
Optimizing complex scientific workflows using
a re-configurable heterogeneous-aware storage

system for extreme scale computing

PhD Thesis

Hariharan Devarajan, PhD Candidate

hdevarajan@hawk.iit.edu

Advisor: Dr. Xian-He Sun

Department of Computer Science

Illinois Institute of Technology

mailto:hdevarajan@hawk.iit.edu

Optimizing complex scientific workflows using
a re-configurable heterogeneous-aware storage

system for extreme scale computing

Premise of the work

2 / 61

HPC Applications

Complex

Scientific

Workflows

• Highly data-intensive

• multi-stage

• E.g., three sub stages of simulation,

analysis and modeling.

• Data Dependent

• Many stages interchange data or

compare results to reach to a

convergence

• Iterative

• The cycle of simulation, analysis

and modeling is repeating for

gaining higher resolution of data.

• Managed manually by application

developers.

Source: The International Journal of High Performance Computing

Applications 32, no. 1 (2018): 159-175.3 / 61

Heterogeneous

storage devices

& solutions

• A variety of storage and

memory hardware

• Different characteristics

• Sensitivity to Random

accesses

• Concurrency of operations

• Device layouts

• Power requirements

• Performance requirements

• Different Vendors

• Optimizations

• Device drivers

• Interfaces

Diverse Storage
NVRAM:

• Single 5V Supply.

• Infinite EEPROM to RAM Recall.

• Latency 3µs

NVMe SSD:

• I/O Multipath.

• Multi-stream Writes.

• Latency: 12µs

SATA SSD:

• TLC flash memory.

• NAND flash memory cells.

• Latency: 500µs

SATA HDD:

• Mass device storage.

• mechanical complexity

makes it fragile.

• Latency: 7000µs
4 / 61

?Diverse

Applications

Diverse

Storage Devices

Mismatch

Current Situation

5 / 61

How can we support multiple diverse applications under a

single platform that abstracts the complexity of efficiently

utilizing heterogeneous storage technologies and maximizes

I/O performance?

Problem Statement

6 / 61

Identifying Challenges

Profile I/O calls with low overhead. (1)

Automatically map I/O calls to app’s characteristics. (2)

Map different app characteristics to storage configurations. (3)

Perform I/O access optimization on diverse storage. (4)

Adapt storage software to changing configurations. (5)

Unify diverse storage devices and software. (6)

Diverse

Storage

Hardware

7 / 61

Our Proposal

Diverse

Storage

Hardware

Profile I/O calls with low overhead. (1)

Automatically map I/O calls to app’s characteristics. (2)

Map different app characteristics to storage configurations. (3)

Perform I/O access optimization on diverse storage. (4)

Adapt storage software to changing configurations. (5)

Unify diverse storage devices and software. (6)

Understand & characterize application requirements.

Transform requirements to storage configuration.

Re-configurable storage representation.

Jal storage system

8 / 61

Scope of this research

Application

Model

Data

Model

Storage

Model

• Source Code
based Application
Profiler

• Use-cases

• Compression

• Prefetching

• Replication

• Hierarchical
Shared log Store.

Vidya

Ares

HFetch

HReplica

HCL

HCompress

ChronoLog

9 / 61

Outline Profiler
Code-block level application profiling.

Data Compression
Multi-tiered data compression engine.

Conclusion

Jal

1

2

3

5

6

Data Prefetching
Multi-tiered data prefetching technology.

ChronoLog
A Shared log store.

10 / 61

Cyclic Process of

analyzing

applications

Application’s I/O behavior

Vidya HCompress HFetch Chronolog Conclusion

Collect Data

• Trace application using
tracing mechanisms.

Analyze data

• Analyze collected data to
find bottlenecks.

Configure App

• Tune and tweak the
applications.

Test & Measure

• Test if the changes
improved performance
and measure the metrics.

Baseline

• Default I/O behavior
of applications.

• Tracing Applications

• Observing what application is

doing.

