
An Intelligent, Adaptive, and Flexible
Data Compression Framework

Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun
Illinois Institute of Technology, Department of Computer Science

{hdevarajan, akougkas}@hawk.iit.edu, sun@iit.edu

Abstract—The data explosion phenomenon in modern appli-
cations causes tremendous stress on storage systems. Developers
use data compression, a size-reduction technique, to address
this issue. However, each compression library exhibits different
strengths and weaknesses when considering the input data type
and format. We present Ares, an intelligent, adaptive, and
flexible compression framework which can dynamically choose a
compression library for a given input data based on the type of
the workload and provides an appropriate infrastructure to users
to fine-tune the chosen library. Ares is a modular framework
which unifies several compression libraries while allowing the
addition of more compression libraries by the user. Ares is a
unified compression engine that abstracts the complexity of using
different compression libraries for each workload. Evaluation
results show that under real-world applications, from both
scientific and Cloud domains, Ares performed 2-6x faster than
competitive solutions with a low cost of additional data analysis
(i.e., overheads around 10%) and up to 10x faster against a
baseline of no compression at all.

I. INTRODUCTION

Modern applications produce and consume data at an
unprecedented rate [1]. The proliferation of data allows
advances in sciences such as climate simulation [2],
molecular biology [3], and many more. Also, industry gains
competitive advantages by leveraging these data. However,
these capabilities do not come for free. One of the significant
challenges big data applications face is the efficiency of
storage infrastructures. Scientists have proposed many
techniques to ease this stress, with data subsampling [4],
moving computation to data [5], and data transformations [6]
being some examples where data is reduced to minimize I/O
cost. One such technique that has been adapted to reduce the
data size in many modern applications is data compression.

Compression techniques are well-explored in the literature.
There are two categories of compression techniques, lossy and
lossless algorithms. The former loses information to efficiently
reduce the data and hence, prohibiting data reconstruction
whereas the latter reduces the data while having a mechanism
for reconstruction. The lossless algorithms are a defacto in
the scientific and cloud applications for data-reduction [7].
They are used in several situations such as archival [8],
data-movement [9], reducing memory utilization [10], etc.
Furthermore, there are two classes of lossless compression,
general-purpose and specialized algorithms. Some examples of
general-purpose compression libraries include Bzip, Zlib, and
7z. Even though these algorithms promise good performance,

they do not exploit data representation’s nuances. Hence,
researchers developed more specialized algorithms such as
Snappy, SPDP [11] , LZO, and others. These algorithms
show a great promise by boosting the overall application
performance by minimizing the data footprint.

Although there have been several domain-specific devel-
opments in compression libraries, in this work, we identify
several challenges when performing data-reduction using com-
pression: a) data-dependency, due to the specialization of each
library towards a type of data, it often is not general enough for
other cases. Even if one chooses a library, most applications
use different types of data and hence, using just one library
does not yield the best performance. b) library-choice, different
libraries have different strengths and weaknesses and often
choosing the correct library for a use-case is hard. Even within
the application, various parts of the application might have dif-
ferent compression needs. For instance, archival storage needs
high compressibility whereas data-sharing between processes
require high compression and decompression speed. c) API
and usability: each compression library has its own set of
parameters and APIs. It is often difficult to transition to or
adopt a new library. In this study, we highlight that there is
no ”one compression for all” approach. Practically, no com-
pression algorithm can offer the best performance for all types
of data, file formats, or application requirements. Due to these
challenges, there is a need for an intelligent framework which
can seamlessly unify multiple compression libraries. Further-
more, based on the given scenario, it should have the ability
to dynamically choose the ”best” compression algorithm.

In this work, we present Ares: a dynamic, adaptive, and
flexible compression framework that addresses the above chal-
lenges. Ares intelligently chooses the appropriate compression
library for a given data type and format. Ares uses several
components to achieve its goals. These include: an input
analyzer which predicts the data type (i.e., integer, float,
character, etc.,) and the data format (i.e., binary, textual, HDF5,
CSV, etc.,); a main engine which decides the best compression
library for the given situation (i.e., data-type, data-format and
workload characteristics); a library pool which unifies and
manages all the compression libraries; and an output manager
that decorates the compressed data with Ares metadata and
delivers them to the destination. Ares is a modular framework
which allows developers to offload the complexity of manually
choosing the ”best” compression algorithm for the task-at-
hand to the framework. The contributions of this work are:



1) Performing a comprehensive study of the performance of
several compression algorithms for different data types and
formats, and workload characteristics (Section III).
2) Showing the benefits of an intelligent, adaptive, and flexible
approach to data compression by designing and implementing
Ares framework (Section IV).

II. BACKGROUND AND MOTIVATION

A. Data-intensive Applications and Data Compression

Modern applications, in a variety of domains, have become
data-intensive. In fact, the Vs [12] broadly characterize the big
data as follows: volume, velocity, variety, and veracity. Each
one of those Vs dictates a growing need to manage, if not
control, the explosion of data growth. For instance, the amount
of data generated from Square Kilometer Array (SKA) [13]
is estimated to reach 25 PiB/sec, which can drain the entire
memory of supercomputers extremely fast and overwhelm
existing storage solutions. In the business world things are
even worse with the data production estimated to reach 44
zettabytes by 2020 [14], [15]. This data growth is driven
by various sources such as mobile, sensors, video, audio,
and social networks [16]. This unprecedented data volume
poses significant challenges to both computing and storage
systems. Collecting massive amounts of data does not result
in better knowledge extraction. Data must remain consolidated,
cleansed, consistent, and current to make scientific discovery
feasible. This data explosion has led to several techniques to
manage, process, and store massive datasets. Data partitioning
techniques [17], data filtering [18], and data streaming [19]
are some examples where data can be reduced before getting
processed. One such technology that has been around for a
long time and which acquired a new sense of importance in
this data-driven world is data compression.

Various data compression techniques have been explored
to reduce the stress that data-intensive workloads pose to
memory and storage systems. These techniques can be broadly
categorized as lossy and lossless. The former aim to achieve
performance at the cost of losing a part of input data and so
are irreversible. On the other hand, lossless data compression
allows perfect reconstruction of the original data. Mission-
critical workloads, in both scientific and cloud domains,
cannot tolerate data loss, and hence, they use lossless data
compression algorithms [20] including Run Length Encoding
(RLE) [21], Huffman encoding [22], Shannon-Fano [23],
Rice [24], Burrows-Wheeler [25], and Lempel-Ziv (LZ77
and LZ78) [26]. Several general-purpose data compression
techniques (e.g., gzip, bzip2, 7z, etc.,) do not consider the
nature of data they compress, which may lead to significant
performance penalties or missed opportunities. Type-specific
data compression techniques such as GTZ [27], Genoox [28]
and MAFCO [29] try to alleviate this issue by being specific to
the data type being compressed. These techniques have been
proven to be both fast and highly compressible than general-
purpose data compressors. Some instances showcase the im-
portance of choosing the right compressor for a given use-
case. Pied Piper [30], a compression algorithm, reduces data

movement and storage cost for PiedPiperCoin by transporting
highly-compressed complex data files in seconds. SPDP [11]
aims at achieving best compression ratio for floating point data
demonstrating 30% higher performance than a typical bzip.

