two situations generally to be
concerned. One is that subtasks have no dependency
among each other. We define such an application as a
meta-task. Another situation is that there are dependencies
among subtasks. In this paper, we study the meta-task
scheduling. An ideal example of such applications is the
class of parameter-sweep applications, which is composed
of a set of independent tasks [7].

For a given set of resources, the Task Allocator decides
how to partition/group subtasks of an application and then
map them to a set of resources to reach optimal
performance. If the workload of an application is divisible,
the task allocation is a partition problem. If an application
is composed of indivisible subtasks, the task allocation
becomes a task grouping issue. We have developed two
allocation algorithms respectively for the two classes of
applications. In the former situation, a mean-time
allocation algorithm is applied. The workload is assigned
to each resource based on the expected mean execution
time of subtasks on the resource. Figure 2 gives the
details of mean-time task allocation algorithm where kρ is
the utilization of resource k and kτ its processing power.

When an application is composed of indivisible
subtasks, the Task Allocation component uses the min-min
algorithm to group subtasks and map each subtask group
to one of resources for optimal performance based on the
estimation of subtask execution time. Suppose we have an
application composed of a number of independent tasks,

},...,,{ 21 pTTT with workload },...,,{ 21 pwww and a list of
machines },...,,{ 21 qMMM , Figure.3 shows the min-min
task group allocation algorithm in details.

3.4 Self-adaptive scheduling

The Task Scheduler is responsible for finding a
potential machine set for users' applications in a
heterogeneous environment. It is supported by the Task
Allocator and the Application-Level Predictor. Our Task
Scheduler supports different scheduling scenarios
according to the application characteristics. Our Task
Scheduler can support different task scheduling scenarios:
single sequential task scheduling, optimal parallel
processing with a given number of subtasks, optimal
parallel processing and meta-task scheduling. A heuristic
task-scheduling algorithm is proposed to find an
acceptable solution with a reasonable cost. In this study,
we focus on self-adaptive scheduling.

In the grid computation environment, most of resources
are shared. There is a fair chance that some of resource
may represent abnormal performance from their historical
records, especially when the size of machine set is large. If
the performance of some of resources running subtasks of
the scheduled application is degraded, the completion time
of application will increase. How to decide whether we
should reschedule the application and which resource we
should choose are the problems we need to consider. A
self-adaptive task scheduling algorithm is thus proposed to

Assumption: a parallel task with workload W, and a
list of resources },...,,{ 21 qMMM .

Objective: map subtask kw to each machine

},...,,{ 21 qMMM .

Begin
For each machine kM)1(qk ≤≤

kkm

k
kk

k
Ww τρ

τρ
)1(

)1(
1

−
−

=
∑

=

End For
Return kw)1(qk ≤≤ ;
End

Figure 2. Mean-time task
partition algorithm

 5

address this issue. The basic idea is to assign subtasks on a
resource showing abnormal performance to other
appropriate resources. The subtasks could be either
migrated or restarted on the selected machine, which is up
to migration cost and whether migration is possible. The

selection of machines is decided based on the estimation
of the whole application completion time on the updated
machine set. The criterion of introducing a new scheduling
plan is whether the new plan brings performance gain for
the application performance. Because there is no general
performance model to estimate migration cost and the
communication cost of process migration may be
overlapped with the computation of subtasks, we ignore
the effect of migration cost in the rescheduling decision.
The consideration of migration cost is our future work.

The estimate of application performance is based on the
measurement of system parameters. The details of
measure mechanism have been given in our previous work
[SuWu03]. We can use the same technique to measure kλ ,

kσ and kτ because the running of the scheduled
application doesn’t affect these system parameters.
However, for system utilization, kρ , we can not use
vmstat utility to measure it since the resource utilization is
theoretically close to 100% during the application

execution. We use the ps utility to measure the subtask
CPU time. The ratio of the subtask CPU time and its real

system time will be used as the estimate of kρ .
When the system parameters indicate the abnormality

of resources, we need to estimate the application
performance in the new situation. An extension of formula
(1) is used to calculate the cumulative distribution function
of the application execution time in this situation.

