
Communication State Transfer

for the Mobility of

Concurrent Heterogeneous Computing �

Kasidit Chanchio Xian-He Sun

Department of Computer Science

Illinois Institute of Technology

Chicago, IL 60616

fkasidit, sung@cs.iit.edu

Abstract

In a dynamic environment, where a process can be migrated from one host to an-

other host, communication state transfer is a key issue of process coordination. This

paper presents algorithms for data communication and migration protocols to support

communication state transfer in a dynamic, distributed parallel environment. These

algorithms collectively preserve the semantics of the communication and support com-

munication state transfer. The assumptions and validity of our solution are discussed

and analyzed. Based on our early results in process migration, we implement a proto-

type system for process state transfer. Experimental results con�rm our design is valid

and has a true potential in practice.

Index Terms:

Communication Protocol, Process Migration, Distributed and Parallel Pro-

cessing, Point-to-Point Communication.

1 Introduction

Process migration is a basic function of dynamic programming. It moves a running process from one

computer to another. The migration may be through the computer network (distributed network

migration) or over computers with di�erent hardware/software environment (heterogeneous process

migration). Motivations of process migration include load balancing, fault tolerance, data access

locality, resource sharing, recon�gurable computing, and system administration, etc [1, 2, 3]. Recent

research shows process migration is necessary for achieving high performance via utilizing unused

network resources [4, 5, 6]. Process migration can also be used for portability. For example,

users can migrate processes from a computing platform to an upgraded one. Process migration

�This work was supported in part by National Science Foundation under NSF grant ASC-9720215, CCR-9972251,

and by IIT under the ERIF award.

is a fundamental technique needed for the next generation of internet computation [7]. However,

despite these advantages, process migration has not been adopted in engineering practice due to its

design and implementation complexities, especially under a network of heterogeneous computers.

SNOW [3] is a distributed environment supporting user-level process migration. Snow provides

solutions for three problem domains for transferring computation state, memory state, and com-

munication state of a process, respectively. Methods to transfer execution state of a process are

�rst developed. A compiler analysis technique is proposed to select locations that allow process

migration in the source program, and to augment additional codes to carry process migration au-

tomatically [8, 9]. Since the selected locations and the augmentation are performed at source code

before compilation, the state transfer can be performed across heterogeneous machines. Techniques

to transfer memory state are also developed. A graph representation is introduced to model data

structures of a process. Methods to transform the structures and their contents into machine inde-

pendent information and vise versa are provided [10]. Based on our success on computation state

and memory state transfer, in this paper we presents a solution to transfer communication state of

a migrating process in a dynamic, heterogeneous, distributed environment.

Activities in a large-scale distributed environment are dynamic in nature. Adding process mi-

gration functionality makes data communication even more challenging. A number of fundamental

problems have to be addressed. First, a process should be able to communicate to others from any-

where and at anytime. Process migration could occur during a communication. Mechanisms need

to be developed to guarantee correct message arrivals. Second, the problem of updating location

information of a migrating process has to be solved. After a process migrates, other processes have

to know its new location for future communications. The updating technique should be scalable

enough to apply to a large network environment. Third, if a sequence of messages are sent to a

migrating process, correct message ordering must be maintained. Finally, the communication state

transfer needs to be integrated into the execution and memory state transfer seamlessly to form a

process migration enabled environment.

Mechanisms to support correct data communication can be classi�ed into two di�erent ap-

proaches. The �rst approach is using the existing fault-tolerant, consistent checkpointing technique.

To migrate a process, users can \crash" a process intensionally and restart the process from its

last checkpoint on a new machine. Since global consistency is provided by the checkpointing pro-

tocol, safe data communication is guaranteed. Projects such as CoCheck [11] follow this approach.

On the other hand, mechanisms to maintain safe data communication during process migration

can be implemented directly into the data communication protocol. When a process migrates,

process migration operations coordinate with data communication operations on other processes

for reliability. SNOW, Charlotte [12], and the MPVM project [13] are along the second direction.

These systems are message-based and rely on the concept of communication channel. We choose

the second direction because the latter is more scalable and less costly than that of the former.

Process migration is important enough to receive an e�cient mechanism on its own right. Further

comparisons are presented in Section 5.

We have developed data communication and process migration protocols working cooperatively

2

to solve the aforementioned problems. Our protocol design is based on the concept of point-to-

point connection-oriented communication. It is aimed to provide a robust and general solution

for communication state transfer. Mechanisms to handle process state transfer are implanted to

a number of communication operations which could occur at data communication end points.