• Analyze data

• Using data mining to extract

patterns and co-relate back to

application behavior.

• Configure

• Trail and error on various

configurations to tune

application behavior.

• Test and Measure

• Rerun application with new

changes.

11 / 61

Current Methodology of Profiling

Offline Profiling Online Profiling

Profiling is done before the

actual execution of program.

High profiling accuracy.

High profiling cost

Profiling is done during the

execution of program.

Low profiling cost

Low profiling accuracy

Vidya HCompress HFetch Chronolog Conclusion12 / 61

Observation

Hypothesis

Behavior of an application

stems from its source-code.

Predicting I/O behavior from

source-code can enable us to

understand cause of an I/O

behavior.

1313 / 61

Vidya

Performing Code-Block I/O

Characterization for Data

Access Optimization

1) Hariharan Devarajan, Anthony Kougkas, Prajwal Challa, and Xian-He Sun, 2018,

December. Vidya: Performing Code-Block I/O Characterization for Data Access

Optimization. In 2018 IEEE 25th International Conference on High Performance Computing

(HiPC) (pp. 255-264).

2) Hariharan Devarajan, Anthony Kougkas, Prajwal Challa, and Xian-He Sun, 2018, April.

Poster: Performing Code-Block I/O Characterization for Data Access Optimization. In 2018

IEEE 6th Greater Chicago Area Systems Research Workshop (GCASR).1414 / 61

Approach

1

Profile
•Use montage as a

case-study.

•Profile using

existing tools for

CPU, memory, & I/O.

•Correlate with code

structures.

2

•Hypothesize several

code-structures.

•Classify them to

increase/decrease

I/O intensity.

3

•Collect several source-code

•Extract identifies code-structures

•Measure I/O intensity through

profiling

•Train a ML model, code-block

I/O Characterization (CIOC), to

predict I/O intensity.

Model

4

•Design an

automated tool
• Extracts features

• Predicts I/O intensity

• Performs code-

optimizations

Build

Vidya HCompress HFetch Chronolog Conclusion15 / 61

Building the ML model

Collecting

Data01

Training

model 02

Validating

Model03

• Collect source code from different domains (graph,

scientific, AI, benchmarks)

• Extract features and build dataset

• code-block unit (function/class/branch/loop/line)

• 4200 records dataset

𝑌𝑚 𝑣 = 𝛽0 +

𝑖=1

𝑣

𝛽𝑖 ∗ 𝑋𝑖𝑚

Linear Regression Model

16 / 61

• Good model fit
• R2 = 0.92, f-statistics = 785

• Top two significant variables
• Amount of I/O

• Number of files opened

CIOC:

Code-block I/O

characterization

Vidya HCompress HFetch HReplica Chronolog Conclusion

Vidya: Design

C C++ F90

.o

• Extractor

• Uses LLVM to parse the source code and build a

Program Dependency Graph (PDG).

• PDG is enhanced with I/O features on various

pieces of code.

• Analyzer

• Analyzes the PDG and extracts code features.

• The aggregator combines code features to the

root of the PDG and calculates the I/O intensity

using CIOC.

• Optimizer

• Identifies which code-feature can decrease I/O

intensity.

• Injects the changes and recompiles the code.

Vidya HCompress HFetch Chronolog Conclusion17 / 61

Evaluation

Testbed Configuration

• Node Configuration

• 128 GB RAM,

• 10Gbit Ethernet, and

• 200GB HDD

• Cluster Configuration

• 32 client nodes

• 8 storage nodes

• Applications tested

• Synthetic Benchmarks,

• CM1,

• WRF, and

• Graph500’s BFS and GMC

• Compared solutions

• Darshan

• Omnisc’IO

Vidya HCompress HFetch Chronolog Conclusion18 / 61

Profiling Performance

Profiling Scale

• Darshan
• profiling cost increases as

scale increases

• On lower scales the profiling

accuracy decreases

• Vidya and Omnisc’IO is

unaffected.