)2(
,0

,)Pr((
)Pr(max

1






 >≤
=≤ ∏

=

otherwise

WTiftT
tT

m

i
i

where
)0|/)(Pr()1()Pr('// ''

>−−≤−+=≤ −−
iiiii

ww
i SwttSUeetT iiiiii ττλτλ .

it denotes the execution time of subtasks on machine i so

Objective: Monitor the execution of an application in a set
of machines and reallocate subtasks of the application if
necessary.

Begin
Repeat
Measure the prediction error of the system utilization,

kPU , on machine kM .

If ThrottlePU k > then Calculate)(originalTE ;

List a set of machines that are current lightly loaded,
},...,,{ 21 qMMM ;

If reallocation is one-to-one then
 For each machine, iM , suppose it is the machine which

the subtask will be assigned. Calculate i
reassignTE)(with

formula (2)
 End For
 Find the machine iM , which has the maximum

j
reassignoriginal TETE)()(−

 If 0)(()(>− j
reassignoriginal TETE then

 Migrate the subtask on machine kM to machine iM .
 End If
End If
If reallocation is one-to-all then
 Sort the list of idle machines in a decreasing order with

kk τρ)1(− ,
 Use bi-section search to find appropriate machine set P,

which has the maximum P
reassignoriginal TETE)()(−

 If 0)(()(>− P
reassignoriginal TETE then

migrate the subtask on machine k to the machine set P .
 End If
End If
Until the application is completed
End

Figure 4. Self-adaptive task
scheduling algorithm

Assumption: an application composed of a number of
independent subtasks, },...,,{ 21 pTTT and a list of machines

},...,,{ 21 qMMM . Each subtask is indivisible.

Objective: find a task group },...,,{
21 qkkkk TTTTG = for

machine kM)1(qk ≤≤ .

Begin
/* kW means the current workload on machine kM */

0=kW , φ=kTG ,)1(qk ≤≤ ; 1=i ;

While pi <

1=j ;
 While qj <

)]1(*/[)(, jjiji wTE ρτ −= ;

1+= jj ;
 End While

Choose machine kM ′ where

)()]1(*/[,kikkk TEW ′′′′ +− ρτ is minimal.

 }{ ikk TTGTG ∪= ′′ , ikk wWW += ′′ ;
 1+= ii ;
End While
Return kTG and kW)1(qk ≤≤ ;
End

Figure 3. Min-min task group
allocation algorithm

 6

far and '
iw denotes the workload of subtasks on machine i

that haven’t been completed. }{max '
max ii wtmumw += .

During the execution of the application, we check
running information of subtasks on each machine
periodically. We compare the difference between the
expected kρ and the real kρ . If the difference is more than
a throttle, we assume the resource suffers abnormality.
The set of the monitor period is related to the set of the
throttle. In the next section, we conducted experiments
with different monitor periods and throttles. Using formula
(2), we calculate the mean of the completion time of the
scheduled application with and without reassignment in
the new situation. We denote the former as)(originalTE and
the later)(reassignTE . If 0)()(>− reassignoriginal TETE , that
indicates move/migration will benefit the application
performance. We select resources that can bring the most
performance gain if we assign subtasks on an abnormal
resource to them. A detailed description of the self-
adaptive scheduling algorithm is given in Figure 4. In this
algorithm, we assume there are two situations of task
reallocation. The first is one-to-one task reallocation,
which means that all uncompleted subtasks on an
abnormal machine will be moved as a unit to another
machine if the reallocation can benefit the application
running time. The second is one-to-all task reallocation,
which means that the uncompleted tasks on an abnormal
machine could be moved separately to any possible
machine to favor application make-span. In this situation,
we invoke the min-min task group allocation algorithm
discussed in Section 3.2 to map the uncompleted tasks on
an abnormal machine into other machines. We set 0=kW ,

φ=kTG for the identified abnormal machines and
=kW {the sum of workload of completed tasks} and
=kTG {the set of completed tasks} for other machines.