These operations include send and receive operations in the data communication protocol and

migration operation in the process migration protocol. They coordinate one another during the

migration to guarantee correct message passing. The protocols are naturally suitable for large-

scale distributed environment due to their inherited properties. First, they are scalable. During

a migration, the protocols coordinate only those processes directly connected to the migrating

process. The operations in process migration are performed mostly at the migrating process,

while communication peer processes are only interrupted shortly for the coordination. Second,

the process migration protocol is non-blocking i.e., it allows other processes to send messages to

the migrating process during the migration. These two properties are quite bene�cial for large

environments where the number of participating processes is high. Third, the protocols do not

create deadlock. They prevent circular wait, while coordinating a migrating process and its peers for

migration. Finally, the protocols are simple in implementation and are practical for heterogeneous

environments. They can be implemented on top of existing connection-oriented communication

protocols such as PVM (direct communication mode) and TCP. We conduct empirical studies

based on a prototype implementation on PVM.

The rest of this paper is organized as follows. Section 2 gives the basic assumptions on the

distributed computation model and communication semantics. In Section 3, we discuss the basic

idea about communication state transfer and the communication and process migration algorithms.

Section 4 shows our experiments by migrating a communicating process in homogeneous and het-

erogeneous situations. Section 5 discusses related works. Finally, Section 6 summarizes our works

and discusses future research.

2 Backgrounds

We consider a distributed computation as a set of collaborative processes fP0; P1; � � � ; PNg executing

under a virtual machine environment. Each process is a user-level process which occupies a separate

memory space. The processes communicate via message passing.

A virtual machine environment is a collection of software and hardware to support the dis-

tributed computations. It has three basic components. First, a network of workstations is the basic

resource for process execution. Second, a number of daemon processes residing on workstations

comprise a virtual machine. These daemons work collectively to provide resource accesses and man-

agement. A process can access the virtual machine's services via programming interfaces provided

in forms of library routines. Finally, the third component is the scheduler, a process or a number

of processes that control environmental-wide resource utilization. Its functionalities include book-

keeping and decision making. Unlike in static distributed environments such as that supported by

PVM and MPI, a scheduler is a necessary component of a dynamic distributed environment such

3

as the Grid [14].

We identify processes in distributed environment in two level of abstractions: application-level

and virtual-machine-level. In the application-level, a process is identi�ed by a rank number, a non-

negative integer assigned in sequence to every process in a distributed computation
1
. The rank

number allows us to make references to a process transparently to its whereabouts. On the other

hand, the virtual machine includes location information of a process in its naming scheme. A virtual-

machine-level process identi�cation (vmid) is a coupling of workstation and process identi�cation

numbers. They both are non-negative integers assigned sequentially to workstations and processes

created on each workstation, respectively. The mappings between rank and vmid are maintained

in a process location (PL) table, where the PL table is stored inside the memory spaces of every

process and the scheduler. While the rank numbers are given only to application-level processes, the

vmid is assigned to every process in the environment including the scheduler and virtual machine

daemons. We assume that both the scheduler and the daemon do not migrate.

Based on our previous works [8, 10, 3], the migration-supported executable are assumably dis-

tributed on potential destination computers prior to process migration. With supervision of the

scheduler, a process migration is conducted directly via remote invocation and network data trans-

fers. When a participant in the environment want to migrate a process, it sends a request to the

scheduler, which, in turn, decides the destination computer and remotely invokes the migration-

supported executable to wait for process state transfer. We name this invocation as process ini-

tialization. Then, the scheduler sends a migration signal to the migrating process. After the signal

is intercepted, the migrating process coordinates the initialized process to transfer its state in-

formation. Finally, while the migrating process terminates, execution on the initialized process

resumes.

Communication Characteristics

We require that message passing among processes in application-level follows blocking point-to-

point communication in bu�ered modes. Assuming a message content is stored in a memory bu�er,

the send operation blocks until the bu�er can be reclaimed, and the receive operation blocks until

the transmitted message is stored in the receiver's memory. The sender process do not coordinate

with the receiver for data transmission. Once the message is copied into internal bu�ers of an

underlying communication protocol, the sender process can continue.

Figure 1 shows the protocol stack layout of the communication system for process migration en-

vironment. The lowest layer is the OS-supported data communication protocols between computers.

The second layer lies communication protocols provided by the virtual machine built on top of the

�rst communication layer. The virtual machine provides three basic communication services. They

are the connection-oriented communication utilities, the connectionless communication utilities,

and signaling across machines in a distributed environment. We assume the connection-oriented

communication to create a bi-directional FIFO communication channel between two processes. In

1The rank number indexing can be replaced by any sortable naming scheme for generalization.