B. Motivating Examples

Data compression techniques are mostly used to minimize
the data footprint and applications use it in a variety of
workloads. For instance, NASA uses sentiment analysis [31]
to identify human trafficking in web data. During sentiment
analysis, a web crawler collects various textual (e.g., xml,
json, csv) and visual (e.g., images, videos) cues from the web
and passes the data to the main sentiment model which in
turn produces a set of intermediate data describing the corre-
lations between relevancy and sentiment. Finally, the output
analyzer merges the intermediate data to produce the final
result. Another example is weather forecasting applications
such as WRF [32]. The entire workflow starts by gathering
data (e.g., temperature, pressure, coordinates, timestamps, and
area name) from sensors and other environmental instruments.
These data are stored in various formats ranging from flat files
(e.g., binary, csv) to specialized ones (e.g., pNetCDF, HDF5,
MOAB etc.,). The workflow continues by converting the
collected data to different formats for analysis. The last step is
to produce the final results that may be further analyzed by dif-
ferent programming frameworks. Modern applications demon-
strate complex workflows where information can be accessed,
shared, and stored in a variety of data types and formats.

In such complicated workflows various compression prior-
ities may arise. Data compression is characterized by three
main metrics: compression speed, decompression speed, and
compression ratio. Each compression algorithm performs dif-
ferently in each category. The performance of various com-
pression libraries depends on the data type and format (e.g.,
LZ4 [33] performs better for integers whereas QuickLZ [33]
for floats). Further, each phase of a workflow may require
different prioritization over the above metrics. For instance,
input data (i.e., from sensors or static storage silos) must
be quickly decompressed, intermediate results for process-to-
process data sharing must be compressed fast, and final results
sent to the archival storage system must be heavily compressed
to minimize the footprint of data-in-rest. This motivates us to
realize a new compression framework which can: a) unify all
compression libraries, b) intelligently select the appropriate
compression library based on the workflow, and c) utilize the
best compression library for a given workload.

III. APPROACH

Based on our motivation we see that different compression
libraries excel in different situations (i.e., data-type, data-
format, and workload priority). We empirically evaluate a wide
selection of compression libraries through several comprehen-
sive benchmarks to understand their characteristics.
Benchmark Configurations: all tests run on a single core
on a Intel Xeon(R) CPU E5-2670 v3 @ 2.3 GHz, with
128 GB RAM, and a local 200GB HDD. We wrote our



Metric Data 
Type brotli bsc bzip2 lz4 lzma lzo huffman pithy quicklz snappy zlib Best

Co
m

pr
es

si
on

 
Ra

tio

char 2.99 4.78 3.33 1.75 3.77 2.03 2.60 1.92 1.91 1.77 2.71 bsc
integer 2.16 2.39 2.14 1.42 2.53 1.53 1.94 1.49 1.53 1.44 1.97 lzma

sorted int 3.00 4.47 3.42 1.92 3.51 2.22 2.62 2.20 1.83 1.89 2.69 bsc
float 14.88 9.62 8.09 2.75 19.90 2.53 4.59 2.45 3.32 2.42 5.00 lzma

double 14.49 17.82 11.45 6.06 16.70 5.55 8.42 6.60 5.45 5.46 9.93 bsc

Co
m

pr
es

si
on

 
Sp

ee
d 

(M
B/

s)

char 25.66 6.83 13.06 237.27 1.70 118.01 35.52 195.64 195.45 186.28 31.40 lz4
integer 18.96 8.40 12.48 255.57 2.77 97.44 32.53 202.34 202.41 198.13 27.32 lz4

sorted int 26.16 8.75 12.97 273.78 2.74 135.89 38.46 269.15 236.91 267.47 44.57 lz4
float 36.28 16.59 19.14 320.09 2.78 273.17 60.09 342.06 381.52 331.55 60.31 quicklz

double 70.06 14.60 8.02 436.27 6.99 312.26 96.56 434.61 379.60 400.34 105.23 lz4

De
co

m
pr

es
si

on
 

Sp
ee

d 
(M

B/
s)

char 339.52 11.16 32.74 539.73 70.61 287.64 259.05 495.60 275.99 452.94 272.94 lz4
integer 201.55 10.76 27.29 518.79 37.92 264.22 164.16 456.14 229.00 449.28 217.57 lz4

sorted int 352.92 12.52 33.75 582.23 56.27 428.23 246.67 600.78 279.19 541.34 306.33 pithy
float 461.05 34.50 72.63 590.17 143.34 579.03 410.52 594.82 429.97 560.21 491.02 pithy

double 1014.62 19.41 53.84 862.05 264.44 615.72 395.81 864.72 578.98 763.05 737.25 brotli

(a) Performance by data type

Metric Data 
Format brotli bsc bzip2 lz4 lzma lzo huffman pithy quicklz snappy zlib Best

Co
m

pr
es

si
on

 R
at

io POSIX 2.99 4.78 3.33 1.75 3.77 2.03 2.60 1.92 1.91 1.77 2.71 bsc
HDF5 2.99 4.48 4.03 1.83 3.62 2.16 2.73 1.97 2.09 1.84 2.70 bsc
CSV 4.07 4.49 3.89 2.09 4.45 2.34 3.13 2.41 2.31 2.09 3.14 bsc

JSON 3.17 3.31 3.23 2.06 2.22 2.32 2.85 2.12 2.17 2.08 3.07 bsc
XML 9.80 13.85 11.81 4.35 11.04 4.57 6.53 4.83 4.75 4.09 7.32 bsc

AVRO 3.31 3.16 2.96 2.09 4.06 2.12 2.83 2.08 2.07 2.04 2.93 lzma

Co
m

pr
es

si
on

 
Sp

ee
d 

(M
B/

s)

POSIX 20.53 5.46 10.45 189.82 1.36 94.41 28.42 156.51 156.36 149.02 25.12 lz4
HDF5 18.90 8.26 14.69 232.13 2.04 138.14 36.73 188.09 245.26 191.11 22.98 quicklz
CSV 26.85 9.72 10.08 239.56 4.50 100.52 36.50 204.91 192.47 206.42 35.27 lz4

JSON 20.72 5.31 8.12 284.40 2.26 90.68 40.19 159.07 166.11 213.30 37.69 lz4
XML 52.28 16.24 7.41 300.53 5.64 198.69 60.10 293.26 270.72 256.63 65.34 lz4

AVRO 21.69 6.08 8.72 275.20 2.61 95.66 40.74 182.34 174.70 204.02 25.84 lz4

De
co

m
pr

es
si

on
 

Sp
ee

d 
(M

B/
s)

POSIX 271.62 8.93 26.19 431.78 56.49 230.11 207.24 396.48 220.79 362.35 218.35 lz4
HDF5 228.00 12.58 35.60 460.63 44.33 326.21 213.11 415.14 226.20 394.66 231.63 lz4
CSV 293.66 15.54 28.66 484.31 53.76 267.69 220.25 454.33 240.31 428.18 235.97 lz4

JSON 213.30 7.95 30.47 552.08 36.74 312.84 208.56 586.58 257.13 536.30 208.56 pithy
XML 564.84 28.70 43.30 592.92 142.37 408.59 247.94 607.95 413.65 532.26 477.92 pithy

AVRO 177.90 7.94 30.42 470.56 40.52 283.66 183.49 530.45 255.92 494.49 198.47 pithy