4. Experiment results

To verify the efficiency of our scheduling algorithms,

we compare GHS schedule with the AppLeS schedule, a
currently widely used task scheduling mechanism in Grid
computing. AppLeS schedule is based on NWS short-term
system prediction. Experiments are conducted to test the
performance of AppLeS task scheduling and GHS task
scheduling for long-term applications. The results show
GHS outperforms AppLeS for scheduling long-running
applications and it requires less number of resources
running the scheduled application than AppLeS. We then
test the efficiency of our self-adaptive scheduling
algorithm. Simulation results show the self-adaptive
algorithm can identify the abnormality of resources and
reduce the make-span of the scheduled application through

dynamically reassigning subtasks during the application
execution.

4.1 Comparison of GHS schedule and AppLeS

schedule
AppLeS makes scheduling decision by estimating the

mean of short-term subtask execution time based on the
availability of resources. The effects of other system
specific factors are not analyzed due to the inherent
limitation of these methods. GHS task scheduling system
provides long-term application-level performance
prediction in heterogeneous non-dedicated distributed
computation environment. The effects of machine
utilization, computing power, local job service and parallel
processing on the completion time of parallel task are
individually identified.

To test the performance of AppLeS task scheduling and
GHS task scheduling for long-term applications, we
conduct experiments to compare the completion time of
applications based on AppLeS task scheduling and GHS
task scheduling. Here we consider the parameter sweep
application because AppLeS doesn't support optimal
parallel processing. To remove the difference caused by
system-level prediction, we assume that the system
parameters are pre-known by both scheduling systems.
The comparison of application completion time (seconds)
and the number of machine set with the two different
scheduling systems is given in Table 1. The experiment
results show that the application completion time with
GHS is reduced by 10%-20% compared with that with
AppLeS system while only about one half of machines
used in AppLeS system are required for task scheduling in
GHS. That indicates that GHS scheduling system has the
real potential to identify a smaller set of machines to
execute long-running applications in a shorter time.

4.2 Self-adaptive scheduling

In section 3.4, we have discussed how to reschedule

when we find that a resource showing irregular situation.
To testify the efficiency of the rescheduling algorithm, we
have to answer the following questions:

1. Whether the algorithm can identify the abnormal
machine? What is the error rate?

2. Whether the self-adaptive scheduling algorithm
can reduce the application performance loss due
to resource abnormality?

3. What is the appropriate utilization throttle to
benefit the application performance?

 To answer these questions, we go through a series of
simulations. The arrival rate of local jobs on each
machine’s follows Poisson distribution. The local jobs’
lifetime is simulated with 2.0/x [15]. The arrival rate and
service rate are randomly generated for each machine in an

adjustable range. During the execution of the application,
we randomly select some machines and change their local
job arrival rates and service rates. The number of machine
showing abnormality during the application execution
could be also adjusted. The workload of the application is
divisible.

 A perfect identification of abnormal machines means

that we successfully identify all abnormal machines while
we don't make any mistake to take any normal machine as
an abnormal machine. So we use two metrics to describe
the capability of the self-adaptive scheduling algorithm
identifying abnormal machines, right identification of
abnormal machine rate (RIAM) and right identification of
normal machine rate (RINM). RIAM denotes the ratio of
the number of identified abnormal machines to the number
of actual abnormal machines. RINM is defined as 1-

nf NN / where
fN denotes the number of identified

abnormal machines which are actually normal machines
and nN denotes the number of normal machines. To
evaluate the efficiency of the self-adaptive algorithm in
reducing the completion time of an application in the case
of machines showing abnormal, we define the
performance loss reduction rate (PLRR) as

regular

adaptiveselfregular

T
TT −− . adaptiveselfT −

 denotes the completion

time of a scheduled application with the self-adaptive
algorithm. regularT denotes the completion time of the
scheduled application with the normal compile-time
scheduling. Table 2 gives measured RIAM, RINM and
PLRR with different utilization throttles. We set two
system monitor periods, one hour and two hours. The
utilization of a normal machine is between 15% and 40%.
The utilization of an abnormal machine is between 60%
and 75%. The size of the machine set is 20. Two machines
are randomly selected to become irregular from a random