4

case messages are sent between machines with di�erent platforms, we also assume the protocol in

this layer to handle data conversion.

The third layer is the focus of this work. It consists of the migration-supported data commu-

nication and process migration protocols which are discussed in the next section in more details.

The protocols in this layer provide primitives for the fourth layer, application-level process layer.

Migration-supported communication

Application Process P

and Migration Protocols

Communication protocols provided

by Virtual Machine

communication in buffered mode
Support blocking point-to-point

Computer A

Basic communication protocols e.g. TCP, UDP, VIA

Connection-oriented

Connectionless

Signaling

Migration-supported communication
and Migration Protocols

Communication protocols provided

by Virtual Machine

Application Process Q

Computer B

Layer 1

Layer 2

Layer 3

Layer 4

Figure 1. The protocol stack layout.

3 Protocol

This section presents basic ideas of mechanisms to migrate the communication state and algorithms

to perform data communication and process migration operations. Since the data communication

at the application-level is performed on top of the connection-oriented communication protocol, we

de�ne the communication state of a process to include all communication connections and messages

in transit at any moment in the process's execution. To migrate the communication state, one has

to capture the state information, transfer it to a destination computer, and restore it successfully.

3.1 Basic Ideas

Migrating a communication state is non-trivial since various communication situations can occur

during process migration. In our protocol designs, three basic circumstances are considered.

Capturing and transferring messages in transit

In the �rst case, to capture messages in transit, processes on both ends of a communication channel

have to coordinate each other to receive the messages until none is left. The coordination mecha-

nism is based on the work of Chandy and Lamport [15] and will be discussed later in the migration

algorithm. As a result of the coordination, messages in transit are drained from the channels and

stored in a temporary storage in process memory space, namely the received-message-list. Conse-

quently, the use of received-message-lists e�ects the design of receive operations. Since messages

could be stored in the receive-message-list before needed, the receive operation has to search for a

wanted message from the list before taking a new message from a communication channel. In case

5

the new messages are not wanted, they would be appended to the list until the wanted message is

found.

After messages in transit are captured and existing communication connections are closed down,

one may consider the messages stored in the received-message-list of the migrating process as a

part of the process's communication state which has to be transferred to the destination computer.

Migration-aware connection establishment

To handle data communication between unconnected processes, the connection establishment mech-

anisms have to be able to detect migration activities on the connecting processes and automatically

resolve the problem. Since our message passing operations only employ send and receive primitives

and do not support explicit commands for connection establishment, the establishment mechanisms

are installed inside the send and receive operations hidden from the application process. To es-

tablish connections, we employ the sender-initiated technique where the sender sends a connection

request to its intended receiver process.

Having process migration into the picture, the establishment mechanisms must be able to detect

the migration (or past occurrence of the migration) and inform the sender process. In our design,

the migration is detected once the sender receives a denial to its connection request. The rejection

message could come either from the virtual machine or the migrating process. The virtual machine

sends a rejection message in case the migrating process has already been migrated. On the other

hand, the migrating process rejects connection during migration operations. The migrating process

starts migration operations when it receives a migration instruction from the scheduler and �nishes

the operations when process state transfer completes. During that time if connection requests are

intercepted, they would be responded with denials.

Once the migration is detected, the sender consults the scheduler to locate the receiver. After

getting a new location, the sender updates the receiver's location, establishes a connection, and

sends messages. Based on this scheme, a sender process is not blocked while sending messages to

a migrating process. The updating of the receiver's location is also performed \on demand" in the

PL table maintained inside the sender's memory space. Thus, the updating is scalable.

Communication state restoration

The scheme for restoring of communication state on a new process can be addressed in two parts.

First, contents of the receive-message-list forwarded from the migrating process are inserted to the

front of the receive-message-list of the new process. This scheme restores the messages which are

in transit during the migration. Second, messages sent from a newly connected process to the new

process are appended to the end of the list. This scheme ensures message ordering.

3.2 Algorithms

Based on the previously mentioned conceptual designs, algorithms are invented. The data com-

munication algorithms consists of send and receive algorithms which take care of the connection

6

send (m, dest)
1: if(dest 62 Connected) then
2: cc[dest] = connect(dest);
3: end if
4: send m along the cc[dest] communication channel;

Figure 2. The send algorithm.

establishment and the receive-message-list, while the process migration algorithms consists of two

algorithms which run concurrently on the migrating and new processes to carry process migration.