(b) Performance by data format

Priority in percentage
Workload 
Examples

Top library based on data-type
Compression 

Speed
Decompression 

Speed
Compression 

Ratio char int sorted 
int float double

100% 0 0 Asynchronous 
communication lz4 lz4 lz4 quicklz lz4

0 100% 0 Multicast in 
network lz4 lz4 pithy pithy brotli

0 0 100% Archival
store bsc lzma bsc lzma bsc

50% 50% 0 Synchronous 
communication lz4 lz4 pithy pithy lz4

0 50% 50% Dequeue 
operation lz4 lz4 lz4 quicklz pithy

50% 0 50% Queue operation lz4 lz4 lz4 pithy lz4

33% 33% 33% Mixed workload 
(balanced) lz4 lz4 pithy pithy pithy

(c) Performance based on priorities

Fig. 1. Compression Libraries’ Evaluation based on Data Type and Format

synthetic benchmarks to test the three dimensions of our
observation: data-type, data-format, and workload priority.
The benchmark first generates 8 GB of datasets, one for each
test configuration (i.e., various data types and formats), and
then, compresses and decompresses it once. We measure com-
pression/decompression speed (CS, DS) in MB/seconds and
compression ratio (CR) as original by compressed dataset size.
We test the following implementations of lossless compression
algorithms [33]: bzip2, zlib, huffman, brotli, bsc, lzma, lz4,
lzo, pithy, snappy, and quicklz. We collect results from a total
over 1000 test cases and report the average values over five
repetitions. Due to space limitations, we only present the high-
lights of our comprehensive benchmarks. More results can be
found in the technical report [34]. Figure 1 shows our findings.
Data type: In this first test, we evaluate how different data
types affect the performance of the compression libraries. We

load the pre-generated dataset into a memory buffer and com-
press/decompress it using each library’s API. We only capture
the compression/decompression time excluding loading times.
The tested data-types are: characters, integers along with
their modifiers (short, long, signed, unsigned), sorted integers,
floating point, and double floating points. The selection of the
above data-types is based on popular programming languages
used today. Figure 1(a) summarizes the results of this data-
type benchmark. We can make the following observations.
First, compression libraries exhibit different performance for
different data-types. For instance, brotli compresses inte-
gers with CS of 18.96 MB/s achieving CR of 2.16x. However,
the same library compresses doubles with CS of 71 MB/s
for a much higher CR of 14.49x. Second, there is substantial
performance variability between each library for the same
data-type, even when targeting the same CR. As an example,
quicklz compresses integers with CS of 202.41 MB/s for a
CR of 1.53x whereas lzo achieved the same CR with CS of
97.44 MB/s making it 2x slower than quicklz. Third, some
libraries are optimized for sorted data. For example, lzma
library achieved the highest CR for integers, but if data is
sorted then bsc takes the lead. Lastly, it is worthy to note that
achieving the best compressibility (i.e., maximum CR) is not
the ultimate metric. There is a direct relationship between the
time spent on compression and the achieved CR, and hence,
workload priorities could affect the choice of an ideal library.
Data format: In this test, we evaluate how different data
formats affect the performance of compression libraries. We
pass the pre-generated dataset files to the library’s executable
for compression/decompression. We capture the overall time
each library took to compress/decompress the input files that
include 8 GB of character data. The tested formats are: a)
binary data (e.g., POSIX), b) scientific data (e.g., HDF5), c)
textual data (e.g., csv, json, xml ), and d) columnar data (e.g.,
Avro, Parquet). The selection of the above formats represents
typically used data representations. From Figure 1(b) we can
make the following observations. First, the data format affects
the performance of a compression library. For instance, lzo
compresses and decompresses the HDF5 file with CS of
138.14 MB/s and DS of 326.21 MB/s respectively, but for
the AVRO file, the performance drops to CS 95.66 MB/s and
DS 283 MB/s. In both cases lzo library achieves similar
CR of about 2.14x. Second, different compression libraries
exhibit different performance for the same data-format. This
is apparent in the results where for characters represented
in a binary format (i.e., POSIX file), pithy compresses
and decompresses the data with CS of 156.51 MB/s and
DS of 396.48 MB/s, and achieves a CR of 1.92x, whereas,
quicklz, for the same data, achieves similar CR and CS but
only half the DS in comparison to pithy. Lastly, we observe
a direct relationship between compression speed and achieved
compression ratio i.e., heavier compression takes more time.
Workload priority: In this part, we analyze how different
workload priorities are affected by the choice of a compression
library. We normalize the data from the previous tests and cre-
ate a weighted sum of the compression metrics (CS, DS, and



CR). The formula for this weighted sum is given in equation 1.

Yd,f =

mX
i=1

Wi ∗Xi (1)

where Y is the final score, d is the data-type, f is the data-
format, m is the metrics (i.e., CS, DS and CR), Wi is the
weight of ith metric, and Xi is the normalized value of ith

metric. Figure 1(c) shows some examples of how the workload
dictates the prioritization of a certain metric and which library
can offer the best overall performance based on equation 1.
The results reflect data stored in a binary format along with
the ideal library per data-type. We can observe the following:
first, when compressing character data, if we only prioritize
CS, lz4 has the best performance. However, if we need to
compress the data for archival purposes, we would need to
maximize CR, and thus, we should use the bsc library which
offers 4x more compressibility. This shows that depending on
the workload type and the set compression metric priority,
different libraries will perform differently. This is an important
observation since there is no ”one compression library for all
purposes” approach. There is observed performance variability
between libraries, and each workload can benefit from an
intelligent, dynamic compression framework.

IV. ARES

A. Design

Based on our findings in Section III, we introduce Ares, a
new intelligent, adaptive, and flexible data compression frame-
work. Ares takes into consideration the input data type and
format as well as the user intention, expressed in compression
metric priorities based on the workload characteristics, to offer
an overall easy-to-use, high-performance data compression
solution. Moreover, Ares is a flexible framework which can
efficiently utilize a plethora of compression libraries to achieve
its objectives. Our design is modular allowing further additions
of compression libraries in the future. We guide the design of
Ares with the following principles:
Intelligent: the framework should be able to learn and adjust
itself to the input data compression characteristics. The input
data may be of any type and in any format. The framework
should be able to identify its nature efficiently and make appro-
priate decisions to lead to a better compression performance.
Adaptive: the framework should be able to reconfigure itself,
dynamically, to various compression needs of an application.
The application may consist of multiple phases in its work-
flow, with each phase having a different data compression
requirement. The framework should transparently manage this
diversity to the end-user.
Flexible: the framework should be able to unify all interfaces
of the compression libraries it contains. Each compression
library might have its API requirements. The presence of
multiple libraries, with their API requirements, should be
abstracted from the end-user. Additionally, the framework
should be able to incorporate new libraries and benchmarking

Input Ares Compression Framework

Main
Engine

Library Pool

Input 
Analyzer

Fi
le

Di
re

ct
or

y
Bu

ffe
r

Ar
es

 F
ile

Output

Co
m

pr
es

se
d 

Fi
le

Co
m

pr
es

se
d

Di
re

ct
or

y
Co

m
pr

es
se

d 
Bu

ffe
r

Fi
le

Data type
identifier

Data format
identifier

Metadata
parser

Output 
Manager

Metadata 
decorator

Memory 
allocator

I/O 
client

bz
ip
2

zl
ib lz
4

pi
th
y

lz
o...Historical

Log

Feedback

Fig. 2. High-Level Architecture

information dynamically. This feature allows the growing of
the framework to support new libraries.

The primary objective of Ares is to transparently abstract
the complexity of choosing the best compression technique for
a given workload dynamically. To achieve this, Ares aims for:
1) Efficient analysis of input data, 2) Transparent management
of a collection of compression libraries. 3) Flexible application
interface. 4) Adaptive compression requirements.

B. Architecture

The core of Ares architecture is plug and play and can be
seen in Figure 2. The framework is a middleware library that
encapsulates several compression libraries abstracting their
complexity from the user. Applications can use Ares either
as a tool (i.e., via CLI) or as a library (i.e., via Ares API).
In both cases, the flow within Ares is the same. First, Ares
analyzes the input data to identify data types and formats that
are involved. The input to Ares can be a memory buffer,
a file, a directory, or a previously compressed file (e.g.,
file.ares). It then passes the analysis results to the main
engine that decides which compression library is best for
the given situation (passed as flags to Ares). Then, based
on the decision, Ares utilizes a library pool, that includes
pre-compiled compression libraries (i.e., 11 such libraries in
our prototype), to perform the compression/decompression
operation. Lastly, Ares decorates the compressed data with its
metadata (i.e., for future decompression) and writes the final
output as .ares files to the disk.