time during the application running. For each monitor
period setting, we run simulation 30 times. The simulation
results show that RIAM decrease with the increase of
utilization throttle while the RINM increase with the
increase of utilization throttle. From Table 2, we can find
that the self-adaptive algorithm efficiently reduce the
application performance loss. It works best when the
utilization throttle is set between 10%-30%. When the
utilization throttle is out of this range, either low or high,
the gain is comparably smaller.

 We believe that the more the average utilization
difference between abnormal machines and normal
machines, the more benefit we can get through the self-
adaptive scheduling algorithm. Our simulation results
indicate that the PLRR increases when either the average
utilization of abnormal machine increases or the average
utilization of normal machines decreases. Table 3 shows
measured PLRR when we set different utilization
differences. The monitor period is two hours. The
utilization throttle is 20%. The PLRR is the average of 30
times of running simulation. We find that the PLRR
increase around 65% when we increase the utilization
difference from 10% to 70%.

5.

I

dist
hete
mec
base
allo
para
loss
ada
exp
Com
syst
task

set
Table 2. The measured RIAM, RINM and
PLRR with different utilization throttles

Monitor period
(two hour)

Monitor period
(one hour) Utilization

Throttle
RIAM RINM PLRR RIAM RINM PLRR

5% 1.0 0.01 0.24 1.0 0.00 -0.38

10% 1.0 0.71 0.58 1.0 0.06 0.3

20% 1.0 1.0 0.51 1.0 0.98 0.54

30% 0.91 1.0 0.47 0.97 1.0 0.53

40% 0.63 1.0 0.31 0.85 1.0 0.44

50% 0.18 1.0 0.26 0.56 1.0 0.22
Table 1. Comparison of task completion time
and the number of machine set used by

AppLeS system and GHS system

Workload
(Maximum machine

number)

13801.7
(25)

27619.2
(50)

53779.5
(100)

108642.5
(200)

215141.0
(400)

Task
completion

time (s)
496.4 557.7 712.8 874.5 1140.4

GHS Number of
machine

set
13 26 57 99 113

Task
completion

time (s)
547.4 637.4 818.3 1022.7 1266

AppLeS Number of
machine 25 50 100 200 400
7

 Conclusion and future work

n this paper, we study task scheduling of a parallel or
ributed application with a divisible workload in a
rogeneous environment. We present prediction
hanisms both in system-level and application-level
d on a new performance model. Different task

cation algorithms are introduced for scheduling
llel program and meta-task. To reduce performance
 caused by possible machine "mutation", a self-
ptive task scheduling algorithm is developed. Initial
erimental testing was conducted at the Sun
puteFarm at IIT to compare GHS task scheduling

em with other current performance prediction based
 scheduling system. The results show that GHS

 8

provides a general-purpose scheduling mechanism for
long-term applications. The dynamic and self-adaptive
scheduling algorithm we propose adequately captures the
dynamic nature of distributed computing and therefore
provides a robust scheduling by reallocating tasks in the
represent of resource abnormalities, which is not
addressed by current scheduling systems. The performance
loss can be reduced by 50%-60%. The experiment results
demonstrate that GHS outperforms current systems in
scheduling long-term applications in a heterogeneous
computing environment. The task completion time with
GHS scheduling system decreases by 10%-20% compared
with that with AppLeS scheduling system while only
about one half of machines used in AppLeS system are
required for application running in GHS system.

Table 3. The measured PLRR with different

utilization difference
Utilization
difference 10% 20% 30% 40% 50% 60% 70%

PLRR -0.02 0.08 0.21 0.32 0.45 0.56 0.65

We propose and implement a prototype of long-term,

application-level task scheduling system for shared
heterogeneous computing environment based on
probabilistic approach. It is a satisfactory complement of
existing performance evaluation and task scheduling tools.
The three parts of task scheduling, task allocator,
scheduler and predictor, can be easily integrated into
existing toolkits for better service. To improve the
applicability and accuracy of GHS scheduling system, the
communication and the migration cost in task allocation
will be considered in the future work.