The algorithms use the following global variables. Connected is a set of rank numbers of connected

peer processes. An array pl represents the process location table. The vmid of process Pi is stored

in pl[i].

3.2.1 Data Communication Algorithms

In our design, the send algorithm initiates data communication between processes by sending a

request for connection establishment to the receivers. In case the receiver cannot be found due to

process migration, the send algorithm will consult the scheduler, a process which manages process

allocation in the environment, to locate the receiver. Once the receiver's location is known, the

sender establishes connection and sends messages to the receiver process. Figure 2 shows the send

algorithm where a communication connection must be created before message transmission. The

connection establishment mechanisms are described in the connect() function in Figure 3. The

function starts by sending the connection request con_req to a receiver process. If the receiver is

migrating, it will reject the request and send conn_nack back. Then, it will consult the scheduler

as mentioned earlier.

The receive algorithm, as shown in Figure 4, is designed to collect messages in an orderly manner

in process migration environment. The algorithm stores every messages arrived at a process in the

received-message-list in the receiver's memory space.

The receive algorithm also has functionalities to help migrating its peer processes. In case that

a process is running the receive event while one of its connected peer process migrates, the receive

event may receive a control message from the migrating process. The peer_migrating control

message is a special message sent from a migrating peer. The message indicates the last message

sent from the peer and instructs the closure of communication channel. The reception of this

message implies all the messages sent from the migrating process in the communication connection

have already been received.

7

connect(dest)
1: while (dest 62 Connected) do
2: send conn_req to pl[dest];
3: if (receive conn_ack from pl[dest]) then
4: cid := make connection with(pl[dest]);
5: Connected := fdestg [Connected;
6: else if (receive conn_req from any process p) then
7: grant connection to(p);
8: else if (receive conn_nack from pl[dest]) then
9: consult scheduler for exe status and new vmid of Pdest

10: if (status = migrate) then
11: pl[dest] := new vmid;
12: else report \error: destination terminated";
13: return error; end if
14: end if; end if; end while;
17: return cid;

Figure 3. Functions connect().

recv (src, m, tag)
1: While (m is not found) do
2: if (m is found in received message list) then
3: return m, delete it from the list, and return to a caller function;
4: end if
5: get a new data or control message, n;
6: if (n is data message) then
7: append n to received message list;
8: else (handle control messages)
9: if n is con_req then
10: grant connection to(sender of n);
11: else if n is peer_migrating then
12: close down the connection with the sender of peer_migrating;
13: end if; end while;

Figure 4. The recv algorithm.

8

3.2.2 Process Migration Algorithms

The process migration protocol involves algorithms to transfer process state across machines. They

are migration and initialization algorithms as shown in Figures 5 and 6, respectively. On the mi-

grating process, the migration algorithm �rst checks whether a migration_request signal has been

sent from the scheduler and is intercepted by the migrating process. If so, it contacts the scheduler

to get information of an initialized process. Then, the algorithm rejects further communication

connection so that it can coordinate with existing communication peers to receive messages in

transit into the receive-message-list. At line 2 and 3 of Figure 5, the migrating process lets the

scheduler initializes a process to wait for state transfer before rejecting further connection requests

(con_req). In rejecting the requests, con_nack is responded, causing sender processes to consult

the scheduler and redirect their requests to the initialized process. Therefore, before the rejection,

the initialized process must already exist and the scheduler has to know its information in hand.

In process coordination, the migrating process sends disconnection signal and

peer_migrating control messages out to all of its connected peers. The disconnection signal will

invoke an interrupt handler on the peer process if the peer is running computation operations. The

handler keeps receiving messages from the communication connection until the peer_migrating

message is found and then closes the connection. In case the peer process is running a receive event,

the receive algorithm may detect peer_migrating while waiting for a data message. The peer pro-

cess then will close down the communication connection by the receive algorithm (see statement

12 of Figure 4).

The last message from a closing peer connection is the end-of-message symbol. The migrating

process receives messages from all communication connections to its receive-message-list until all

the end-of-message's are received. The migrating process, then, closes the existing communication

connections and collects the execution state and memory state. Then, it sends content of the receive-

message-list as well as the execution and memory state information to the destination machine.

Note that, for heterogeneity, the execution and memory state transfers are based on the techniques

presented in our previous works [8, 10] and the XDR encoding/decoding operations performed

during data transmission.

On the destination computer, a new process is initialized to wait for process state transfer.