Workload Irregularity

• Omnisc’IO’s profiling

accuracy decreases as

irregularity increases.

• Vidya and Darshan is

unaffected.

Complexity of Code

• Complexity: loops, functions,

classes, and files

• Vidya
• parsing time increases as

complexity increases.

• 3x faster than Darshan

• 2x slower than Omnisc’IO

Vidya HCompress HFetch Chronolog Conclusion19 / 61

Optimization Benefits

Prefetching On/Off

• Characteristics: Irregular

workloads with simple code.

Caching On/Off

• Characteristics: repetitive with

complex code structures.

• Overall observation:

• Darshan has the highest accuracy and, hence, potentially be manually optimized.
• Omnisc’IO has less cost but inaccurate.

• Vidya bridges this gap with overall best result (profiling + execution time).

2x - 3.7x

Performance improvement.

Vidya HCompress HFetch Chronolog Conclusion20 / 61

Summary
01

02

03

04

Vidya proposes a trade-off between

accuracy & cost of profiling.

Vidya proposes a methodology to calculate I/O

intensity using source-code structures.

Vidya can reduce the cost of application profiling 9x

while maintaining a high accuracy of 98%.

Vidya can be used to automatically optimize

applications source-codes up to 3.7x.

A list of all

observations

21 / 61

Outline Profiler
Code-block level application profiling.

Data Compression
Multi-tiered data compression engine.

Conclusion

Jal

1

2

5

6

Data Prefetching
Multi-tiered data prefetching technology.

ChronoLog
A Shared log store.

22 / 61

Reduction of I/O bottleneck

• Several middleware solutions are

proposed to reduce the I/O

latency and increase application

performance.

• In all approaches, the solutions

utilize an Intermediate

Temporary Scratch (ITS) space

(e.g., Main Memory) to optimize

I/O access.

I/O

Optimizations.

Increasing the space of ITS would

greatly enhance the effectiveness

of these solutions.

Data

Prefetching

Data

Caching

Data

Buffering

Data

Forwarding

Data

Filtering

Data

replication

Vidya HCompress HFetch Chronolog Conclusion23 / 61

Tiered Hardware Software

Add new intermediate

resources to increase layers.

E.g., HBM, NVRAM, NVMe

SSD, etc.

Increases space availability.

Reduce I/O footprint through

data reduction techniques.

E.g., Data Compression.

Reduces Data Footprint.

Current approach: Increase ITS space.

Vidya HCompress HFetch Chronolog Conclusion24 / 61

Observation

Hypothesis

Benefit of compression

comes from trading CPU

cycles to reduce I/O cost.

The new hardware reduces

this I/O cost.

A combination of these two

approaches can compound the

increase of available ITS for I/O

optimizations.

2525 / 61

HCompress

Hierarchical & Intelligent Data

Compression for Multi-Tiered

Storage Environments

1) Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun. "HCompress: Hierarchical Data

Compression for Multi-Tiered Storage Environments" IEEE International Parallel and

Distributed Processing Symposium (IPDPS), 2020. (to appear)

2) Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun. "Ares: An Intelligent, Adaptive,

and Flexible Data Compression Framework." In 2019 19th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 82-91. 2019.

3) Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun. "An Intelligent, Adaptive, and

Flexible Data Compression Framework. (Poster)" In 2019 19th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2019.2626 / 61

C
o

m
p

re
ss

io
n

 L
ib

ra
ri

e
s

Multi-

dimensional

Optimization

• Match three dimensions

• Application Characteristics

• Compression Characteristics

• Hierarchical Tier Characteristics

• We can formulate it as a

minimization of total time for

executing an I/O task

• The constraints required

• # sub-problems should be small.

• Data compression is useful.

• Compressed data fits in a tier.

Visual representation of 3D space.

Problem Formulation

Vidya HCompress HFetch Chronolog Conclusion27 / 58

Hierarchical

1

Dynamic

2

Flexible

3

Utilize all storage

hardware efficiently.

