
Cluster Comput
DOI 10.1007/s10586-012-0200-4

Cost-intelligent application-specific data layout optimization
for parallel file systems

Huaiming Song · Yanlong Yin · Yong Chen ·
Xian-He Sun

Received: 12 September 2011 / Accepted: 23 January 2012
© Springer Science+Business Media, LLC 2012

Abstract Parallel file systems have been developed in re-
cent years to ease the I/O bottleneck of high-end comput-
ing system. These advanced file systems offer several data
layout strategies in order to meet the performance goals of
specific I/O workloads. However, while a layout policy may
perform well on some I/O workload, it may not perform as
well for another. Peak I/O performance is rarely achieved
due to the complex data access patterns. Data access is ap-
plication dependent. In this study, a cost-intelligent data ac-
cess strategy based on the application-specific optimization
principle is proposed. This strategy improves the I/O per-
formance of parallel file systems. We first present examples
to illustrate the difference of performance under different
data layouts. By developing a cost model which estimates
the completion time of data accesses in various data layouts,
the layout can better match the application. Static layout op-
timization can be used for applications with dominant data
access patterns, and dynamic layout selection with hybrid
replications can be used for applications with complex I/O

H. Song (�)
R&D Center, Dawning Information Industry Co., Ltd., Beijing
100084, China
e-mail: songhm@sugon.com

Y. Yin · X.-H. Sun
Department of Computer Science, Illinois Institute of Technology,
Chicago, IL 60616, USA

Y. Yin
e-mail: yyin2@iit.edu

X.-H. Sun
e-mail: sun@iit.edu

Y. Chen
Department of Computer Science, Texas Tech University,
Lubbock, TX 79409, USA
e-mail: yong.chen@ttu.edu

patterns. Theoretical analysis and experimental testing have
been conducted to verify the proposed cost-intelligent layout
approach. Analytical and experimental results show that the
proposed cost model is effective and the application-specific
data layout approach can provide up to a 74% performance
improvement for data-intensive applications.

Keywords Data layout · I/O performance modeling ·
Parallel file systems · Parallel I/O · Data-intensive
computing

1 Introduction

Scientific and commercial applications, such as nanotech-
nology, astrophysics, climate, and high energy physics, are
increasingly reliant on large datasets. In most data-intensive
applications, the storage devices are the critical bottleneck
and the situation worsens with increased data volumes.
While the computation capabilities of processors have been
increasing rapidly during the past decades, disk capaci-
ties have not seen the same growth. Therefore, there ex-
ists an enormous performance gap between processors and
disks. Parallel file systems, such as Lustre [1], GPFS [2],
PanFS [3], and PVFS2 [4] are designed to mask the ever-
increasing gap between computing and I/O performance, by
combining large numbers of storage devices and providing
high degree of I/O parallelism. There are three commonly
used data layouts in existing parallel file systems: 1-DH,
1-DV , and 2-D. 1-DH is short for one dimensional horizon-
tal layout, which refers to the layout strategy that data ac-
cessed by each I/O client is distributed across all file servers.
1-DV is short for one dimensional vertical, which means
each I/O client accesses data from one file server. 2-D layout
refers to the policy that each I/O client accesses data from a

mailto:songhm@sugon.com
mailto:yyin2@iit.edu
mailto:sun@iit.edu
mailto:yong.chen@ttu.edu


Cluster Comput

Fig. 1 Three commonly used data layout strategies

subset of all file servers. These policies are demonstrated in
Fig. 1, and they are designed for different I/O workloads.

For a workload, I/O behaviors are dependent on applica-
tion characteristics and vary considerably from application
to application in terms of request frequency, data size, ac-
cess concurrency, and data continuity. Even in one applica-
tion, data access pattern may vary from time to time. There-
fore, a complex application may not have a single dominant
data access pattern, but rather consist of many patterns dur-
ing different phases. For example, the request size may be
very large at one time while small at another time, and the
number of concurrent I/O requests might change often.

Generally, a large I/O request should invoke parallel ac-
cess to many file servers to increase throughput, while a
small request should be processed on a single file server to
reduce latency. Therefore, data access patterns and data lay-
out manners influence the performance of parallel I/O sig-
nificantly. Nevertheless, there is no single data layout pol-
icy working well for all workloads. A data layout policy that
works well for one type of I/O workload may be a bad choice
for another. Moreover, in existing parallel file systems, the
use of these data layouts is hectic and rare due to several
limitations. To identify an appropriate data layout option,
the user needs to understand the I/O workload of his/her ap-
plication, and needs to understand the underlying parallel
file systems. Even if the user is an expert on both sides, the
application may have data access patterns that do not have
a perfect match with the options provided by the underly-
ing file system. More research efforts are needed to explore
an intelligent layout selection strategy which provides the
full potential of parallel file systems. Finding an appropriate
data layout for a given application has significant and prac-

tical importance for HPC applications, especially for appli-
cations that are data-intensive.

Understanding this interaction between access pattern
and data layout in parallel file systems is critical to opti-
mizing I/O performance. Figure 2 shows an example of I/O
performance under three typical data layouts. As the I/O per-
formance varied a lot for different access patterns, to make
the results clear, we regarded the performance of 1-DH as
the baseline, and compared the performance of 1-DV and
2-D with the baseline for each case. In subfigure (a), a fixed
request size with an increasing number of concurrent I/O
clients is described, while in subfigure (b) a fixed number
of I/O clients with an increasing request size is described.
From the results of subfigure (a) it can be observed that
when the concurrency is small, 1-DH has the highest I/O
performance; however, when the number of concurrent pro-
cesses increases, 2-D or 1-DV have the highest bandwidth.
Subfigure (b) shows that the request size is also influential
on I/O performance under different data layouts. The results
indicate that different access patterns require different lay-
outs in order to optimize I/O performance. While data lay-
out and user request patterns seriously affect the I/O per-
formance of data-intensive applications, current I/O perfor-
mance optimization strategies are not designed to capture
data access pattern as an application-specific feature. This
is an inherited limitation of existing approaches, and we ad-
dress this limitation well in this study. We propose an in-
novative cost-intelligent application-specific data layout ap-
proach, in which a cost model is developed to guide the data
layout selection. An optimal data layout is determined auto-
matically for a given application.

In this paper, we propose a cost-intelligent data access
strategy to integrate the data access optimization with layout



Cluster Comput

Fig. 2 I/O Performance comparison for different access patterns of
three layout policies: 1-DH, 1-DV, and 2-D. As the I/O performance
varied a lot for different access patterns, to make the results clear, we
regarded the performance of 1-DH as the baseline, and compared the

performance of 1-DV and 2-D with the baseline for each case. The re-
sults were collected from the IOR benchmark on a PVFS2 system with
4 file servers and 8 computing nodes with sequential I/O workloads

optimization techniques, which is beneficial to various types
of I/O workloads. This study makes the following contribu-
tions. (1) We propose a cost model of data access for parallel
file systems, which can be used for estimating the comple-
tion time of data accesses with different data layout poli-
cies. (2) We present a static layout optimization approach, to
identify the optimal data layout for applications with dom-
inant access patterns. (3) We also propose a dynamic data
access strategy with hybrid replication for applications with
mixed I/O workloads where one layout policy does not bene-
fit all data accesses. The analytical and experimental results
show that the newly proposed cost-intelligent application-
specific data layout approach is very promising and has real
potential in unleashing the full potential of parallel file sys-
tems.