Ares framework is comprised of three components:
input analyzer, main engine, and output manager. These
components work together to realize Ares’ design principles
and objectives.
Input Analyzer: this component is responsible for describing
the input data, inferring its type and format. The accuracy
of this information is performance critical for the framework.
The analyzer aims to create the best possible data inference.
It uses a hybrid approach to determine the data-type and data-
format of the input data. The approach is a combination of
static analysis and a dynamic feedback mechanism. The main
engine updates the log with the actual performance results
which are processed by the analyzer to identify the difference
between expected and actual measurements. This feedback
allows the analyzer to improve over time by matching its
prediction with the historical results. For data-type detection,



we classify the data into binary data and descriptive data.
To extract data-type from binary data we use static binary
decoding techniques [35] whereas, for descriptive data (e.g.,
high-level libraries such as HDF5, NetCDF, Parquet or Avro),
the data itself contains the data-type information. For data-
format extraction, if the extension is known, then we can
determine the data format (e.g., .h5 for HDF5 files, .xml
for XML files, etc.,). Otherwise, we utilize the mime-type
information within each file to identify the data-format. The
description of input data allows the main engine to make better
decisions on the choice of compression library. The major
challenge this component faces is the type inference of binary
data. As shown in the binary decoding techniques [35], the
decoding is an approximation and could lead to erroneous
decisions. However, Ares can learn as it compresses more and
more data by the feedback loop between the analyzer and its
main engine. Lastly, for compressed input data, the analyzer
first extracts the metadata and passes the information (e.g., if
data were previously compressed by Ares using bzip2 or gzip)
to the main engine for decompression.
Main Engine: this component is responsible for choosing
the best compression engine for the given description of data
and users priorities. During bootstrap of Ares framework, the
engine loads the initial seed data, from the comprehensive
benchmarking done in Section III, to build a forest of decision
trees. This seed is a JSON file which can be configurable
by the user. This data structure makes the engine lightweight
and easily tunable. For instance, given a workload type (i.e.,
compression metric priority), the main engine selects the
appropriate decision tree from the forest in constant time,
and, traverses the tree until it reaches the right decision. The
complexity of this operation is insignificant, and in the order
of O(log(n+m)) where n is the data-type, and m is the data-
format. The main challenge that the engine faces is that the ef-
fectiveness of its decision is directly related to the accuracy of
the analysis of the input data. For instance, if the input analyzer
passes a buffer of integers (instead of floats) due to erroneous
identification, the main engine might not select the best
compression library and, therefore, would not achieve the best
compression performance. However, this can be mitigated by
Ares’ learning capabilities through the feedback mechanism.
The main engine of our prototype implementation is equipped
with the eleven compression libraries tested in Section III.
It unifies their interfaces by using a template pattern and
two general functions: a) compress(), b) decompress().
Each library specific implementation is defined in a client
class which implements the above template. To make the
library pool extensible and modular, we use adapter pattern
and factory pattern so that we can decide the implementation
of the compression clients at runtime. This modular design
also allows Ares to easily add new compression libraries
to the pool and use them at runtime. Modular design and
adapter pattern allow Ares to link new compression libraries
easily and allow conditional compilation. Ares’ main engine
implements a light-weight mechanism to switch libraries at
runtime boosting the overall performance of the framework.

Output Manager: this component has three primary respon-
sibilities. First, it decorates the compressed data with some
additional information, in the form of headers, regarding the
compression library used. This allows Ares to decompress
data, previously processed by the framework, quickly. We kept
the size of this metadata minimal with a total size of 8 bytes
per data-type (e.g., if a dataset has 4 data-types, it uses 32 bytes
for metadata). In case of compressing a directory, Ares flattens
its structure and adds the appropriate metadata in the form of
a directed acyclic graph (DAG). The benefit of small metadata
footprint is that it keeps overheads minimal relative to compet-
itive solutions (e.g., bzip2 adds 50 bytes). Second, the output
manager is also responsible for checking the correctness of the
Ares format using parity checking that ensures accurate data
encoding. Lastly, the output manager performs the final I/O of
the compressed data. It incorporates several memory allocators
(i.e., malloc and tcmalloc), and I/O clients (i.e., POSIX
calls to fwrite() and fsync()) to pass the processed
data to the user. We enabled known optimizations to Ares’
I/O capabilities by implementing clients for both local file
systems (e.g., ext4, xfs, etc.,) as well as parallel file systems
(i.e., Lustre, GPFS). The parallel I/O client can also use MPI-
IO, by enabling a flag, to further boost the performance.

C. Implementation Details

Ares framework prototype implementation is written in C++
in around 1K lines of code 1. Additionally, Ares contains
wrappers for C/C++ and JAVA applications supporting a wide
range of applications ranging from scientific computing to
MapReduce. Ares framework supports two modes: a) Ares
tool: which compresses files and folders passed to its exe-
cutable via the command line and can be used in batch files
or scripts, and b) Ares library: which can be simply linked
to an application (e.g., using LDFLAGS or LDPRELOAD) to
compress/decompress data in buffers, files, or folders using the
Ares API. The Ares library exposes a compress/decompress
API with either buffer, file, or folder as an input as well as
the ability to pass the user-defined priorities as flags.

V. EVALUATION

A. Methodology

Testbed and Configurations: all experiments were conducted
on a bare metal configuration on Chameleon systems [36].
Each node has a dual Intel(R) Xeon(R) CPU E5-2670 v3 @
2.30GHz (i.e., a total of 48 cores per node), 128 GB RAM, 10
Gbit Ethernet, and a local 200GB HDD. We setup two kinds of
hardware configurations: scientific and cloud computing. The
scientific setup uses 32 client nodes to run the application
and 8 parallel file system (PFS) servers running OrangeFS
2.9.8 [33]. For the cloud setup, we build a 40-node Hadoop
cluster. We set the replication factor to 1 to minimize the
additional data movements (i.e., no need for fault tolerance).
The input data for both setups are pre-loaded into the storage

1Ares source code can be found in https://bitbucket.org/hdevarajan/ares/



systems. The cluster OS is Ubuntu 16.04, the MPI version is
MPICH 3.2, and the Apache Hadoop distribution is 2.9.2.
Workloads and Datasets: to evaluate Ares framework, we
use a collection of workloads spanning from our synthetic
benchmarks to scientific and cloud applications. Specifically,
our benchmark can generate data with compound data-types
and a set of diverse data formats. Once data are generated,
the benchmark compares Ares performance to other state-
of-the-art data compression libraries. The benchmark uses
two distinct datasets as input: a) a collection of binary,
netCDF, and HDF5 files representing scientific data, b) a
collection of textual data formats such as CSV, JSON, and
XML representing cloud data. We measure the time to
perform compression/decompression in seconds, excluding
the data generation time. We also use a collection of
applications to evaluate the Ares framework in real situations.
Specifically, for science applications we use: “Vector Particle-
In-Cell” (VPIC) [33], a general purpose simulation code for
modeling kinetic plasmas in spatial multi-dimensions, and
“Hardware Accelerated Cosmology Code” (HACC) [33], a
cosmological simulation that studies the formation of structure
in collision-less fluids under the influence of gravity in an
expanding universe. Both of these simulations periodically
produce output files that are stored in the PFS. We used
16 timesteps for both simulations resulting in total I/O of
1.5 TB. This data gets compressed to minimize the data
footprint and boost the overall performance. We only report
compression/decompression time and I/O time excluding
simulation time. For Cloud workloads, we run popular
MapReduce kernels: sort [33], and word count [33]. The
sorting application uses the MapReduce framework to sort the
input data and store them into the output directory. The inputs
and outputs should be Sequence files where the keys and
values are BytesWritable. We generate a dataset of 1.5 TB of
binary integers for this application. The word count application
reads text files and counts how often words occur [33]. The
input is text files, and the output is also text files, each line
of which contains a word and the count of how often it
occurred, separated by a tab. A possible optimization reduces
the amount of data sent across the network by combining
each word into a single record. The input dataset for this
application data is a 1.5 TB Wikipedia article data. For both
these applications, we store the data into HDFS file systems.