Match hardware speed of

devices to ideal

compression libraries.

Dynamically switch

compression libraries.

Cost of reconfiguration of

compression engine

should be low.

Unify the interface to

compression libraries.

Configure, add, and

apply compression using

a simplified interface.

HCompress Goals

Vidya HCompress HFetch Chronolog Conclusion28 / 61

• HCompress Profiler

• Runs a exhaustive benchmark to capture

system and compression characteristics.

• Compression Cost Predictor

• Uses linear regression model

• Uses reinforcement learning to improve

accuracy.

• Engine

• Employs a dynamic programming (DP)

• Data characteristics, Compression

libraries, and Storage tiers

• Compression Manager

• Manages library pool

• Performs metadata encoding/decoding

HCompress Design

Vidya HCompress HFetch Chronolog Conclusion29 / 61

Testbed Configuration

• Applications tested

• Synthetic Benchmarks,

• VPIC, and

• BD-CATS

• Compared solutions

• Baseline vanilla PFS

• Single-tier with compression

• Multi-tiered without compression

Evaluation

• Cluster Configuration

• 64 compute nodes

• 4 shared burst buffer nodes

• 24 storage nodes

• Node Configurations

• compute node

• 64GB RAM and 512GB

NVMe

• Burst Buffer node

• 64GB RAM and 2x512GB SSD

• Storage node

• 64GB RAM and 2TB HDD

Vidya HCompress HFetch Chronolog Conclusion30 / 61

Impact of Data Compression & Tiered Storage

Compression on Tiered Storage Tiered Storage on Compression

Observations:

• Different tier effect differently for each compression

• HCompress balances trade-off dynamically and achieves

the best multi-tiered throughput.

• Performing multi-tiered buffering with single

compression doesn’t maximize the benefit.
• data placement is not aware of compression.

• HCompress achieves a benefit of 2x.

2x

Performance improvement.

Vidya HCompress HFetch Chronolog Conclusion31 / 61

Scientific workflow

Observations:

• Optimizes both write and read performance significantly
• Optimizes all three parameters: compression time, decompression time and compression ratio equally

• Achieves a performance boost of 7x.

7x

Performance improvement.

Vidya HCompress HFetch Chronolog Conclusion32 / 61

Summary
01

02

03

04

HCompress showcased how data characteristics and

system characteristics affect data compression.

HCompress proposes a hierarchical compression

engine for multi-tiered storage environments

Quantified the benefit of utilizing hierarchical

hardware and data compression cohesively.

HCompress can optimize scientific workflows up to

7x compared to competitive solutions.

A list of all

observations

33 / 61

Outline Profiler
Code-block level application profiling.

Data Compression
Multi-tiered data compression engine.

Conclusion

Jal

1

2

5

6

Data Prefetching
Multi-tiered data prefetching technology.

ChronoLog
A Shared log store.

34 / 61

Explosion of data

• Data is crucial to enable

discovery.

• IDC reports predict that by

2025:

• global data volume will grow

to 163 ZB

• 10x the data produced in 2016

Applications spend majority of

their time on data retrieval.

Data explosion

Vidya HCompress HFetch Chronolog Conclusion35 / 61

Tiered Hardware Software

New intermediate resources

with higher bandwidth.

E.g., HBM, NVRAM, NVMe

SSD, etc.

Increases performance and

reduces access latency.

Reduce I/O cost using several

data access optimizations.

E.g., Data prefetching, data

staging, data replication, etc.

Reduces access cost by

preloading data to compute.

Current approach: Optimize data access.

Vidya HCompress HFetch Chronolog Conclusion36 / 61

Observation

Hypothesis

Both tiered storage and data

prefetching optimize the

same problem.

A combination of these two

approaches can compound the

benefit to improve data access.