The rest of this paper is organized as follows. Section 2
briefly reviews the related work in I/O optimization tech-
nologies for data-intensive and high-performance comput-
ing systems. In Sect. 3, we present a cost model of data
access under different layout policies in parallel file sys-
tems. Section 4 proposes a layout selection strategy for a
given application based on the analysis of overall data ac-
cess cost. Section 5 describes a dynamic access strategy
with hybrid data replications. Experimental and analytical
results are presented in Sect. 6. Section 7 discusses the ap-
plicable spheres and potential further improvements of the
cost-intelligent data access scheme. Section 8 concludes the
paper.

2 Related work

Parallel file systems are widely used to exploit high degree
of I/O parallelism in data-intensive and high-performance
computing applications. However, poor data access perfor-
mance has been recognized as the system bottleneck. Nu-
merous research efforts have been devoted to improving I/O

performance through data access optimization and data or-
ganization techniques.

2.1 Data access optimization

In order to optimize data access for parallel I/O, a collec-
tion of advanced techniques, such as request arrangement,
caching and prefetching, have been proposed and developed.
These techniques are successful in reducing the overhead
on network or I/O servers during data accesses, and they
are usually implemented in parallel I/O libraries layer or file
server layer.

Request arrangement techniques, including data sieving
[5], two-phase I/O [6], collective I/O [5, 7, 8], Datatype I/O
[9] and List I/O [10], mainly focus on merging small and
non-contiguous data accesses into large and contiguous re-
quests, to reduce the I/O completion time. Data sieving [5]
arranges requests to access a single large contiguous chunk
containing small pieces of data from the first request to the
last request instead of accessing each portion separately.
Two-phase I/O [6] and collective I/O [5, 7, 8] in MPI-IO li-
braries ameliorate the performance penalties incurred when
directly mapping the distribution of data on file servers to
the distribution in processor memories, as a moderate num-
ber of concurrent accesses to an I/O server often get better
performance. Both Datatype I/O [9] and List I/O [10] pro-
vide ways for richer semantics of various non-contiguous or
structured data access patterns, to reduce the amount of I/O
requests and the overhead in network transmission.

Caching and prefetching can optimize the I/O perfor-
mance significantly because of locality and regularity of data
accesses. In parallel I/O systems, caching techniques usually
aim at storing data at a client side buffer in a collective way
[11–14], so that all I/O client processes can share data in
their memories among multiple nodes through the network.
Data prefetching techniques aim at fetching data in advance,



Cluster Comput

and can be roughly classified into two categories: informed
and speculative. Informed data prefetching [15–18] obtains
data access patterns before data accessing, usually based
on I/O trace analysis, profiling or hints. While speculative
methods usually prefetch data aggressively based on runtime
analysis, and are more suitable for data accesses without ex-
plicit patterns [19–22].

2.2 Data organization

Research efforts on data organization mainly focus on phys-
ical data layout optimization [23–29] among multiple file
server nodes according to the I/O workloads of applications.
Since I/O requests usually fall into several patterns in paral-
lel applications, it is possible to re-organize the data layout
in the storage nodes to reduce disk head movement [30–32,
37, 38], thus improving the overall I/O performance. Data
partition [23, 24] and replication [26, 27, 33] techniques
are also commonly used to reduce disk head movements or
to increase I/O parallelism. For example, Zhang et al. [33]
proposed a data replication scheme to distribute I/O work-
loads on multiple replicas to improve the performance, so
that each I/O node only serves requests from one or a lim-
ited number of processes. Most parallel file systems, such
as Lustre [1], GPFS [2], PanFS [3], and PVFS2 [4], pro-
vide several data layout policies. A large number of data
layout optimization techniques are based on transcendental
I/O workload information, such as trace or profile analysis
[23, 24], to guide data partitioning across multiple disks or
storage nodes.

In parallel file systems, data is distributed among mul-
tiple storage servers to achieve a high degree of I/O paral-
lelism. Numerous research efforts have been devoted to data
access performance and cost analysis in parallel file systems.
Welch et al. [3] provided an analysis of the performance for
parallel file systems from several aspects, including I/O per-
formance, system recovery performance, and metadata op-
eration performance. Several other research work [34–36]
analyzed how file system performance can be affected by
many factors of workload such as the distribution of files,
I/O request sizes, and I/O access characteristics.

The proposed approach is different from existing work.
A new cost model to guide data layout optimization for par-
allel I/O systems is developed. In a previous work [29], anal-
ysis of the completion time of data access under different
data layouts was determined. The cost model in this paper
is an extension of the previous cost model. When an ap-
plication has dominant I/O patterns, it chooses an optimal
data layout for that application based on the overall access
cost analysis. When an application has mixed I/O workloads
without dominant patterns, a dynamic data access strategy
with hybrid data replications is proposed, which can auto-
matically perform I/O on one replica with the lowest cost
for each data access.

3 Cost analysis model

In this paper, the three typical data layout policies are con-
sidered: 1-DH, 1-DV, and 2-D. These layout policies are
supported by most parallel file systems, e.g. Lustre [1] and
PVFS2 [4]. What needs to be emphasized is that the data lay-
out here is process-oriented, rather than file-oriented. That is
to say, 1-DH layout means one client process accesses data
from all file servers, 1-DV means one client process accesses
data from one file server, and 2-D means one client process
accesses data from a subset of all file servers.

Different layout policies in parallel I/O systems lead to
different interactive behaviors, and thus introduce different
data access costs. In order to analyze data access cost in par-
allel file systems, the interactions between I/O clients and
file servers must be understood. The cost is defined as the
completion time of each data access, and it mainly consists
of two parts: the time spent on the network transmission (de-
noted as Tnetwork) and the time spent on the local I/O oper-
ations of storage nodes (denoted as Tstorage). Generally, the
time spent on network, Tnetwork, consists of Te and Tx . The
former is the time spent on establishing the network connec-
tion and preparing for data transmission, and the latter is the
time spent on transferring the data. The storage cost Tstorage

consists of Ts , the startup time, and Trw , the time spent on
actual data read/write. Thus the data access cost can be rep-
resented as follows.

T = Tnetwork + Tstorage

= (Te + Tx) + (Ts + Trw) (1)

Network establish time and storage node startup time are
independent from data size, while the transmission time and
read/write time are proportional to the data size. To make
the model simple and effective, it is assumed that there are
no overlaps between I/O clients and file servers. This im-
plies that every data access involves network transmission.
Also only contiguous I/O requests are considered, and non-
contiguous requests, e.g. list I/O, could be regarded as a set
of contiguous data accesses. Table 1 lists all the parameters

Table 1 Parameters in cost analysis model

Parameters Description

p Number of I/O client processes.

n Number of storage nodes (file servers).

m Number of processes on one I/O client node.

s Data size of one access.

e Cost of single network connection establishing.

v Network transmission cost of one unit of data.