Figure 6 shows the initialization algorithm. The initialized process will accept any connection

requests from start. At line 2 of Figure 6, the algorithm waits for the contents of the received-

message-list from the migrating process. During the wait, if there are any con_req's arrive, the

initialized process will grant connection establishment. If the wanted message still do not arrive,

the process will also receive new messages and append them to its local received-message-list. We

should note that while connections are granted on the initialized process, they are rejected on the

migrating process. Based on the send algorithm, the rejection will cause connection requests to be

redirected to the initialized process. After the operation at line 2 successes, the received message

contents are inserted to the front of the local received-message-list to maintain message ordering.

Then, the algorithm waits for the execution and memory state of the migrating process. If any

9

Process: Pi

migrate()

1: if(migrate_request is received)then

2: inform the scheduler migration_start;

3: get new vmid of Pi from scheduler;

4: All con_req arrived beyond this point will be rejected;

5: Send disconnection signal and peer_migrating

6: Receive incoming messages to receive-message-list until getting end-of-messages

7: close all existing connections;

8: Send received-message-list to the new process;

9: perform exe and memory state collection;

10: Send the exe and memory state to the new process;

11: wait for migration_commit msg from scheduler;

12: cooperate with the virtual machine daemon to make sure that no more

con_req control messages left to reject;

13: terminate;

14: end if

Figure 5. The migrate() algorithm on the migrating process.

messages or con_req's arrive during the wait, they are responsed by operations similar to those

in line 2. The initialized algorithm restores the process state after receiving the state information

from the migrating process. Then, it informs the scheduler of migration completion, updates the

PL table, and �nally resumes program execution.

4 A Case Study: A Parallel Kernel MG Benchmark

To test the proposed event-based data communication and process migration protocols, we have

implemented software prototypes and performed experiments on a communication intensive, parallel

kernel MG benchmark program. The prototypes consist of a software library for the protocol

implementation and its supportive runtime system. As shown in Figure 1, our protocol stack

has four layers. For the virtual machine layer, we modify the PVM communication library to

accommodate our protocol. PVM has two communication modes. One is direct communication

implemented on top of TCP/IP, the other is indirect communication where messages are routed via

PVM daemons. We extend the direct communication for our message passing protocol, while we

only use the indirect mode for sending control messages. The direct communication establishes TCP

connection \on demand" when a pair of pvm_send and pvm_recv or a pair of pvm_send are invoked

by the processes on both ends. As shown in Figure 1, the TCP lies in the lowest layer of the protocol

stack and has an extended PVM communication library implemented on top. In the second layer, we

10

Process: Pi

initialize()

1: All con_req messages are accepted beyond this point;

2: Receive received message list of the migrating process;

3: insert it to the front of the original received message list;

4: Receive \exe and mem state" of the migrating process;

5: Restore process state;

6: inform the scheduler restore_complete;

7: wait for contents of the PL table and old vmid from the scheduler;

8: inform the scheduler migration_commit;

Figure 6. The initialize() algorithm on the initialized process.

modify the pvm_send routine to consult the scheduler when it tries to establish a communication

channel with a process that has been migrated. We also add a number of connectivity service

routines providing utilities for higher-level protocols to request, grant, destroy, and make status

reports of every communication channel a process has. We found that the extension only causes

small changes to PVM source as most of our protocol designs are implemented in next layer of the

protocol stack.

We implement our data communication and process migration protocols in the third layer. Al-

though the send algorithm has most of its operation performed in the extension to the pvm_send,

operations to access and update the PL table are implemented in this layer. The receive algorithm

runs on top of pvm_recv and maintains the receive-message-list here. The migration algorithm

uses the extended connectivity service routines to coordinate peer processes and disconnect exist-

ing communication channel. The initialization algorithm cooperates the migration algorithm and

restores process state. Another important programming library in this layer (not shown in Figure

1) contains utilities to collect and restore execution state and memory state of a process. They

also handle state transfer directly via TCP. For modularity, we implement such utilities separately

from the protocols proposed here. Finally, the migration-enabled process stays in the forth layer.

In our prototypes, the virtual machine and scheduler are employed to monitor and manage

runtime environment. We use the PVM virtual machine to handle process creation and termination

and to pass control messages and signals between machines. A simple scheduler is implemented to

oversee process migration. In current implementation, the scheduler does not support any advanced

allocation policy but basic bookkeeping for process migration records.

As a case study, we show here the application of the prototype implementations on the parallel

kernel MG benchmark program [16]. The benchmark is written in C and originally runs under

PVM environment. The kernel MG program is an SPMD-style program executing four iterations

of the V-cycle multigrid algorithm to obtain an approximate solution to a discrete Poisson problem

11

with periodic boundary conditions on a 128� 128� 128 grid.