3737 / 61

HFetch

Hierarchical Data Prefetching

for Scientific Workflows in

Multi-Tiered Storage

Environments

1) Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun. "HFetch: Hierarchical Data

Prefetching in Multi-Tiered Storage Environments" IEEE International Parallel and

Distributed Processing Symposium (IPDPS'20), 2020. (to appear)

2) Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun. "HFetch: Hierarchical Data

Prefetching in Multi-Tiered Storage Environments (Poster)" Proceedings of the

International Conference for High Performance Computing, Networking, Storage and

Analysis (SC'19), 2019.3838 / 61

Server-Push

1

Data Centric

2

Hierarchical

3

Lightweight and

asynchronous data push.

Server pushes

appropriate data to the

app in place of it pulling.

Utilize how data is

accessed in a workflow.

scheme looks at how data

is accessed instead of

apps accessing it.

Unify the diverse

hardware tiers.

The engine matches data

hotness to the spectrum

of device characteristics.

HFetch Goals

Vidya HCompress HFetch Chronolog Conclusion39 / 61

• Server-Push

• Event are captured through kernel’s

inotify utility

• Prefetched data is push to the

hierarchy

• Data Centric

• Score Incorporates

• recency, frequency, and sequencing

• Hierarchical Placement

• The engine calculates placement of

prefetch data based on multi-tiered

storage and data characteristics.

𝑺𝒄𝒐𝒓𝒆𝒔 =

𝒊=𝟏

𝒌
𝟏

𝒑

𝟏
𝒏
∗ 𝒕−𝒕𝒊

HFetch Design

Vidya HCompress HFetch Chronolog Conclusion40 / 61

1. Specific Client I/O interception of open/close

2. Monitoring through VFS layer

3. Collect event through Hardware Monitor.

1. Each layer has a different daemon

4. Update Auditor

1. Calculate scores

2. Rearranges scores in descending order

5. Run DPE

6. Perform I/O on different layers.

Example

41 / 61 Vidya HCompress HFetch HReplica Chronolog Conclusion

Testbed Configuration

• Applications tested

• Synthetic Benchmarks,

• Montage, and

• WRF

• Compared solutions

• Stacker: ML-based online

prefetching

• KnowAc: offline prefetching

Evaluation

• Cluster Configuration

• 64 compute nodes

• 4 shared burst buffer nodes

• 24 storage nodes

• Node Configurations

• compute node

• 64GB RAM and 512GB

NVMe

• Burst Buffer node

• 64GB RAM and 2x512GB SSD

• Storage node

• 64GB RAM and 2TB HDD

Vidya HCompress HFetch Chronolog Conclusion42 / 61

Benefit of Hierarchical Prefetching

Lower-RAM footprint

Observations:

• A perfect parallel prefetching has 89% hit ratio.

• Most common serial prefetching cannot overlap the

data perfectly and has more misses.

• HFetch uses ⅛ of ram and is 17% slower.

Extending Prefetching cache.

• Adding more layers reduces the cost of miss

penalty

• Additional cache space on lower tiers

• Devices slower than RAM but faster than PFS.

• 35% to 50% faster.

Vidya HCompress HFetch Chronolog Conclusion43 / 61

Scientific Workflows

Montage

Observations:

• Offline Profiler is accurate but has an initial cost through profiling.

• Stacker doesn’t have that cost, but application-level prefetching hurts due to cache evictions and pollution.

• HFetch optimized this using a global data-centric score which helps the overall workflow.

• HFetch boosts read performance by 20-40%.

WRF

20-40%

Performance improvement.

Vidya HCompress HFetch Chronolog Conclusion44 / 61

Summary
01

02

03

04

HFetch introduces a data-centric hierarchical

prefetching methodology.

HFetch proposes a novel data centric scoring

mechanism to measure the hotness of data.

Quantified the benefit of utilizing hierarchical

hardware and data prefetching cohesively.

HFetch can optimize scientific workflows up to 35%

compared to competitive solutions.

A list of all

observations

45 / 61

Outline Profiler
Code-block level application profiling.