B. Experimental Results

In our evaluation, we compare Ares’ performance char-
acteristics with the following high-performing compression
libraries: snappy, bzip2, lz4, quicklz, and bsc. All tests are
repeated five times, and we report the average. It is to be noted
that in the figures we use “CT” for compression time, “DT”
for decompression time, and “CR” for compression ratio.

1) Overheads and Resource Utilization: every compres-
sion/decompression library demonstrates overheads in the
form of additional CPU cycles and memory space with the
promise of minimizing working datasets. Ares adds an extra
overhead of analyzing the input data to achieve a balanced

0

10

20

30

40

50

60

70

80

90

100

0

1K

2K

3K

4K

5K

6K

lz4 quicklz bsc bzip2 snappy Ares

U
ti

li
za

ti
o

n
 (

%
)

T
im

e
 (

se
c)

Compression Libraries

Overhead Compression I/O Decompression CPU Memory

Fig. 3. Ares Overheads and Resource Utilization

CT and CR. This analysis allows Ares to choose the best
library for the given scenario (i.e., data type and format).
In this test, we use 64GB input data organized in an HDF5
file with four datasets: characters, integers, sorted integers,
and doubles. The workflow of this test is: read input data
from the file system, compress data, write compressed data
back, read compressed data, and lastly, decompress the data.
We measure the time spent in each of the above phases, and
we compound all I/O operations in one I/O time, excluding
the time to read the initial data since it is the same between
all tested libraries. It is to be noted that I/O time is directly
related to the achieved CR since fewer data are read/written
due to compression. Lastly, Ares’ analysis of input data is
depicted as “Overhead”. For system monitoring, we use Intel’s
Performance Analysis Tool (PAT) tool [33] to capture the CPU
and memory utilization. Figure 3 shows the results. We can
observe that each of the tested libraries demonstrates different
overheads. For instance, lz4, quicklz, and snappy all
achieved similar time for CT, I/O, and DT but with different
system utilization (e.g., snappy is CPU intensive with low
memory footprint). In contrast, bsc offers the highest CR of
8.6x but also is the slowest library with high overheads of
more than 90% CPU and memory utilization. bzip2 has a
lower memory footprint but maintains high CPU utilization
for a CR of 6.2x. On the other hand, Ares balances the trade-
off between CT/DT and CR by analyzing the input data. This
additional overhead is only about 10% of the overall time
(i.e., Ares spent 74 sec to perform the data type and format
detection). Even with this extra overhead, Ares performed all
operations faster than all libraries and achieved the best overall
time. Specifically, Ares is 6.5x faster than bsc, 4.6x faster
than bzip2, 5-40% faster than lz4, quicklz, and snappy
while hitting a 58% CPU and a 64% memory utilization.
Ares performance and overheads are a result of Ares’ ability
to perform those operations using a collection of libraries
combining the strengths of each one of them.

2) Compression/Decompression Intelligence: in this test,
we quantitatively evaluate the importance of data compression
based on data type and format, as discussed in Section III. We
first evaluate how different data types affect the performance
of compression libraries, and we compare Ares to several
libraries. The benchmark places 64 GB of input data to a
buffer in memory. We tested five configurations of this buffer:
characters, integers, floats, doubles, and a mixed case with
all above types. This test starts by passing the buffer to each



0

2

4

6

8

10

12

14

16

18

20

0

1K

2K

3K

4K

5K

6K

7K

8K

lz
4

q
u
ic

kl
z

b
sc

b
zi

p
2

sn
ap

p
y

A
re

s

lz
4

q
u
ic

kl
z

b
sc

b
zi

p
2

sn
ap

p
y

A
re

s

lz
4

q
u
ic

kl
z

b
sc

b
zi

p
2

sn
ap

p
y

A
re

s

lz
4

q
u
ic

kl
z

b
sc

b
zi

p
2

sn
ap

p
y

A
re

s

lz
4

q
u
ic

kl
z

b
sc

b
zi

p
2

sn
ap

p
y

A
re

s

char integer float double mixed

C
o
m

p
re

ss
io

n
 R

a
ti

o
 

T
im

e
 (

se
c)

Data Type

Decompression Time Compression Time Compression Ratio

(a) Data Type

0

2

4

6

8

10

12

14

16

0

1K

2K

3K

4K

5K

6K

7K

8K

lz
4

q
u
ic

kl
z

b
sc

b
zi

p
2

sn
ap

p
y

A
re

s

lz
4

q
u
ic

kl
z

b
sc

b
zi

p
2

sn
ap

p
y

A
re

s

lz
4

q
u
ic

kl
z

b
sc

b
zi

p
2

sn
ap

p
y

A
re

s

lz
4

q
u
ic

kl
z

b
sc

b
zi

p
2

sn
ap

p
y

A
re

s

lz
4

q
u
ic

kl
z

b
sc

b
zi

p
2

sn
ap

p
y

A
re

s

binary scientific textual columnar mixed

C
o
m

p
re

ss
io

n
 R

a
ti

o
 

T
im

e
 (

se
c)

Data Format

Compression Time Decompression Time Compression Ratio

(b) Data Format

Fig. 4. Ares Compression/Decompression Intelligence

library for compression and decompression. We measure the
time spent in these operations, and we calculate the CR of the
compressed data. As it can be seen in Figure 4(a), different
libraries excel in different data types. For instance, lz4 offers
the best CT for integers with CR of 1.42x whereas snappy
is best in decompressing integers. One observation we make
is that there is a clear trade-off between CT and CR: the
more time spent compressing data, the more compressed the
final output would be. For instance, bsc and bzip2 are the
slowest libraries but they both achieved superior compression
ratio. Another finding is that when a mixed input is passed
for compression, each library takes a hit in performance since
the algorithms implemented inside of each library might be
optimized or simply more suitable for certain data types. This
observation is exactly what Ares exploits and offers better
performance when compared to other frameworks. This is
apparent from our results. By spending additional time to
analyze the input data and detect the data type, Ares can
boost performance by using the best compression algorithm
for the given input. In case of the mixed data type buffer,
Ares decomposes the buffer in smaller buffers of homogeneous
data types (e.g., one for characters, one for integers, etc.,) and
compress them separately using the best compression library
for each case. This approach results in 26-50% performance
boost over lz4, quicklz and snappy and up to 24x over
slower libraries such as bsc. In the mixed data type case,
Ares also offers the best CR of 8.79x. In Figure 4(b) we
can see the results of comparing Ares to other state-of-the-
art compression libraries when various data formats are used
as input. In this test, we pass an entire directory containing
data represented in different formats. We used the following
data formats: binary data (e.g., flat files like POSIX), scientific
data (e.g., HDF5, pNetCDF), textual data (e.g., HTML, XML,
JSON), and columnar data (e.f., Avro, Parquet). We also used
a mixed data format where the directory contains all the above
files. In all test configurations the total data size of the input
is 64 GB organized in 64 files (i.e., each file has 1GB of
char, integers, float, and double). The benchmark’s workflow
is the same: get input data and compress/decompress them
while capturing CT/DT and calculating CR. As can be seen
from the results, binary data are compressed faster using lz4
with a CR of 1.75x. For heavier compression, bsc offers a

CR of more than 5x, but it is significantly slower in CT and
DT. For columnar data, snappy takes the lead by offering the
best DT with a CR of 2.04x. A similar trend can be observed
in these results. Compression time and ratio are directly
related. lz4, quicklz and snappy, while the fastest, only
achieved CR of 2.54x on average. In contrast, bsc and bzip2
compressed heavily the data taking more time to do so. In the
mixed directory, each library performed slightly slower when
compared to the homogeneous input data format. As before,
this can be attributed to internal optimizations (or lack thereof)
of each compression algorithm implemented by each library.
Ares takes advantage of this observation, and by analyzing the
input directory, it extracts the data format and picks the best
library for the task at hand. This approach results in 19-35%
performance boost over lz4, quicklz and snappy and 17x
over bsc while offering competitive CR of 4.12x.