The kernel MG program applies block partitioning to the vectors for each process. A vector

is assigned to an array of size 16 � 128 � 128 when 8 processes are used. Since each process has

to access data belonging to its neighbors, the data must be distributed to the computation which

need them. Such distribution occurs periodically during execution. Every MG process transmits

data to its left and right neighbors. Therefore, the communication is a ring topology [16]. Data

communication of the MG program is nontrivial. The application exercises extensive interprocess

communication; over 48 Mbytes of data on the total of 1472 message transmissions.

We have annotated the program with process migration operations and linked the annotated

program to our protocols. In our experimental settings, we generates 8 processes ranking from

process 0 to 7. Each stays on a di�erent machine. Then, we force process 0 to migrate when a

function call sequence main ! kernelMG is made and two iterations of the multigrid solver inside

the kernelMG function are performed. For reliable data communication, we change the PVM send

and receive routines in source code to those of our communication library. As a result, while process

0 migrates, others would be executing without a prior knowledge of the migration incident. Note

that no barrier is used to synchronize the processes during a migration.

4.0.3 Communication Behaviors

Experiments are conducted to study process migration of the kernel MG program. In the �rst

experiment, we analyze communication behaviors during a process migration. Figure 7 shows a

XPVM generated migration diagram of the kernel MG program running on a cluster of 10 Sun Ultra

5 workstations connected via 100Mbit/s Ethernet. We set up two machines to run the scheduler

and an initialized process. Process 0 spawns seven other processes on di�erent machines as shown

in Figure 7. Note that a line between two timeline indicates a message passing which starts at

the point where pvm_send is called and ends when the matching pvm_recv returns. Since our

communication routines are implemented on top of PVM, these lines also show what are going

on inside our prototype implementation. Also, since we implement the execution and memory

state transfer directly on TCP, their network transmissions are not displayed in this diagram.

In the �gure, the execution is separated into di�erent stages. First, all pvmmg processes establish

connections, distribute data, and perform the �rst two iterations. Then, the migration is performed

by relocating process 0 to the initialized process. After the migration, the kernel MG resumes the

rest of its computation.

We have observed a number of interesting facts through the space-time diagram. First, since the

migrating process has connection to all other processes (due to the original setup of the benchmark),

it has to send disconnection signals and peer_migrating messages to them. When the migration

starts, we �nd that there is no message sent to the migrating process from any of the connected

peers. Therefore, the migrating process does not receive any messages into the receive-message-

list when it performs message coordination with connected peers. After the coordination, every

12

Figure 7. A space-time diagram with a process migration.

existing connection is closed. This operation is shown in area A in Figure 8 2. Second, while process

0 migrates, other processes proceed with their data exchanges normally. As long as a process does

not have to wait for messages, its execution continues. Area B in Figure 8 shows such execution. In

normal operation, the kernel MG process would exchange messages of size 34848 following by 9248

and 2592, etc with its near neighbors. In the area B, some non-migrating processes proceed with

the exchanges up to the message size 2592. Then, they have to wait for certain communication

to �nish before proceeding further until only process 4 can transmit messages of size 800 to its

neighbors (area C in Figure 9). Beyond this point, the non-migrating processes have to wait for

process 0 to start sending data after the migration �nishes.

Finally, following the multigrid algorithm, twomessages of size 34848 bytes are sent from process

1 and 7 to process 0 at the start of the third iteration. Since the process 0 is migrating and the

communication channels between 0 and 1 and between 0 and 7 are already closed, both senders

have to consult the scheduler to acquire location of the initialized process for establishing new

connections. Such communication are shown by the two lines captured by label D in Figure 9. By

a closer analysis of trace data, we �nd that the communication channels are established before the

execution and memory state restoration of the migrating process, allowing the senders (processes

1 and 7) to send their data to the initialized process in parallel to the execution and memory

state restoration. Since the send data are copied to low level OS bu�ers, the sender process can

proceed with their next execution so that the computation can continue in the area C. The sent

data are received after the restoration �nishes, resulting XPVM to display two long lines cut across

the migration time frame as shown in area D in Figure 9. After that, the migrating process starts

2We have performed ten experiments under the same testing con�guration and found that the timing results

appeared to be very similar. There is no forwarding message in all tests. The communication pattern during the

migration also does not exhibit any variation.

13

Figure 8. A diagram show the beginning of process migration.

resuming its execution, sends two messages of size 34848 bytes back to its neighboring peers, and

continues the multigrid computation. These observations con�rm that the case study represents

general communication situations and validates the proposed communication protocols.