Data Compression
Multi-tiered data compression engine.

Conclusion

Jal

1

2

5

6

Data Prefetching
Multi-tiered data prefetching technology.

ChronoLog
A Shared log store.

46 / 61

Shared Log as storage model

• Storage is cheap and hence maintain

what happened and when instead of

mutation of data.

• Inherent versioning semantics

• Enables high performance with

append only semantics.

• Deletes are through invalidations and

background compactions of log.

• Enable decoupled consumer

producer semantics.

• Achieves tunable consistency

semantics.

Malleable

Storage

A Shared log is an ideal backbone

for any storage requirement.

Vidya HCompress HFetch Chronolog Conclusion47 / 61

Observation

Hypothesis

Shared log is a good data

abstractions for many

storage systems.

A hierarchical storage and time-

based data ordering to build an

efficient shared log store

4848 / 61

ChronoLog

A Distributed Shared Tiered

Log Store with Time-based

Data Ordering

1) Anthony Kougkas, Hariharan Devarajan, Keith Bateman, Jaime Cernuda, Neeraj Rajesh and

Xian-He Sun. ChronoLog: A Distributed Shared Tiered Log Store with Time-based Data

Ordering" Proceedings of the 36th International Conference on Massive Storage Systems

and Technology (MSST 2020). (to appear)

49 / 61

ChronoLog: High Level Design

• Objectives

• Log distribution

• Parallel 3D data distributions

• Log ordering

• Complete ordering with indexing

• Log access

• Concurrent data access based on

I/O size.

• Log scaling

• Capacity and auto-tiering

• Log storage

• Tunable parallel I/O

Vidya HCompress HFetch Chronolog Conclusion50 / 61

ChronoKeeper

• Distributed Journal

• Fast Data Ingestion

• Fast Tail Operation

• Lock-free tail updates

• Uniform Data Distribution

• Through distributed Hash Map

• Time Data Ordering

• Through Partitioned Ordered Map

• Caching of Latest Events

• Using backlogs

Vidya HCompress HFetch Chronolog Conclusion51 / 61

ChronoStore

Stream Paradigm

• Enables Explicit Parallelism based on

Operation Size (Not Clients)

• Growing and shrinking of resources to

enable efficient resource utilization

ChronoGrapher

• Continuously moves data from

ChronoKeeper to PFS

• Aggregates I/O

ChronoPlayer

• Retrieves data from PFS, SSD KV and

ChronoKeeper

• Resolves range and perform I/O once for

duplicate ranges.

ChronoGrapher

ChronoPlayer

Vidya HCompress HFetch Chronolog Conclusion52 / 61

Testbed Configuration

• Applications tested

• Synthetic Benchmarks

• Compared solutions

• BookKeeper

• Corfu

Evaluation

• Cluster Configuration

• 64 compute nodes

• 4 Key-Value Store Nodes

• 24 storage nodes

• Node Configurations

• compute node

• 64GB RAM and 512GB

NVMe

• Key-Value Store Node

• 64GB RAM and 2x512GB

SSD

• Storage node

• 64GB RAM and 2TB HDD

Vidya HCompress HFetch Chronolog Conclusion53 / 61

Write Operation breakdown.

Observations:

• The observed Write Operation cost is 14% of the whole journey.

• Asynchronously, data is flushed in the background where writing to KV store and writing to

PFS takes 62% of the time.

• Building of Story (aggregation) is 13% of time.

Vidya HCompress HFetch Chronolog Conclusion54 / 61

Key-Value Store Performance

Observations:

• BookKeeper is the slowest as operations are served by one server always.

• Corfu uses better data distribution.

• ChronoLog, uses hierarchical storage which increases the throughput of operations
• For get all after put all, as data is already flushed to slower mediums, hence, reads are slower.

• It has better locality in Get after Put.