α Start up time of one disk I/O operation.

β Cost of reading/writing one unit of data.

g Number of storage groups in 2-D layout.



Cluster Comput

Table 2 Cost formulas for three layout policies

Layout Type Condition Network Cost Tnetwork Storage Cost Tstorage

Establish Te Transmission Tx Startup Ts I/O Trw

1-DV p ≤ n me msv �p

n
�α �p

n
�sβ

p > n m ≤ �p

n
� �p

n
�e �p

n
�sv

m > �p

n
� me msv

1-DH m ≤ �p

n
� pe

psv

n
pα

psβ

n

m > �p

n
� mne msv

2-D p ≤ g m�n

g
�e msv �p

g
�α � p

g
�sβ

� n
g
�

p > g m ≤ �p
g
�

� n
g
� �p

g
�e � p

g
�sv

� n
g
�

m >
�p

g
�

� n
g
� m�p

g
�e msv

considered in this model. The complete cost formulas cover-
ing all situations are listed in Table 2. The detailed analysis
of data access cost can be found in literature [29].

The cost formulas shown in Table 2 provide a detailed
analysis of completion time for data accesses under differ-
ent data layouts. From the cost model, it is easy to cal-
culate which layout gets the lowest completion time for a
given data access pattern. Although there are several vari-
ables among the model parameters, for most applications,
the runtime variables such as m, p and n are fixed for each
run. In general, for a given system, e, v, α and β can be
regarded as constants. The network transmission time and
read/write time on storage nodes are proportional to data
size, while I/O startup time with sequential data accesses
is smaller than that of random data read/write.

4 Layout optimization based on overall I/O cost

The proposed cost model could be used to estimate data ac-
cess time for each I/O request under different data layouts
in parallel file systems. However, as mentioned in Sect. 1,
one application may have different kinds of data accesses.
Because different I/O requests require different layouts for
optimal I/O performance, and it is not easy to identify which
layout is best for the application. A layout optimization
strategy based on the overall data access cost is proposed.
Since calculating I/O cost for each request by the model is
possible, given that there is a prior knowledge of data ac-
cesses for the application, it is not difficult to calculate the
overall cost, by summing the cost of all I/O requests. A lot
of data-intensive applications have regular data access pat-
terns, and the I/O behavior can be learned from previous

runs. For example, numerous tools were developed to trace
I/O requests for applications [18, 39]. By calculating the I/O
cost for each data access and summing them together, the
overall cost for all data accesses in different layout policies
is found. The following formula shows how to calculate the
overall data access cost for an application.

T C =
n∑

i=1

Ti

=
n∑

i=1

((Tei + Txi) + (Tsi + Trwi))

By comparing these overall costs under three data lay-
outs, it is possible to determine the optimal data layout
which leads to the lowest cost for that application.

T Coptimal = MIN{T C1−DH ,T C1−DV ,T C2-D}
Figure 3 shows the procedure for a layout optimization

strategy based on overall data access analysis. The proce-
dure consists of two steps. The first step is to estimate system
parameters of a given parallel file system. In this implemen-
tation, a pre-estimation phase was used to calculate the value
of these parameters. We use one file server in the parallel
file system to test α and β , and use a pair of nodes (one I/O
client and one file server) to estimate network parameters, e

and v. By measuring the parameters with different request
sizes and repeating each case with multiple runs(the number
is configurable), the averages can be obtained and substi-
tuted for the parameter values. The next step is to compute
the overall access cost with the parameters obtained from
the first step. In this step, I/O traces are used as input to sum
the access cost for every I/O request one by one for the three
data layouts. As mentioned above, the data layout that has



Cluster Comput

Fig. 3 Layout optimization based on overall access cost

the minimum access cost is the optimal data organization
for that application.

Data-intensive applications usually involve a large num-
ber of I/O requests with different request size and concur-
rency, and there is no single layout that benefits all I/O
requests. The aforementioned overall cost analysis simpli-
fies layout selection for these applications. It is important to
point out that three layout policies (1-DV, 1-DH, and 2-D)
are defined based on the distribution of data accesses by each
process. In cases where each I/O client process reads/writes
an independent file, it is natural to place different files with
different layout policies. However, in cases where all pro-
cesses access a shared file, different data layout policies can
be defined in terms of different stripe sizes: a large stripe
size that lets each process read/write data from a single file
server, which is similar to 1-DV layout manner; a small
stripe size that lets each I/O process be served by all file
servers in parallel, which is similar to 1-DH data layout;
and a medium stripe size can be regarded as a 2-D layout
manner, where each data access only involves a subset of
all storage nodes. Therefore, application features and spe-
cific I/O scenarios should be considered when applying this
layout optimization approach.

5 Dynamic access with hybrid data replication

5.1 Hybrid data replication strategy

The overall access cost analysis is practical for data layout
optimization in data-intensive applications, especially those
with dominant I/O patterns. For example, if an application
has a large number of concurrent I/O processes, 1-DV lay-
out is the best; where 1-DH layout is more applicable for the
cases with less number of concurrent I/O processes and large
requests. However, in some applications, there are mixed I/O
workloads with various data access patterns, and there is no
dominant patterns. Moreover, the difference of the overall
access costs with different layouts might be insignificant. It
is not easy to determine which policy is the best as the over-
all access cost analysis is not applicable. For example, dur-
ing one run of an application, there might be a small num-
ber of concurrent I/O requests at one moment, or a burst of
I/O requests at another moment. In addition, the request size
could be large or small at different moments. This variation
makes it impossible for a static data layout policy to serve all
data accesses in the most efficient way. Therefore, a dynamic
access strategy with ‘hybrid’ data replication is proposed to
optimize layout for the above application scenarios.

Hybrid data replication means that each file has multiple
copies with different data layout policies in the parallel file
system, i.e. one replica in 1-DH layout, another in 1-DV lay-
out, and the third replica in 2-D layout. For each data access,
we first calculate the costs under these replicas, and then se-
lect one replica with the lowest access cost. Therefore, the
dynamic data access strategy is a fine-grained optimization,
which improves I/O performance with layout selection for
every data access: different accesses could be mapped to
different data copies independently, and all accesses could
be optimally improved. Since each data access is assigned
to the best-fit replica, the dynamic data access strategy with
hybrid data replication can serve all kinds of I/O workloads
with high performance. It significantly improves I/O perfor-
mance for data-intensive applications.

Figure 4 shows an example of the hybrid replication strat-
egy. In this example, there are four files stored in four stor-
age nodes. Each file has three replications in 1-DV, 1-DH,
and 2-D data layout respectively. Each data access will be
directed to one replica with the lowest access cost, to im-
prove the performance for every access, and thus improve
overall performance. Generally, data read is simple, but data
write is more complicated because the data must be consis-
tent among the multiple copies. There are a couple of pos-
sible solutions to handle write operations. In this design and
implementation, the data is first written to one replica with
the lowest cost, and lazy strategies [40] are applied to syn-
chronize data to the other replicas. Hence, for write opera-
tions, only data access cost on the optimal replica is counted,



Cluster Comput

Fig. 4 The hybrid data replication scheme

and the cost of lazy data synchronization is considered as a
background operation.