Overheads

In the second experiment, our objective is to exam the overhead of our communication and mi-

gration protocols and the cost of migration. Table 1 shows the measured turnaround time of the

parallel MG benchmark. All timing reported are averages of ten measurements. original rep-

resents the original code running on PVM. modified is the migration-enabled process running

without a migration. Finally, migration represents the migration-enabled process running with a

migration.

By comparing the communication time of modified and that of original, the overhead is

evidently small. Although over 48 Mbytes of data on the total of 1472 messages are transmitted

during execution, the total overhead of the modi�ed code is only about 0.144 seconds. We believe

such small overhead is due to the thin layer protocol design on top of PVM.

By comparing the execution time of the migration to that of the original code, we �nd that a

migration incurs about 2.2922 seconds higher turnaround time. Although processes can continue

execution while the process 0 migrates, due to the communication characteristic of the kernel MG

program, they eventually all have to wait for messages from the process 0 after its migration. The

waiting contributes to the migration cost. The migration transmits over 7.5 Mbytes of execution

and memory state data. In details, we �nd the migration cost to be 2.2922 seconds in average,

14

Figure 9. The space-time diagram of a process migration.

Total original modi�ed migration

Execution time 16.130 16.379 18.833

Communication 4.051 4.205 6.647

Table 1. Timing results (in seconds) of the kernel MG program.

which can be divided into 0.1166 seconds for communication coordination with connected peers,

0.73 seconds for collecting the execution and memory state of the migrating process, 0.7662 seconds

to transmit the state to a new machine, and 0.6794 seconds for restoring them before resuming

execution.

5 Related Work

The Chandy and Lamport's algorithm [15] is an early consistent checkpointing algorithm which

employs process coordination to achieve global consistency in distributed systems. The CoCheck

[11] system implements coordinated checkpointing mechanisms for PVM applications based on the

Chandy and Lamport's protocol. Since global consistency is provided, such checkpointing mecha-

nisms can also be used to support process migration. However, we should note forcefully here that

the main purpose of systems such as CoCheck is to support fault tolerance not process migration.

As a result, their designs su�er two disadvantages which can be alleviated by the speci�cally op-

timized systems for migration purpose. First, they require coordination of all processes directly

15

and indirectly connected to the migrating process. Second, some processes must be blocked from

sending messages during checkpointing to maintain consistency.

Alternatively, mechanisms to maintain reliable data communication during process migration

can be implemented directly into the message passing protocol. Charlotte [12], MPVM [13], and our

SNOW systems are along this direction. These systems are message based and rely on the concept of

communication channel. Charlotte supports non-blocking communication and uses the link concept,

where a process can refer to the same link throughout its computation regardless of mobility. During

process migration, the migrating process sends messages along all links to update its location

information on the communication peers. In Charlotte's design, messages need not be drained

from a link during the migration due to the kernel provided message caching and retransmission

mechanisms. Although allowing to write highly concurrent programs, the implementation of kernel-

supported communication mechanisms in Charlotte is quite complex [12].

On the other hand, MPVM and SNOW implement reliable message passing mechanisms at

user-level and support blocking point-to-point communication. Both systems are implemented on

top of PVM. To maintain reliable data communication, the Chandy and Lamport's algorithm is

customized. Instead of coordinating all directly and indirectly connected processes, the customized

algorithm only performs process coordination to capture communication state between the migrat-

ing process and its directly connected peers. MPVM is designed to support transparent process

migration for PVM applications. It supports both connection-oriented and connectionless com-

munication based on the PVM direct and indirect communication modes, respectively. A major

di�erence between MPVM and our work is in the connection establishment issue. The MPVM

design does not maintain automatic connection establishment in point-to-point communications.

After the migration, some messages can only be routed via PVM indirect communication, which

can severely degrade communication performance. Although both MPVM and SNOW allow other

processes to send messages to the migrating process during migration, they employ very di�erent

mechanisms. In MPVM, messages are routed to the migrating process via PVM indirect commu-

nication. On the other hand, the SNOW protocols transmit such messages directly via a newly

established communication channel between the sender and the initialized processes.

The SNOW's protocols are designed to support dynamic distributed environments. Automatic

communication establishment is maintained throughout program execution. During a migration,

only processes directly connected to the migrating process are coordinated. Our protocols do not

block other processes in the system from sending messages to the migrating process. They also

allow unconnected processes to make connections and send their data to the migrating process

transparently to a migration occurrence. From our experience, the protocols demonstrate simple,

yet e�cient implementations on top of existing communication software.