3) Compression/Decompression Adaptiveness: Applica-
tions data management needs vary across domains and plat-
forms. Modern applications consist of a complex set of
phases organized into one workflow. In each of those phases,
different data compression techniques might be needed. For
instance, during a communication heavy workload, a quick
compression/decompression scheme is preferred than a heavy
compression one. However, a phase that writes out to the
archival storage the final results of an application will be
greatly benefited by a strong compression ratio minimizing the
final footprint of data-in-rest. These observations, on how ap-
plications use compression/decompression, partially motivated
us to create Ares, a framework that provides the infrastructure
to perform application-specific compression schemes. In this
test, we pass a CSV file containing 64 GB of data organized
in four columns: sorted integer as an index, char as a location
ID, integer as population size, and double as the median
income. The diversity of data types in the input does not
help the generality of each compression library. Ares, on
the other hand, takes advantage of the input characteristics
to offer the best performance for the given scenario. In this
test, we configured Ares to prioritize speed (i.e., CT or DT
respectively), and compressibility (i.e., CR) and we compare
the results with other compression frameworks. As can be
seen in Figure 5, Ares’ ability to adapt to the workload can
boost the performance relative to the objective. When Ares is
configured to prioritize compression speed, for instance, Ares



0

2

4

6

8

10

12

0

1K

2K

3K

4K

5K

6K

lz4 quicklz bsc bzip2 snappy CT DT CR Balanced

Baseline Ares (Priority)

C
o
m

p
re

ss
io

n
 R

a
ti

o

T
im

e
 (

se
c)

Compression Libraries

Compression Time Decompression Time Compression Ratio

Fig. 5. Tuning Workload Compression Metric Priorities

decomposes the .csv input file in individual buffers containing
homogeneous data type (i.e., one buffer per column from the
csv file), and use the library that offers the best CT to perform
the compression. This approach results in a performance boost
between 2.1-15.8x for CT and 1.6-13.9x for DT compared
to all other libraries tested. Ares leverages the data types to
achieve this specialized compression and ultimately lead to
better performance. We can see a similar picture when Ares is
configured to boost the compression ratio offering the highest
CR of 10.87x using a combination of bsc and huffman
algorithms. More interestingly, if we focus on the balanced
mode, Ares does not provide the fastest compression/decom-
pression speeds or the heaviest compression ratio, but instead
it provides the most balanced approach of all. It can offer
a respectable 4.45x CR while only being between 16-30%
slower than lz4, quicklz and snappy. As a result, Ares
offers a higher score in equation 1 which reflects the real value
of a compression engine: as fast as possible with the higher
ratio as feasible. This test highlights the need of an adaptive
compression framework that can offer custom performance
characteristics based on the user’s priorities by passing a flag
to the framework’s API.

4) Compression/Decompression Flexibility: Ares’ strength
comes from its ability to perform compression based on the
input data type and format. Furthermore, Ares provides the
infrastructure to prioritize certain compression characteristics
given a workload. Ares aims to support both scientific and
cloud workloads through its C/C++ and Java bindings. Further,
Ares abstracts the details of each compression library it
contains in its engine, which makes it simple to use and
flexible to extend to more compression libraries if needed. In
this set of tests, we evaluate Ares with real applications, and
we demonstrate the benefits of such an approach. We test Ares’
performance with four distinct applications both scientific (i.e.,
VPIC and HACC) and cloud workloads (i.e., word-count and
integer sorting). We investigate three types of workloads: read-
intensive, write-intensive, and mixed read/write.
Read-intensive: to test a typical read-intensive workload, we
use a Map-Reduce implementation of the word-count kernel,
running on 40 nodes (i.e., 32 mappers and 8 reducers). The
input to this application is a 1.5 TB of HTML files containing
Wikipedia articles written in English. The flow of this appli-
cation is as follows: a) each map task first reads its input data
from HDFS, counts individual word occurrences, and produces
intermediate files that contain a word-to-count mapping (i.e.,

0

50

100

150

200

250

300

350

400

450

baseline bzip2 snappy Ares

T
im

e
 (

se
c)

Compression Libraries

Map CT Map I/O
Map DT Map Compute
Shuffle CT Shuffle I/O
Shuffle DT Reduce Compute
Reduce CT Reduce I/O

(a) Read-intensive: Word Count

0

1

2

3

4

5

6

7

8

9

10

0

1K

2K

3K

4K

baseline bzip2 lz4 lzo snappy Ares

C
o
m

p
re

ss
io

n
 R

a
ti

o

T
im

e
 (

se
c)

Compression Library

Compression Time

I/O Time

Compression Ratio

(b) Write-intensive: VPIC

Fig. 6. Applications

intermediate files data size is an order of magnitude smaller
than input files), b) during the shuffle phase, all intermediate
files are sorted and sent to the reducers, c) reduce tasks read
the intermediate files to merge the final count across all files
and write the final word count back to a file in HDFS (i.e., final
data size is an order of magnitude smaller than the intermediate
files). The majority of the data is moved from the file system
to computation during the map phase making this workload
read-intensive. Compression techniques can be beneficial to
the overall performance by minimizing the data size. The data
compression requirements of this workload vary in each phase
with map tasks benefited the most by a compressed input and a
high decompression speed. Shuffling needs a quick compres-
sion to minimize I/O traffic. Reducers do not benefit much
from compression since the final output is already too small.
Figure 6(a) shows the results broken down to each phase. As
it can be seen, by applying compression on the input data, the
map phase I/O time is reduced significantly. There is a trade-
off, however, between how much time is spent to perform the
compression and the data size saved by it. For instance, bzip2
applies heavy compression in 52 seconds while minimizing the
I/O time by 10x over the baseline. Snappy on the other hand,
is faster in compression with less CR which results in more I/O
time over bzip2. Ares strikes a balance between the metrics,
CT/DT and CR, achieving the best overall performance. Ares
is 4.4x faster than the baseline and 1.6-2.1x faster than other
compression libraries since it leverages the data type and
format being compressed. Lastly, the shuffle phase is also
faster in libraries that offer fast compression/decompression
speed, such as snappy and Ares, especially when compared
to libraries that aim to offer high CR such as bzip2. This
result is not surprising since reduce phase can start as soon as
shuffle sends the intermediate data. If compression is expen-
sive in CPU cycles, then the reduce phase gets stalled. Overall,
this test highlights the importance of striking a balance of
compression speed and ratio. General-purpose libraries do not
offer dynamic adaptiveness based on the workload type. Ares
thrives because of the data type and format awareness and the
flexibility to choose the best library for the task at hand.
Write-intensive: we evaluate Ares in write-intensive work-
loads using the VPIC simulation. In this workload, each
process is producing 1 GB of data that need to be written
to storage at the end of each time step. The overall data size
used in our test is 1.5 TB organized in an HDF5 file with