Acknowledgments

This research was supported in part by national science

foundation under NSF grant EIA-0130673, ANI-0123930,
and by Army Research Office under ARO grant
DAAD19-01-1-0432.

References:

[1] Michael Litzkow, Miron Livny, and Matt Mutka, "Condor -
A Hunter of Idle Workstations", Proceedings of the 8th
International Conference of Distributed Computing Systems,
pages 104-111, June, 1988.
[2] Henri Casanova and Jack Dongarra, "NetSolve: A Network
Server for Solving Computational Science Problems", The
International Journal of Supercomputer Applications and High
Performance Computing, Volume 11, Number 3, pp 212-223,
Fall 1997.
[3] Abramson D., Sosic R., Giddy J. and Hall B., "Nimrod: A
Tool for Performing Parametised Simulations using Distributed

Workstations", The 4th IEEE Symposium on High Performance
Distributed Computing, Virginia, August 1995.
[4] Ian Foster and Carl Kesselman, The Grid: Blueprint for a
New Computing Infrastructur, ISBN 1-55860-475-8, July 1998.
[5] Ian Foster, Adriana Iamnitchi, "On Death, Taxes, and the
Convergence of Peer-to-Peer and Grid Computing", The 2nd
International Workshop on Peer-to-Peer Systems, February
2003.
[6] X.-H. Sun and M. Wu, "A Performance Prediction and Task
Scheduling System for Grid Computing", Proc. of 2003 IEEE
International Parallel and Distributed Processing Symposium
(IPDPS 2003), Nice, France, April, 2003.
[7] Henri Casanova, Graziano Obertelli, Francine Berman and
Rich Wolski, "The AppLeS Parameter Sweep Template: User-
Level Middleware for the Grid", Proceedings of Super Computer
2000, November 2000.
[8] I. Foster, A. Roy, V. Sander, "A Quality of Service
Architecture that Combines Resource Reservation and
Application Adaptation", International Workshop on Quality of
Service, pp. 181-188, June 2000.
[9] Y.A. Li, J.K. Antonio, "Estimating the execution time
distribution for a task graph in a heterogeneous computing
system", The 6th Heterogeneous Computing Workshop, Geneva,
SWITZERLAND, April 1997.
[10] Steve Chapin, Dimitrios Katramatos, John Karpovich,
Andrew Grimshaw, “The Legion Resource Management
System”, Proceedings of the 5th Workshop on Job Scheduling
Strategies for Parallel Processing, San Juan, Puerto Rico, April,
1999.
[11] Linguo Gong, Xian-He Sun, and Edward F. Waston,
"Performance Modeling and Prediction of Non-Dedicated
Network Computing", IEEE Trans. on Computer, Vol. 51, No 9,
September, 2002.
[12] Downey, A.B., "Using pathchar to estimate Internet link
characteristics", Proc. SIGCOMM 1999, pp. 241-250,
Cambridge, MA, Sept. 1999.
[13] Remzi H. Arpaci, Andrea C. Dusseau, Amin M. Vahdat, et
al, "The Interaction of Parallel and Sequential Workloads on a
Network of Machines", Proc. of ACM
SIGMETRICS/Performance Joint International Conference on
Measurement and Modeling of Computer Systems, pp. 267-278,
May, 1995.
[14] Mutka, M., and M. Livny, "The Available Capacity of a
Privately Owned Machine Environment", Performance
Evaluation, Vol. 12, No 4, pp. 269-284, 1991.
[15] Yair Amir, Baruch Awerbuch, Amnon Barak, R. Sean
Borgstrom, Arie Keren, "An Opportunity Cost Approach for Job
Assignment in a Scalable Computing Cluster", IEEE
Transactions on Parallel and Distributed Systems, Vol. 11, No.
7, July 2000.

	Abstract