6 Summary and Future Works

We have presented algorithms to support communication state transfer in a dynamic, distributed

environment. These algorithms are implemented inside data communication and process migration

16

protocols to handle send, receive, and process migration operations. They work collectively to

prevent loss of messages and preserve message ordering. In the send algorithm, the sender-initiate

technique is implemented so that the sender requests the receiver for a connection. Two vital

functionalities are added to the send algorithm to support migration environment. They are the

abilities to reconstruct communication channels and to search for the location of a migrated process.

In the receive algorithm, we have introduced the receive-message-list as a user-level bu�er that keeps

messages arrived before their intended receive operations are executed. The algorithm is capable of

assisting a migration of a connected peer process by receiving all messages from the communication

channel and then closing it down.

We have implemented the prototype data communication and process migration protocols by

extending the PVM system. We have presented a case study of process migration on the parallel MG

benchmark. Analytical and experimental results show that our protocols do preserve distributed

computation logics and correctly capture and restore the communication state of a process for pro-

cess migration. The prototype implementation reports small computation and migration overheads

and demonstrates the real potential of the protocols.

The need of heterogeneous process migration for future distributed computation is vital [14].

Works are still left to be done in many areas. In the near future, we plan to perform more case

studies on a number of parallel applications with di�erent communication characteristics, and

through the SNOW project [3], develop a compilation system to support semi-automatic process

migration. We believe that the development of such tools will advocate new applications of dynamic

programming to distributed network computing.

References

[1] D. S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou, \Process Migration,"

tech. rep., TOG Research Institute, Dec. 1996.

[2] P. Smith and N. Hutchinson, \Heterogeneous process migration : The TUI system," Tech.

Rep. 96-04, University of British Columbia, Department of Computer Science, Feb. 1996.

[3] X.-H. Sun, V. K. Niak, and K. Chanchio, \A Coordinated Approach for Process Migration in

Heterogeneous Environments," in 1999 SIAM Parallel Processing Conference, Mar. 1999.

[4] S. Leutenegger and X.-H. Sun, \Limitations of cycle stealing of parallel processing on a network

of homogeneous workstations," Journal of Parallel and Distributed Computing, no. 3, 1997.

[5] M. Harchol-Balter and A. Downey, \Exploiting Process Lifetime Distribution for Dynamic

Load Balancing," ACM Transactions on Computer Systems, vol. 15, 1997.

[6] P. Krueger and M. Livny, \A Comparison of Preemtive and Non-Preemtive Load Balancing,"

in Proceedings of the 8th International Conference on Distributed Computing Systems, pp. 336{

343, 1988.

[7] I. Foster and C. Kesselman, \Globus: A metacomputing infrastructure toolkit," International

Journal Supercomputer Applications, vol. 11, no. 2, pp. 115 { 128, 1997.

17

[8] K. Chanchio and X.-H. Sun, \MpPVM: A software system for non{dedicated heterogeneous
computing," in Proceeding of 1996 International Conference on Parallel Processing, Aug. 1996.

[9] K. Chanchio and X.-H. Sun, \E�cient process migration for parallel processing on non{
dedicated network of workstations," Tech. Rep. 96-74, NASA Langley Research Center,

ICASE, 1996.

[10] K. Chanchio and X.-H. Sun, \Memory space representation for heterogeneous networked pro-
cess migration," in 12th International Parallel Processing Symposium, Mar. 1998.

[11] G. Stellner, \Consistent checkpoints of PVM applications." Proceeding of the First European
PVM Users Group Meeting, 1994.

[12] R. A. Finkel, M. L. Scott, Y. Artsy, and H.-Y. Chang, \Experience with charlotte: Simplicity

and function in a distributed operating system," IEEE Transactions on Software Engineering,
vol. 15, no. 6, pp. 676{685, 1989.

[13] J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and J. Walpole, \Mpvm: A migratable
transparent version of PVM," Computing Systems, vol. 8, no. 2, pp. 171{216, 1995.

[14] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure. Morgan

Kaufmann, 1998.

[15] K. M. Chandy and L. Lamport, \Distributed snapshots: Determining global states of dis-
tributed system," ACM Transactions on Computer Systems, pp. 63 { 75, 1987.

[16] S. White, A. Alund, and V. S. Sunderam, \Performance of the nas parallel benchmarks on pvm
based networks," Tech. Rep. RNR-94-008, Emory University, Department of Mathematics and

Computer Science, May 1994.

18