7 datasets (i.e., two datasets of integers, two of floats, and
three of doubles). We compare Ares with built-in compression
filters provided by HDF5. Results are shown in Figure 6(b).
In this test configuration, the baseline writes out the data
uncompressed in 3139 seconds. When compression is applied,
the I/O time is reduced since fewer data are written out. The
overall performance of this application is directly related to
how fast we can store the final results to the file system.
Hence, the compression ratio is an important metric since it
minimizes the data footprint in the storage system. However,
heavy compression is costly, and a balance must be found
to be beneficial to the application. For example, bzip2
shrinks the data size from 1.5 TB down to about 160 GB,
and thus, it reduced I/O time by more than 6x. However,
it spent 2608 seconds in compressing the data making it
5% slower in overall completion time than the baseline. An
opposite picture can be seen when using lz4, lzo, and
snappy as compression filters. These libraries performed data
compression significantly faster (i.e., in 350 sec on average)
but with fewer data savings (i.e., 2.7x ratio) resulting in a
similar overall performance with bzip2. On the other hand,
Ares offers a solution that is optimized to compress data
by specific type while prioritizing both CT and CR. In this
test, Ares achieved a balance between CT and I/O time. It
compressed data in 832 seconds (i.e., faster than bzip2 but
slower than lz4, lzo, and snappy) while reducing the
data size almost 6x. This resulted in a 38-47% faster overall
performance.
Mixed Read/Write: we evaluate Ares in scenarios with
mixed read/write operations using two applications: HACC
simulation and Integer Sort implemented in the MapReduce
framework. Figure 7(a) describes the results of integer sorting.
The input is 1.5 TB of integers stored in a collection of data
formats (i.e., csv, xml, and json). This application sorts the
integers in phases (i.e., out-of-core) and produces 1.5 TB of
intermediate data (i.e., partially sorted data) before it goes into
the reduce phase where the final sorted output is created by
merging the intermediate data. As it can be seen by the results,
compression has an impact in performance in all phases.
Specifically, bzip2 that compresses data heavily, boosted
the overall performance by 1.5x while snappy, which has
a smaller CR, by 1.38x. In contrast, Ares performed better by
offering a 2.25x performance improvement over the baseline
of uncompressed data. This improvement comes for two main
reasons: first, Ares take into consideration the data format
before choosing which compression library to use, and second,
Ares uses different library per phase. Specifically, during map
phase, where data are compressed before sent to map tasks,
Ares used huffman encoding that offers quick compression
speed for a CR between bzip2 and snappy. During the
shuffle phase, where decompression speed is essential, Ares
used lzma that excels in integer compression. Finally, during
reduce phase, Ares used a heavy compression library, bsc
to achieve maximum compressibility and therefore small I/O
time over the file system. Similar results can be seen in Fig-
ure 7(b), where Ares’ choice of compression library between

0

100

200

300

400

500

600

700

800

900

1000

baseline bzip2 snappy Ares

T
im

e
 (

se
c)

Compression Libraries

Map CT Map I/O
Map DT Map Compute
Shuffle CT Shuffle I/O
Shuffle DT Reduce Compute
Reduce CT Reduce I/O

(a) Mixed Read/Write: Integer Sort

0

1

2

3

4

5

6

7

8

9

10

0

1K

2K

3K

4K

5K

6K

7K

baseline bzip2 lz4 Ares

C
o

m
p

re
ss

io
n

 R
a
ti

o

T
im

e
 (

se
c)

Compression Library

Compress
Read
Decompress
Compute
Write
Compression Ratio

(b) Mixed Read/Write: HACC

Fig. 7. Applications
the phases of the HACC simulation positioned its performance
in between bzip2 and snappy. Specifically, HACC first
reads 1.5 TB of particles (i.e., a collection of integers and
floats )from binary files, then goes into its computation phase,
and lastly writes 1.5 TB of the new values of the simulated
particles. Ares once again leveraged the different data type
between the input and offered smaller CT with a competitive
CR (i.e., lower than bzip2 but higher than snappy). In
summary, the results highlight our initial hypothesis: different
data types and formats affect compression characteristics, and
each application might benefit from a dynamic selection of
compression algorithms based on its specific type of workload.

VI. RELATED WORK

Several efforts have been made to provide specialized algo-
rithms for a given workload. MAFCO [29] is a lossless com-
pression tool which specializes in compressing MAF (Multiple
Alignment Format) files. It aims to gain a better compression
ratio than Bzip2 (a general purpose compression library).
GTZ [27] is a compression and transmission tool for FASTQ
files. For this workload, it outperforms other tools such as
DSRC2, QUIP, and LW-FQZip in compression ratio and speed.
FPcrush [37] and SPDP [11] are compression tools that are
specialized for single and double precision floating point data.
They highlight their better speed and compressibility against
general-purpose compression libraries such as Bzip2 and Zlib.
These libraries implement a specific algorithm to improve
performance. By nature, Ares is a modular framework for
managing compression libraries smartly. Hence such libraries
can be easily incorporated into the framework.

There are several efforts in making compression context-
aware. Barr et al. [38] use asymmetric compression schemes
to reduce energy consumption. The authors propose the use
of suitable compression libraries based on current network
monitoring and processor resources. This work focuses on
optimizing energy in contrast to Ares which is performance
driven, offering compression effectiveness by choosing the
most effective compression algorithm based on the workload.
Finally, [39] suggest identifying the data-type to choose the
best compression libraries and they are the closest to Ares.
However, they do not account for the data-format or the
workload characteristics of the application.

There have been several efforts in detecting type and format
of the data. Caballero et al. in [35] perform a comprehensive
survey on type interference of data. They categorize techniques



and present their pros and cons. In the area of file-format
detection, McDaniel et al. in [40] present various techniques
to identify the data format of a file. These works were directly
utilized in the Ares framework’s input analyzer module to
build data-type and data-format detection engines.

VII. CONCLUSION

In this work, we performed a comprehensive benchmark-
ing to investigate how different data-types, data-format, and
workload characteristics affect the choice of the ”ideal” com-
pression library for a given use case. Furthermore, we have
developed Ares, a dynamic, adaptive, and flexible compression
framework, that can transparently meet various compression
needs of big data applications. Ares integrates multiple com-
pression libraries under a single and easy to use framework.
Ares has low overhead in analyzing the nature of input data
leading to the choice of an appropriate compression algorithm.
Results show that Ares can boost performance when compared
to traditional compression libraries. Specifically, under real-
world applications, from both scientific and Cloud domains,
Ares performed 2-6x faster than competitive solutions with
a low cost of additional data analysis (i.e., overheads around
10%). Ares leverages different compression algorithms for dif-
ferent application needs and provides a flexible infrastructure
for the users to customize their compression characteristics
based on the task-at-hand. As a future step, we plan to utilize
machine learning to enhance Ares’ input analyzer improving
the robustness of the input analysis process.

ACKNOWLEDGMENT
This material is based upon work supported by the National

Science Foundation under Grants no. OCI-1835764, CSR-
1814872, CCF-1744317, CNS- 1730488, and CNS-1526887.

REFERENCES
[1] M. Mohammadi and A. Al-Fuqaha, “Enabling cognitive smart cities

using big data and machine learning: Approaches and challenges,” IEEE
Communications Magazine, vol. 56, no. 2, pp. 94–101, 2018.

[2] “Community Earth Simulation Model (CESM),”
https://www2.cesm.ucar.edu/, [Online; accessed November-2018].

[3] “Storage Systems and Input/Output for Extreme Scale Science (Re-
port of The DOE Workshops on Storage Systems and Input/Output),”
https://bit.ly/2K5PpjB, [Online; accessed November-2018].

[4] U. Fugiglando, E. Massaro, P. Santi, S. Milardo, K. Abida, R. Stahlmann,
F. Netter, and C. Ratti, “Driving Behavior Analysis through CAN Bus
Data in an Uncontrolled Environment,” IEEE Transactions on Intelligent
Transportation Systems, no. 99, pp. 1–12, 2018.