Similarly, application features must be considered for the
hybrid data replication approach. When each I/O process ac-
cesses an independent file, it is easy to adopt different lay-
out policies for different data replicas. However, when all
I/O clients access a shared file, different layout can be de-
fined in terms of different stripe size. As mentioned in the
previous section, a large stripe size that lets each I/O pro-
cess be served by one I/O server is similar to the 1-DV lay-
out. A small stripe size that lets each I/O process be served
by all I/O servers in parallel is similar to the 1-DH layout.
A medium stripe size is similar to the 2-D layout.

A prototype of these cost calculations and layout selec-
tion procedures is implemented in the MPI-IO libraries. The
hybrid data replication is transparent to the users. The users
can run their programs without any modifications. This pro-
totype can perform cost calculation and layout selection au-
tomatically. Below are some modifications to the MPI-IO
libraries.

File open: for each file open function, all the copies are
opened.

File read: for each data read function, calculate access
costs for all data copies, and then select one copy with the
lowest cost to read data.

File write: for each data write, synchronize related data
blocks, and then perform I/O on one copy with the low-
est cost to perform write. Then add the write requests of
other copies to a lazy synchronization queue.

File close: synchronize data for all copies and close all of
them.

For data writes, all lazy write requests are put to a request
queue right after writing to the optimal replica. A dedicated

data synchronization thread is implemented in the client side
library to perform these lazy write requests in the queue. Be-
cause data synchronization is a background operation, each
data write function can return right after putting the lazy
write request into the queue.

Admittedly, the hybrid data replication strategy needs
more storage space. This is a trade-off between data access
performance and storage capacity. With the ever-increasing
disk capacities and ever-increasing performance gap be-
tween CPU and disk, the trade-off should be increasingly
important for some performance-crucial and data-intensive
applications. This hybrid strategy provides a good alterna-
tive to existing strategies.

6 Experimental evaluation

6.1 Experimental platform

The experiments were conducted on a 65-node Sun Fire
Linux-based cluster, including one head node and 64 com-
puting nodes. The head node Sun Fire X4240 is equipped
with dual 2.7 GHz Opteron quad-core processors, 8 GB
memory, and 12 500 GB 7200 RPM SATA-II drives config-
ured as RAID5 disk array. The hardware and software con-
figuration of the computing nodes are shown in Table 3. In
the Ethernet environment, all 64 computing nodes were em-
ployed, of which 16 nodes work as file servers and the other
48 nodes work as I/O client nodes. In the InfiniBand test-
ing, PVFS2 was configured with 8 file servers, and the rest 8
nodes served as I/O clients. The head node is used for man-
agement, and there was no overlap between file servers and
I/O client nodes in either environment.



Cluster Comput

Table 3 Node information of experiment platform

CPU 2.3 GH Quad-Core AMD Opteron ∗ 2

Memory 8 GB

Storage SATA II 250 GB, 7200 RPM

Network Gigabit Ethernet (additional 4X IB for 16 nodes)

OS Ubuntu 4.3.3-5, Linux kernel 2.6.28.10

PVFS2 PVFS2 version 2.8.1

The experiments consisted of three parts. The first part
was to verify the data access cost model, including parame-
ter estimation and model accuracy verification. The second
part was to use the I/O cost formulas to optimize the data
layout based on overall access cost. The third part was to
verify the efficiency of the hybrid data replication strategy.
The widely-used parallel file system benchmark IOR and
MPI-TILE-IO to test the I/O performance were used. IOR
is a benchmark program used to test random and sequential
I/O performance of parallel file systems. MPI-TILE-IO is a
benchmark that tests the performance of MPI-IO for non-
contiguous access workload. PVFS2 can work with both
MPI-IO and POSIX interfaces, and the former was tested in
the experiments. Unless otherwise specified, in all our test-
ing, 1-DV means that each file was placed in one storage
node; 1-DH means each file was striped across all storage
nodes; and 2-D means each file was striped on 2 storage
nodes.

6.2 Model verification

First we conducted experiments to get the approximations
of e, v, α, and β of the cost model in our experimental plat-
form. In order to get disk startup time and read/write rate,
we employed one storage node to test α and β . We also em-
ployed a pair of nodes to estimate network parameters, e and
v, in both Ethernet and InfiniBand environments. We per-
formed experiments with different request sizes and repeat
these tests thousands of times for both random and sequen-
tial I/O patterns. We got the parameter values by calculat-
ing the average values. For disk startup time, we measured
different startup times on storage nodes for sequential and
random data accesses, respectively. The values of the pa-
rameters are listed in Table 4.

Next, we conducted experiments to verify the model’s
ability to select the layout policy with the lowest data ac-
cess cost. In this set of experiments, we ran a large number
of cases, and all data access patterns were tested in three
data layout policies with different request sizes and process
numbers. Table 5 shows the statistical results of the model
accuracy. We used the cost model to estimate the I/O perfor-
mance, to choose the layout policy with the lowest data ac-
cess cost. We compared this chosen layout policy with actual
test results. If the chosen data layout actually produced the

Table 4 Parameter values of the experimental platform

Parameters Ethernet InfiniBand

e 0.0003 sec 0.0002 sec

v
1

120 MB

1

1000 MB

α 0.0003 sec (rand), 0.0001 sec (sequent)

β
1

120 MB

Table 5 Statistics of model estimation with different interconnections

Interconnection Access
Type

Total Case
Count

Correct
Count

Correct
Rate

Ethernet Random 4200 3821 90.98%

Sequential 4200 3702 88.14%

InfiniBand Random 2200 1867 84.86%

Sequential 2200 1763 80.14%

best performance, the estimation was marked as ‘Correct’.
As can be seen from Table 5, the cost model performs well:
the correct rate is around 80% to 85% in the InfiniBand envi-
ronment, and even higher with the Ethernet interconnection.
The results indicate that the cost model can select the opti-
mal layout policy with the highest I/O performance for most
data access patterns. The cost model is effective to identify
the best layout policy for data-intensive applications.