Vidya HCompress HFetch Chronolog Conclusion55 / 61

Summary
01

02

03

04

A distributed log store which utilizes hierarchical

storage and time-based data ordering

We showcased the design of real-time data

movement paradigm to enable MWMR semantics.

Quantified the benefit of utilizing hierarchical

hardware and time-based ordering.

ChronoLog can optimize applications by almost 12x.

A list of all

observations

56 / 61

Outline Profiler
Code-block level application profiling.

Data Compression
Multi-tiered data compression engine.

Conclusion

Jal

1

2

5

6

Data Prefetching
Multi-tiered data prefetching technology.

ChronoLog
A Shared log store.

57 / 61

Jal Storage System

Jal

Vidya (Source Code based application Profiler)

Data Access Optimizations (Transformation)

Compression Prefetching Replication

Ares HCompress HFetch HReplica

ChronoLog (Hierarchical Log Store)
HCL

58 / 61

Accomplishments

• Conference Papers

• Anthony Kougkas, Hariharan Devarajan, Keith Bateman, Jaime Cernuda, Neeraj Rajesh and Xian-He Sun. ChronoLog: A Distributed Shared

Tiered Log Store with Time-based Data Ordering" Proceedings of the 36th International Conference on Massive Storage Systems and

Technology (MSST 2020). (to appear)

• Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun. “HFetch: Hierarchical Data Prefetching for Scientific Workflows in Multi-Tiered

Storage Environments,” 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), New Orleans, Louisiana, USA, 2020.

• Hariharan Devarajan, Anthony Kougkas, Luke Logan, and Xian-He Sun. "HCompress: Hierarchical Data Compression for Multi-Tiered Storage

Environments," 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), New Orleans, Louisiana, USA, 2020.

• Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun. "An Intelligent, Adaptive, and Flexible Data Compression Framework", In

Proceedings of the IEEE/ACM International Symposium in Cluster, Cloud, and Grid Computing (CCGrid’19)

• Hariharan Devarajan, Anthony Kougkas, Prajwal Challa, and Xian-He Sun. "Vidya: Performing Code-Block I/O Characterization for Data Access

Optimization", In Proceedings of the IEEE International Conference on High Performance Computing, Data, and Analytics 2018 (HiPC'18)

• Journal Papers

• Hariharan Devarajan, Anthony Kougkas, and Xian-He Sun, "I/O Acceleration via Multi-Tiered Data Buffering and Prefetching", Journal of

Computer Science and Technology, 2019, (pre-print and scheduled to appear in 1st quarter of 2020)

• Workshop Papers

• Hariharan Devarajan, Anthony Kougkas, Hsing-Bung Chen, and Xian-He Sun. "Open Ethernet Drive: Evolution of Energy-Efficient Storage

Technology", In Proceedings of the ACM SIGHPC Datacloud'17, 8th International Workshop on Data-Intensive Computing in the Clouds in

conjunction with SC'17.

59 / 61

Related Work

04 01

0203

I/O characterization in HPC

• Static Tools

• Captures application-level access pattern

information per-process and per-file

granularity

• Dynamic Tools

• Uses models the behavior of I/O in any HPC

application and predicts future accesses

Tiered storage management

• transparent management of this hierarchy for

buffering purposes

• Hermes

• Proactive Data Container

• Univistor

• significant boost to I/O performance through

data buffering in faster devices.

Shared Log Store

• Corfu:

• Distributed Log store for SSD

• Uses sequencer for data ordering

• BookKeeper:

• Uses implicit parallelism for reading.

• Writing to a jounral goes to one server.

• Tail is maintained using metadata service.

Data Prefetching and Compression

• Hardware prefetchers move data from memory

into CPU caches to increase the hit ratio.

• Offline data prefetchers involves a pre-

processing step which identifies application’s

access pattern and device a prefetching plan.

• Smart compression asymmetric compression

schemes to reduce energy consumption.

60 / 61

Q&A

Thank you

hdevarajan@hawk.iit.edu

mailto:hdevarajan@hawk.iit.edu