[5] E. Riedel, G. Gibson, and C. Faloutsos, “Active storage for large-
scale data mining and multimedia applications,” in Proceedings of 24th
Conference on Very Large Databases. Citeseer, 1998, pp. 62–73.

[6] D. R. Cox, Analysis of survival data. Routledge, 2018.
[7] F. Puig-Castellvı́, Y. Pérez, B. Piña, R. Tauler, and I. Alfonso, “Compres-

sion of multidimensional NMR spectra allows a faster and more accurate
analysis of complex samples,” Chemical Communications, vol. 54,
no. 25, pp. 3090–3093, 2018.

[8] R. A. McLeod, R. D. Righetto, A. Stewart, and H. Stahlberg, “MRCZ–
A file format for cryo-TEM data with fast compression,” Journal of
structural biology, vol. 201, no. 3, pp. 252–257, 2018.

[9] H. Shan, S. Williams, and C. W. Johnson, “Improving MPI Reduction
Performance for Manycore Architectures with OpenMP and Data
Compression,” ICPP 2018, pp. 58:1–58:11, 2018. [Online]. Available:
http://doi.acm.org/10.1145/3225058.3225114

[10] J. Binas and Y. Bengio, “Low-memory convolutional neural net-
works through incremental depth-first processing,” arXiv preprint
arXiv:1804.10727, 2018.

[11] Steven Claggett and Sahar Azimi and Martin Burtscher, “SPDP: An Au-
tomatically Synthesized Lossless Compression Algorithm for Floating-
Point Data,” in 2018 Data Compression Conference. IEEE, 2018, pp.
335–344.

[12] John Gantz and David Reinsel, “Extracting value from chaos,” IDC
iview, vol. 1142, no. 2011, pp. 1–12, 2011.

[13] P. C. Broekema, R. V. Van Nieuwpoort, and H. E. Bal, “Exascale high
performance computing in the square kilometer array,” in Proceedings
of the 2012 workshop on High-Performance Computing for Astronomy
Date. ACM, 2012, pp. 9–16.

[14] IDC, “Rich data and the increasing value of IoT,”
https://www.emc.com/leadership/digital-universe/2014iview/index.htm,
2014, [Online; accessed November-2018].

[15] S. IDC, “Data Age 2025,” https://www.seagate.com/www-content/our-
story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf, 2017,
[Online; accessed November-2018].

[16] Oracle, “The rise of data capital,” https://bit.ly/2nj6ZV6, 2016, [Online;
accessed November-2018].

[17] M. M. Theimer, G. D. Ghare, J. D. Dunagan, G. Burgess, and Y. Xiong,
“Dynamic partitioning techniques for data streams,” 2017, uS Patent
9,720,989.

[18] Galit Shmueli and Peter C Bruce and Inbal Yahav and Nitin R Patel and
Kenneth C Lichtendahl Jr, Data mining for business analytics: concepts,
techniques, and applications in R. John Wiley & Sons, 2017.

[19] R. Duvignau, V. Gulisano, M. Papatriantafilou, and V. Savic, “Piecewise
Linear Approximation in Data Streaming: Algorithmic Implementations
and Experimental Analysis,” arXiv preprint arXiv:1808.08877, 2018.

[20] J. Uthayakumar, T. Vengattaraman, and P. Dhavachelvan, “A survey
on data compression techniques: From the perspective of data quality,
coding schemes, data type and applications,” Journal of King Saud Uni-
versity - Computer and Information Sciences, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1319157818301101

[21] A. Husseen, S. S. Mahmud, and R. Mohammed, “Image compression
using proposed enhanced run length encoding algorithm,” Ibn AL-
Haitham Journal For Pure and Applied Science, vol. 24, no. 1, 2017.

[22] A. Al-Okaily, B. Almarri, S. A. Yami, and C.-H. Huang, “Toward a
Better Compression for DNA Sequences Using Huffman Encoding,”
Journal of Computational Biology, vol. 24, no. 4, pp. 280–288, 2017.

[23] S. Chattopadhyay and G. Chattopadhyay, “Conjugate gradient descent
learned ANN for Indian summer monsoon rainfall and efficiency as-
sessment through Shannon-Fano coding,” Journal of Atmospheric and
Solar-Terrestrial Physics, vol. 179, pp. 202–205, 2018.

[24] K. Sayood, Introduction to data compression. Morgan Kaufmann, 2017.
[25] A. Khan, A. Khan, M. Khan, and M. Uzair, “Lossless image compres-

sion: application of Bi-level Burrows Wheeler Compression Algorithm
(BBWCA) to 2-D data,” Multimedia Tools and Applications, vol. 76,
no. 10, pp. 12 391–12 416, 2017.

[26] R. Rahim, M. Dahria, M. Syahril, and B. Anwar, “Combination of
the Blowfish and Lempel-Ziv-Welch algorithms for text compression,”
World Trans. Eng. Technol. Educ, vol. 15, no. 3, pp. 292–297, 2017.

[27] Yuting Xing and Gen Li and Zhenguo Wang and Bolun Feng and
Zhuo Song and Chengkun Wu, “GTZ: a fast compression and cloud
transmission tool optimized for FASTQ files,” BMC bioinformatics,
vol. 18, no. 16, p. 549, 2017.

[28] “100,000 GENOMES:Genoox Selected to Serve the Israeli Genome
Project,” https://tinyurl.com/y8bdcfck, [Online; accessed September-
2018].

[29] Luı́s MO Matos and António JR Neves and Diogo Pratas and Armando
Pinho J, “MAFCO: A compression tool for MAF files,” PloS one,
vol. 10, no. 3, p. e0116082, 2015.

[30] “Pied Piper compression algorithm,” http://www.piedpiper.com/, [On-
line; accessed September-2018].

[31] A. Mensikova and C. A. Mattmann, “Ensemble sentiment analysis
to identify human trafficking in web data,” in Proceedings of ACM
workshop on Graph Techniques for Adversarial Activity Analytics
(GTA32018). ACM, 2018, p. 6.

[32] “National Center for Atmospheric Research (NCAR) - Weather Research
and Forecasting (WRF) Model,” https://www.mmm.ucar.edu/weather-
research-and-forecasting-model, [Online; accessed November-2018].

[33] H. Devarajan, A. Kougkas, and X.-H. Sun, “List of libraries and
workloads tested,” https://tinyurl.com/ybtgule2, 2018, [Online; accessed
December-2018].

[34] Hariharan Devarajan, Anthony Kougkas, Xian-He Sun, “A comprehen-
sive study of the compressibility of various data type and formats.”
http://www.cs.iit.edu/ scs/publications.html, Illinois Institute of Technol-
ogy, Tech. Rep., 11 2018.

[35] J. Caballero and Z. Lin, “Type inference on executables,” ACM Comput.
Surv., vol. 48, no. 4, pp. 65:1–65:35, May 2016. [Online]. Available:
http://doi.acm.org/10.1145/2896499

[36] Chameleon.org, “Chameleon system,”
https://www.chameleoncloud.org/about/chameleon/, 2017, [Online;
accessed November-2018].

[37] M. Burtscher, H. Mukka, A. Yang, and F. Hesaaraki, “Real-time synthe-
sis of compression algorithms for scientific data,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Press, 2016, p. 23.

[38] K. C. Barr and K. Asanović, “Energy-aware lossless data compression,”
ACM Transactions on Computer Systems (TOCS), vol. 24, no. 3, pp.
250–291, 2006.

[39] J. J. Fallon, “Data compression systems and methods,” May 11 2010,
uS Patent 7,714,747.

[40] M. McDaniel and M. H. Heydari, “Content based file type detection
algorithms,” in System Sciences, 2003. Proceedings of the 36th Annual
Hawaii International Conference on. IEEE, 2003, pp. 10–pp.