Figure 5 shows the distribution of which layout policies
can get the best I/O performance for different data access
patterns. The results were collected in both Ethernet and In-
finiBand environments. In this set of experiments, we tested
sequential data access patterns, and varied the request size
and the number of concurrent I/O processes. For each data
access pattern, we measured the I/O bandwidth under three
data layout policies, and then compared their performances.
We only plotted the layout policy with the highest I/O band-
width for each access pattern. We also estimated the highest
performance via the proposed cost model and marked with
different colors. From the figure we can observe that in most
cases the highest performance through measurement is the
same as the estimation of the cost model. The results show
that the accuracy of the cost model is very high. We can
also observe that when the request size is very small, the 1-
DV layout policy can get the highest I/O bandwidth, which
is because the network communication overhead dominated
the performance. When the number of concurrent I/O pro-
cesses is very high, the 1-DV can get the best performance,
which is because the 1-DV layout can reduce the contention
in storage nodes. When the number of concurrent processes
is small and the request size is large, the 1-DH can get the
best bandwidth, as data access can benefit from parallel pro-
cessing and large data block read/write. When the number
of concurrent I/O processes is medium and the request size



Cluster Comput

Fig. 5 I/O performance comparison among the three data layout poli-
cies. In this set of experiments, we adopted sequential data access pat-
terns. We varied the number of MPI processes and the request size.
For each data access pattern, we tested the I/O bandwidth for all three

layout policies and then compared their performances. We plotted the
layout policy with the actual highest I/O bandwidth for each access
pattern. We also use different colors to represent the best performance
estimated by the proposed cost model

is not too small, the 2-D layout can get the best I/O perfor-
mance. The results confirmed the results of previous analy-
sis of our cost model.

From all the experimental results shown above, we can
conclude that, the proposed model can effectively predict
the access cost for all data access patterns. Although there is
a small deviation in performance between the actual test-
ing and the model estimation, the accuracy of selecting
the layout policy with the best performance is as high as
80% ∼ 91% among the three layout policies. Therefore, the
proposed cost model can make accurate estimation on the
performance of complex I/O workloads.

6.3 Layout optimization according to the overall access
cost

For complex applications with mixed I/O workloads, we
propose an overall access cost analysis approach to select
the best data layout. We conducted experiments to evalu-
ate layout optimization based on overall cost analysis. We
designed 10 different application scenarios with mixed I/O
workloads of IOR and MPI-TILE-IO benchmarks. Each sce-
nario consisted of 6 to 10 IOR or MPI-TILE-IO instances
with different access patterns by modifying the runtime pa-
rameters, e.g. request size and the number of concurrent I/O
processes. We ran these instances one by one to simulate
different access patterns at different times for each scenario.
We measured the average I/O bandwidth for both sequential
and random I/O workloads in three different layouts respec-
tively. We also measured the I/O bandwidth in optimized
layout by overall cost analysis for all scenarios.

Figure 6 shows the comparison results of I/O perfor-
mance for different data layouts. We used the I/O band-
width of 1-DH as the baseline, and compared the bandwidth
achieved in other layouts to it. From the results we can ob-
serve that the proposed layout optimization based on overall
cost analysis can achieve up to 57% performance improve-
ment in the Ethernet environment and up to 35% improve-
ment in the InfiniBand Environment. Therefore, the pro-
posed overall cost analysis approach can significantly im-
prove I/O performance for data-intensive applications. The
improvement of I/O performance with an Ethernet intercon-
nection is higher than that with an InfiniBand connection.
The reason may be that the accuracy of the proposed cost
model is higher in an Ethernet environment, as shown in Ta-
ble 5.

6.4 Dynamic data access with hybrid replications

We designed experiments to measure the efficiency of dy-
namic data access with hybrid replications. We ran two sets
of mixed workloads. For each of them, we ran a set of IOR
or MPI-TILE-IO instances one by one with different run-
time parameters, to simulate different data access patterns at
different moments.

In IOR tests, we varied the process number and request
size in different data layout policies. The process numbers
were 1, 2, 4, 8, 16, 32, 48, 96 in the Ethernet tests and 1,
2, 4, 8, 16, 32, 64 in the InfiniBand tests, respectively. The
request sizes were 4 KB, 8 KB, 16 KB, 32 KB, 64 KB,



Cluster Comput

Fig. 6 Performance improvement of overall cost analysis approach
(mixed IOR and MPI-TILE-IO workloads). We use the performance
with 1-DH layout as baseline, and compare the performance of other

layout manners with it. Label ‘Cost’ refers to the optimized layout
according to overall access cost

128 KB, 256 KB, 512 KB, 1 MB, 2 MB, and 4 MB, re-
spectively. We configured one independent file with size of
64 MB for each process. We measured the performance of
random and sequential access patterns in 1-DV, 1-DH, and
2-D layout policies. We also compared them with the cost-
intelligent dynamic replication selection strategy. We set
these layout policies to different directories in PVFS2 sys-
tem. Since in each test the processes first wrote the files and
then read them back, the cost-intelligent policy first chose
which directory to access based on the cost estimation, and
then wrote/read files in that directory. Figure 7 shows the
results of the IOR workloads, where the vertical axis repre-
sents the comparative performance improvement with 1-DH
layout policy. Here the performance is represented by the
average I/O bandwidth, which is calculated by the total data
size divided by the total running time. As shown in Fig. 7,
the proposed cost-intelligent layout policy can get the best
performance with both Ethernet and InfiniBand interconnec-
tions. The performance improvement is around 20 ∼ 74%
compared with the other three data layout policies. Similar
to the results in Fig. 6, the improvement with the Ethernet
interconnection is higher than that with the InfiniBand con-
nection.

In MPI-TILE-IO tests, we varied the tile size (corre-
sponding to the request size) and the number of I/O pro-
cesses. The tile sizes were 1024 ∗ 1024 Bytes, 1024 ∗ 2048
Bytes, 2048 ∗ 2048 Bytes, and the numbers of I/O process
were 4, 16, 64, 128, and 256, respectively. Since MPI-TILE-
IO benchmark reads only one shared file, we simply striped
the file across all file servers, and made 3 copies with dif-
ferent stripe sizes for different replicas. The stripe sizes
were 16 KB, 256 KB, and 4 MB, respectively. We mea-
sured the performance of collective I/O and non-collective
I/O on each replica respectively, and then compared them
with cost-intelligent policy. Here the cost-intelligent policy
chooses one replica to read based on the data access cost

Fig. 7 Performance improvement compared to 1-DH (IOR bench-
mark). For each case, we compare the performance of other layout
manners with 1-DH layout manner. The performance improvements
are evaluated on the basis of 1-DH layout manner. Label ‘Cost’ refers
to the cost-intelligent dynamic replication selection strategy

estimation. According to the analysis in Sect. 5, if the cho-
sen layout was 1-DH, it would access the replica with stripe
size of 16 KB; if the chosen layout policy was 1-DV, then it



Cluster Comput

Fig. 8 Performance improvement compared to 16 KB stripe size
(MPI-TILE-IO benchmark). In this set of experiments, stripe sizes
were 16 KB, 256 KB, and 4 MB. Based on the request size of data
access, the different stripe sizes can be thought of as 1-DH, 2-D, and
1-DV layout manners, respectively. For each case, we compare the per-
formance of the other layout manners with 16 KB stripe size layout
manner. The performance improvements are evaluated on the basis of
16 KB stripe layout manner. Label ‘Cost’ refers to the cost-intelligent
dynamic replication selection strategy

would access 4 MB replica; and the replica with stripe size
of 256 KB could be regarded as a 2-D layout manner. Fig-
ure 8 shows the results, in which the vertical axis represents
the comparative performance improvement with the layout
policy with 4 KB stripe size. The performance improvement
of dynamic data access with hybrid replication strategy is
around 13 ∼ 23% compared with other static layout poli-
cies.

For both configurations of mixed IOR workloads and
MPI-TILE-IO workloads, the hybrid data replication scheme
can achieve significant performance improvement compared
with any single static data layout policy. Therefore, the cost-
intelligent dynamic replication selection strategy is effective
for mixed I/O workloads. The results show a great potential
of trading underutilized storage for higher I/O performance.

7 Discussion

As described in previous paragraphs, the cost-intelligent
data layout includes two approaches: layout optimization
based on overall access cost analysis and dynamic data ac-
cess with hybrid data replication. The former approach pro-
vides a quantitative method to select an optimal layout by
summarizing all data accesses, while the hybrid data replica-
tion strategy improves the performance of all data accesses
by sacrificing more storage capacity. The effectiveness of
the proposed cost-intelligent data layout optimization relies
on the accuracy of the cost model. When an application has
a dominant data access pattern, the cost model alone should
work well. When an application has more than one perfor-
mance sensitive data access pattern, layout optimization by
overall cost analysis or the hybrid data layout mechanism
becomes a good companion to support the cost model.

To be effective, the cost-model needs to be simple and
accurate, whereas the accuracy is in the sense of relative
performance comparison, not the absolute bandwidth. To
serve this purpose, only the overhead incurred on network
and storage device are considered, and software overhead,
such as the time spent on I/O client and file server software,
is ignored. Also, this does not consider the impact of cache,
buffer and lock contention during data access, or the poten-
tial TCP Incast [41–43] problem on the performance. Focus
was placed on key parameters, such as latency, transmission
time, and number of storage nodes, etc. Analytical and ex-
perimental results show that this was a good design choice.
The cost model is confirmed to be feasible and able to serve
its purpose.

The proposed hybrid replication strategy optimizes every
data access for a data-intensive application. Therefore it gen-
erates even higher performance improvement than the over-
all access cost analysis approach. With the rapid develop-
ment of storage technology, the capacity of hard disk drives
keeps increasing rapidly, and the price reduces steadily.
The proposed hybrid data replication optimization trades the
available storage capacity for better I/O performance, and
makes sense for performance-critical applications. While
how to handle data consistency for writing in the hybrid lay-
out approach is discussed, the hybrid approach is designed
for read intensive applications. It is a good alternative for
certain applications, not a solution designed for all. In a
nutshell, the cost-intelligent hybrid data layout scheme pro-
posed in this study is designed to tune data layout automati-
cally in order to utilize existing parallel file systems.

8 Conclusion

Parallel file systems have been developed in recent years
to ease the I/O bottleneck for data-intensive applications.



Cluster Comput

Extensive research efforts have been devoted to improving
I/O performance, either by better arrangement of data ac-
cesses in parallel I/O library, or by better organization of
data blocks on file servers. Nevertheless, little has been done
for a better integration of application-specific data access
characteristics and file system data layout. In this paper,
a novel cost-intelligent data layout optimization scheme is
proposed for data-intensive applications. The application-
specific layout approach has made a three-fold achievement.
It derives a data access model to estimate I/O cost for paral-
lel file systems. We then use the model to analyze the overall
I/O cost of different data layouts and to choose an optimal
layout for a given application. Finally, we propose a hybrid
data replication strategy for mixed I/O workloads, in which
each file has multiple replications with different data layouts
and each I/O request can be automatically dispatched to one
replica with the least access cost to exploit the full potential
of parallel I/O systems.

We have conducted experimental testing under the MPI
program environment and PVFS2 file system to verify the
proposed layout scheme. The results demonstrate that the
cost model is accurate and effective: the improvement in
I/O performance is up to 57% by overall access cost analy-
sis, and the hybrid replication strategy can achieve 13∼74%
improvement of I/O bandwidth compared to a single fixed
layout policy. In summary, the proposed cost-intelligent
application-specific data layout optimization is proved to
be able to provide satisfactory improvement of I/O per-
formance, especially for applications with various data ac-
cess patterns. The overall I/O cost analysis approach pro-
vides a quantitative method to achieve I/O performance im-
provement by summarizing all data access, while the hybrid
replication strategy trades the available storage capacity for
the critical data access I/O performance. As is illustrated
through this study, increasing the parallelism alone is not
sufficient to improve the performance of parallel file sys-
tems. The trade-off between storage capacity and I/O per-
formance, as proposed by the hybrid replication strategy, is
a ‘must have’ feature for future high-performance file sys-
tems.

While this research has proposed and verified this design,
it has also revealed more research issues. The cost model
proposed in this study is designed for one application only.
In principle, it should be extensible to multiple applications.
However, the difficulty of the extension is in the separation
and identification of the data access patterns of different ap-
plications, and the interference between them. Further study
on cost-intelligent data layout scheme for multiple applica-
tions is required in the future.

Acknowledgement The authors are thankful to Dr. Rajeev Thakur
and Dr. Robert Ross of Argonne National Laboratory for their con-
structive and thoughtful suggestions toward this study. The authors are
also grateful to anonymous reviewers for their valuable comments and

suggestions. This research was supported in part by National Science
Foundation under US NSF grant CCF-0621435 and CCF-0937877.

References

1. Lustre: A scalable, robust, highly-available cluster file system.
White Paper, Cluster File Systems, Inc. (2006) [Online]. Avail-
able: http://www.lustre.org/

2. Schmuck, F., Haskin, R.: GPFS: A shared-disk file system for
large computing clusters. In: FAST’02: Proceedings of the 1st
USENIX Conference on File and Storage Technologies, p. 19.
USENIX Association, Berkeley (2002)

3. Welch, B., Unangst, M., Abbasi, Z., Gibson, G., Mueller, B.,
Small, J., Zelenka, J., Zhou, B.: Scalable performance of the
Panasas parallel file system. In: FAST’08: Proceedings of the 6th
USENIX Conference on File and Storage Technologies, pp. 1–17.
USENIX Association, Berkeley (2008)

4. Carns, P.H., Ligon, W.B. III, Ross, R.B., Thakur, R.: PVFS: A par-
allel file system for Linux clusters. In: Proceedings of the 4th An-
nual Linux Showcase and Conference, pp. 317–327. USENIX As-
sociation, Berkeley (2000)

5. Thakur, R., Gropp, W., Lusk, E.: Data sieving and collective I/O in
ROMIO. In: FRONTIERS’99: Proceedings of the 7th Symposium
on the Frontiers of Massively Parallel Computation, p. 182. IEEE
Computer Society, Washington (1999)

6. Thakur, R., Choudhary, A.: An extended two-phase method for
accessing sections of out-of-core arrays. Sci. Program. 5(4), 301–
317 (1996)

7. Seamons, K.E., Chen, Y., Jones, P., Jozwiak, J., Winslett, M.:
Server-directed collective I/O in Panda. In: SC’95: Proceedings of
the 1995 ACM/IEEE Conference on Supercomputing (CDROM),
p. 57. ACM, New York (1995)

8. Chen, Y., Sun, X.-H., Thakur, R., Song, H., Jin, H.: Improving
parallel I/O performance with data layout awareness. In: Clus-
ter’10: Proceedings of the IEEE International Conference on Clus-
ter Computing 2010. IEEE Computer Society, Washington (2010)

9. Ching, A., Choudhary, A., Liao, W.-K., Ross, R., Gropp, W.: Ef-
ficient structured data access in parallel file systems. In: Clus-
ter’03: Proceedings of the IEEE International Conference on Clus-
ter Computing (2003)

10. Ching, A., Choudhary, A., Coloma, K., Liao, W.-K., Ross, R.,
Gropp, W.: Noncontiguous I/O accesses through MPI-IO. In: CC-
GRID’03: Proceedings of the 3rd IEEE International Symposium
on Cluster Computing and the Grid, p. 104 (2003)

11. Nitzberg, B., Lo, V.: Collective buffering: improving parallel I/O
performance. In: HPDC’97: Proceedings of the 6th IEEE Interna-
tional Symposium on High Performance Distributed Computing,
p. 148. IEEE Computer Society, Washington (1997)

12. Ma, X., Winslett, M., Lee, J., Yu, S.: Faster collective out-
put through active buffering. In: IPDPS’02: Proceedings of the
16th International Parallel and Distributed Processing Sympo-
sium, p. 151. IEEE Computer Society, Washington (2002)

13. Isaila, F., Malpohl, G., Olaru, V., Szeder, G., Tichy, W.: Integrat-
ing collective I/O and cooperative caching into the “ClusterFile”
parallel file system. In: ICS’04: Proceedings of the 18th Annual
International Conference on Supercomputing, pp. 58–67. ACM,
New York (2004)

14. Liao, W.-K., Coloma, K., Choudhary, A., Ward, L., Russell, E.,
Tideman, S.: Collective caching: Application-aware client-side
file caching. In: HPDC’05: Proceedings of the 14th IEEE Interna-
tional Symposium on High Performance Distributed Computing,
2005. HPDC-14, pp. 81–90. IEEE Computer Society, Washington
(2005)

http://www.lustre.org/


Cluster Comput

15. Fu, J.W.C., Patel, J.H.: Data prefetching in multiprocessor vec-
tor cache memories. In: ISCA’91: Proceedings of the 18th Annual
International Symposium on Computer Architecture, pp. 54–63.
ACM, New York (1991)

16. Dahlgren, F., Dubois, M., Stenstrom, P.: Fixed and adaptive
sequential prefetching in shared memory multiprocessors. In:
ICPP’93: Proceedings of the 1993 International Conference on
Parallel Processing, pp. 56–63. IEEE Computer Society, Wash-
ington (1993)

17. Patterson, R.H., Gibson, G.A., Ginting, E., Stodolsky, D., Zelenka,
J.: Informed prefetching and caching. In: Proceedings of the 15th
ACM Symposium on Operating Systems Principles, pp. 79–95.
ACM Press, New York (1995)

18. Byna, S., Chen, Y., Sun, X.-H., Thakur, R., Gropp, W.: Parallel I/O
prefetching using MPI file caching and I/O signatures. In: SC’08:
Proceedings of the 2008 ACM/IEEE Conference on Supercom-
puting, pp. 1–12. IEEE Press, Piscataway (2008)

19. Lei, H., Duchamp, D.: An analytical approach to file prefetching.
In: Proceedings of the USENIX 1997 Annual Technical Confer-
ence, pp. 275–288 (1997)

20. Tran, N., Reed, D.A., Member, S.: Automatic ARIMA time se-
ries modeling for adaptive I/O prefetching. IEEE Trans. Parallel
Distrib. Syst. 15, 362–377 (2004)

21. Chen, Y., Byna, S., Sun, X.-H., Thakur, R., Gropp, W.: Hiding I/O
latency with pre-execution prefetching for parallel applications.
In: SC’08: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, pp. 1–10. IEEE Press, Piscataway (2008)

22. Rhodes, P.J., Tang, X., Bergeron, R.D., Sparr, T.M.: Iteration
aware prefetching for large multidimensional scientific datasets.
In: SSDBM’05: Proc. of the 17th International Conference on Sci-
entific and Statistical Database Management, Berkeley, CA, US,
pp. 45–54 (2005)

23. Rubin, S., Bodík, R., Chilimbi, T.: An efficient profile-analysis
framework for data-layout optimizations. SIGPLAN Not. 37(1),
140–153 (2002)

24. Wang, Y., Kaeli, D.: Profile-guided I/O partitioning In: ICS’03:
Proceedings of the 17th Annual International Conference on Su-
percomputing, pp. 252–260. ACM, New York (2003)

25. Hsu, W.W., Smith, A.J., Young, H.C.: The automatic improvement
of locality in storage systems. ACM Trans. Comput. Syst. 23(4),
424–473 (2005)

26. Huang, H., Hung, W., Shin, K.G.: FS2: Dynamic data replica-
tion in free disk space for improving disk performance and energy
consumption. In: SOSP’05: Proceedings of the Twentieth ACM
Symposium on Operating Systems Principles, pp. 263–276. ACM,
New York (2005)

27. Bhadkamkar, M., Guerra, J., Useche, L., Burnett, S., Liptak, J.,
Rangaswami, R., Hristidis, V.: BORG: Block-reORGanization
for self-optimizing storage systems In: Proceedings of the 7th
Conference on File and Storage Technologies, pp. 183–196.
USENIX Association, Berkeley (2009). [Online]. Available:
http://portal.acm.org/citation.cfm?id=1525908.1525922

28. Wang, C., Zhang, Z., Ma, X., Vazhkudai, S.S., Mueller, F.: Im-
proving the availability of supercomputer job input data using tem-
poral replication. Comput. Sci. Res. Dev. 23 (2009)

29. Song, H., Sun, X.-H., Yin, Y., Chen, Y.: A cost-intelligent
application-specific data layout scheme for parallel file systems.
In: HPDC’11: Proceedings of the 20th International ACM Sym-
posium on High Performance Distributed Computing, pp. 37–48
(2011)

30. Seltzer, M., Chen, P., Ousterhout, J.: Disk scheduling revisited.
In: Proceedings of the USENIX Winter Technical Conference,
USENIX Winter ’90, pp. 313–324 (1990)

31. Worthington, B.L., Ganger, G.R., Patt, Y.N.: Scheduling algo-
rithms for modern disk drives. In: SIGMETRICS’94: Proceedings
of the 1994 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pp. 241–251 (1994)

32. Lumb, C.R., Schindler, J., Ganger, G.R., Nagle, D.F.: Towards
higher disk head utilization: extracting free bandwidth from busy
disk drives. In: OSDI’00: Proceedings of the 4th Conference on
Symposium on Operating System Design & Implementation, pp.
87–102. USENIX Association, Berkeley (2000)

33. Zhang, X., Jiang, S.: InterferenceRemoval: Removing interfer-
ence of disk access for MPI programs through data replication.
In: ICS’10: Proceedings of the 24th International Conference on
Supercomputing, pp. 223–232 (2010)

34. Isaila, F., Tichy, W.F.: Clusterfile: a flexible physical layout paral-
lel file system. In: Cluster’01: Proceedings of the 3rd IEEE Inter-
national Conference on Cluster Computing, p. 37 (2001)

35. Wang, F., Xin, Q., Hong, B., Brandt, S.A., Miller, E.L., Long,
D.D.E., Mclarty, T.T.: File system workload analysis for large
scientific computing applications. In: Proceedings of the 21st
IEEE/12th NASA Goddard Conference on Mass Storage Systems
and Technologies, pp. 139–152, Apr. 2004

36. Ligon, W.B., Ross, R.B.: Implementation and performance of a
parallel file system for high performance distributed applications.
In: HPDC’96: Proceedings of the 5th IEEE International Sympo-
sium on High Performance Distributed Computing, p. 471. IEEE
Computer Society, Washington (1996)

37. Ruemmler, C., Wilkes, J.: An introduction to disk drive modeling.
IEEE Comput. 27, 17–28 (1994)

38. Tian, Y., Klasky, S., Abbasi, H., Lofstead, J., Grout, R., Pod-
horszki, N., Liu, Q., Wang, Y., Yu, W.: EDO: Improving read per-
formance for scientific applications through elastic data organiza-
tion. In: Cluster’11: Proceedings of the IEEE International Con-
ference on Cluster Computing. Cluster, vol. 11 (2011)

39. Vijayakumar, K., Mueller, F., Ma, X., Roth, P.C.: Scalable I/O
tracing and analysis. In: PDSW’09: Proceedings of the 4th An-
nual Workshop on Petascale Data Storage, pp. 26–31. ACM, New
York (2009)

40. Yun, H.-C., Lee, S.-K., Lee, J., Maeng, S.: An efficient lock pro-
tocol for home-based lazy release consistency. In: CCGRID’01:
Proceedings of the 1st International Symposium on Cluster Com-
puting and the Grid, p. 527. IEEE Computer Society, Washington
(2001)

41. Phanishayee, A., Krevat, E., Vasudevan, V., Andersen, D.G.,
Ganger, G.R., Gibson, G.A., Seshan, S.: Measurement and analy-
sis of TCP throughput collapse in cluster-based storage systems.
In: FAST’08: Proceedings of the 6th USENIX Conference on File
and Storage Technologies, pp. 1–14. USENIX Association, Berke-
ley (2008)

42. Vasudevan, V., Phanishayee, A., Shah, H., Krevat, E., An-
dersen, D.G., Ganger, G.R., Gibson, G.A., Mueller, B.: Safe
and effective fine-grained TCP retransmissions for datacen-
ter communication. In: SIGCOMM’09: Proceedings of the
ACM SIGCOMM 2009 Conference on Data Communication,
pp. 303–314. ACM, New York (2009). [Online]. Available:
http://doi.acm.org/10.1145/1592568.1592604

43. Vasudevan, V., Shah, H., Phanishayee, A., Krevat, E., Andersen,
D., Ganger, G., Gibson, G.: Solving TCP incast in cluster storage
systems (poster presentation). In: FAST’09: Proceedings of the 7th
USENIX Conference on File and Storage Technologies (2009)

http://portal.acm.org/citation.cfm?id=1525908.1525922
http://doi.acm.org/10.1145/1592568.1592604


Cluster Comput

Huaiming Song is a research fel-
low in Dawning Information Indus-
try Co., Ltd. Before joined Dawn-
ing, Dr. Song worked as a post-
doctoral research associate in the
Department of Computer Science
at Illinois Institute of Technology
(IIT). He received his B.S. de-
gree in Computer Science from
Xi’an Jiaotong University, and his
Ph.D. degree in Computer Science
from Institute of Computing Tech-
nology, Chinese Academy of Sci-
ences. His research interests are
Large-Scale and Data-Intensive sys-

tems, including parallel file systems, parallel databases and paral-
lel computing. More information about Dr. Song can be found at
http://mypages.iit.edu/~hsong20/.

Yanlong Yin is a Ph.D. candi-
date in the Department of Com-
puter Science at the Illinois Institute
of Technology (IIT). He received
his B.E. degree in Computer Engi-
neering and M.S. degree in Com-
puter Science, both from Huazhong
University of Science and Technol-
ogy, China. Mr. Yin’s research in-
terests include parallel I/O systems
and storage systems supporting for
high-performance computing and
data-intensive computing. More in-
formation about Mr. Yin can be
found at http://www.iit.edu/~yyin2/.

Yong Chen is an Assistant Profes-
sor in the Computer Science De-
partment of the Texas Tech Uni-
versity (TTU). He is the Director
the Data Intensive Scalable Com-
puting Laboratory at TTU. He re-
ceived his B.E. degree in Computer
Engineering and M.S. degree in
Computer Science, both from Uni-
versity of Science and Technology
of China, and his Ph.D. degree in
Computer Science from Illinois In-
stitute of Technology. Prior to join-
ing TTU, Dr. Chen worked in the
Future Technologies Group of the

Computer Science and Mathmetics Division at the DOE Oak Ridge
National Laboratory. Dr. Chen’s research interests include parallel and
distributed computing, high-performance computing, computer archi-
tectures and systems software. More information about Dr. Chen can
be found at http://www.myweb.ttu.edu/yonchen/.

Xian-He Sun is the chairman and
a professor of the Department of
Computer Science, the director of
the Scalable Computing Software
laboratory at the Illinois Institute of
Technology (IIT), and a guest fac-
ulty in the Mathematics and Com-
puter Science Division at the Ar-
gonne National Laboratory. Before
joining IIT, he worked at DoE Ames
National Laboratory, at ICASE,
NASA Langley Research Center, at
Louisiana State University, Baton
Rouge, and was an ASEE fellow
at Navy Research Laboratories. Dr.

Sun is an IEEE fellow and is serving and has been served as an as-
sociate editor or on the editorial board for many scholarly journals in
the field of parallel and distributing processing and high performance
computing, including the flagship journals of IEEE Transaction on Par-
allel and Distributed Systems and Journal of Parallel and Distributed
Computing. His research interests include parallel and distributed pro-
cessing, high-end computing, memory and I/O systems, and perfor-
mance evaluation. He has close to 200 publications and 4 patents in
these areas. More information about Dr. Sun can be found at his web
site http://www.cs.iit.edu/~sun/.

http://mypages.iit.edu/~hsong20/
http://www.iit.edu/~yyin2/
http://www.myweb.ttu.edu/yonchen/
http://www.cs.iit.edu/~sun/

	Cost-intelligent application-specific data layout optimization for parallel file systems
	Abstract
	Introduction
	Related work
	Data access optimization
	Data organization

	Cost analysis model
	Layout optimization based on overall I/O cost
	Dynamic access with hybrid data replication
	Hybrid data replication strategy

	Experimental evaluation
	Experimental platform
	Model verification
	Layout optimization according to the overall access cost
	Dynamic data access with hybrid replications

	Discussion
	Conclusion
	Acknowledgement
	References


