
Understanding I/O behavior of Scientific Deep
Learning Applications in HPC systems

Hariharan Devarajan
Illinois Institute of Technology

hdevarajan@hawk.iit.edu

Huihuo Zheng
Argonne National Laboratory

huihuo.zheng@anl.gov

Xian-He Sun
Illinois Institute of Technology

sun@iit.edu

Venkatram Vishwanath
Argonne National Laboratory

venkatv@alcf.anl.gov

I. EXTENDED ABSTRACT

In the past decade, deep learning (DL) has been applied
to a wide range of applications [1], [2], [3] to achieve
unprecedented results. These include image recognition [4],
natural language processing [5], and even autonomous
driving [6], as well as physical science domains such as
cosmology [7], materials science [8], [9], and biology [10],
[11]. DL methods iteratively adjust the weights within the
network to minimize a loss function. At each training step,
the application reads a mini-batch of data, computes the
gradient of the loss function and then updates the weights of
the network using stochastic gradient descent. Many new AI
hardware (e.g., GPU, TPU, Cerebras, etc.) have been designed
and deployed to accelerate the computation during the training.
However, as the size and complexity of the datasets grow
rapidly, DL training becomes increasingly read intensive.
I/O is a potential bottleneck in the DL applications [12].
On the other hand, more and more scientific DL studies are
performed in high performance supercomputers through a
distributed training framework to reduce the training time-to-
solution [13]. Therefore, characterizing the I/O behavior of DL
workloads in high-performance computing (HPC) environment
is crucial for us to address any potential bottlenecks in I/O and
to provide useful guidance in performing efficient parallel I/O.

In this study, we aim to understand the I/O behavior in
scientific DL applications. As a starting point, we explore
a collection of scientific deep learning workloads which are
currently running at Argonne Leadership Computing Facility
(ALCF). These workloads are selected from various projects,
such as Argonne Data Science Program (ADSP), Aurora Early
Science Program (ESP), and Exascale Computing Projects
(ECP). The science domains represented by the workloads
include neutrino physics [7], cosmology [14], materials
science [8], computational physics [15], and biology [16],
[10]. Many of the workloads are in active development
targeting the upcoming future exascale supercomputers.
One of the long term goals for this study is to identify
any existing I/O bottlenecks in these workloads on current
production machines and suggest I/O optimizations for current
applications and as we develop these for future systems.

We profile the I/O behavior of eight DL applications on
Theta, our current production leadership supercomputer at
ALCF. To realize this, we utilize the profilers provided by

the DL framework such as TensorFlow profiler as well as low-
level I/O profiler such as Darshan, to study the I/O behavior of
applications on supercomputers. These profilers are accompa-
nied with their analysis tools. However, to get a holistic view
of the application, we developed a Python library, VaniDL, for
integrating and post-processing the information obtained from
the profiling tools and generating high level I/O summary of
the application. The main contributions of this work are:
1) proposing a systematic framework for I/O profiling for DL

workloads and developing an analyzer tool, VaniDL, which
provides insights on the I/O behavior of DL applications.

2) preliminary exploration of the I/O behavior of eight scien-
tific DL applications on a leadership supercomputer.

II. I/O BEHAVIOR OF HPC DEEP LEANING WORKLOADS

A. Methodology

Applications: We target distributed DL workloads. These
include Neutrino and Cosmic Tagging with UNet [7],
Distributed Flood Filling Networks (FFN) for shape
recognition in brain tissue [8], Deep Learning Climate
Segmentation [17], CosmoFlow for learning universe
at scale [14], Cancer Distributed Learning Environment
(CANDLE) for cancer research [10], Fusion Recurrent
Neural Net for representation learning in plasma science [16],
Learning To Hamiltonian Monte Carlo (L2HMC) [15], and
TensorFlow CNN Benchmarks [18]. These applications are
implemented in TensorFlow and use Horovod for data parallel
training. Some of them also have PyTorch implementation.
Hardware: We run the applications on Theta. This
supercomputer consists of more than 3600 nodes and
864 Aries routers interconnected with a dragonfly network.
Each router hosts four 2nd generation Intel Xeon PhiTM

processors, coded name Knights Landing (KNL). Each node
is equipped with 192 GB of DDR4 and 16 GB of MCDRAM.
In all the studies presented here, we set 2 hyper-threads per
core for a total of 128 threads per node, and four processes
per node. The datasets are stored in Lustre file system. We set
the Lustre stripe size to be 1 MB and stripe count to be 48.
Tools: We use Darshan (with extended tracing) as our low-
level I/O profiling tool along with TensorFlow profiler. Ad-
ditionally, we process the profiling results using our custom
analytic tool, VaniDL [19] to integrate the low-level Darshan
logs with high-level TensorFlow profiler logs and generate a



0 200 400 600
Timeline (sec)

0

10

20

30

40

50

60
I/O

 p
er

fo
rm

ed
 (M

B)

(a) I/O timeline.

0 50 100 150 200 250
Transfer Size (KB)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fr
eq

ue
nc

y

1e7

(b) Transfer size distribution for all
the I/O operations.

Fig. 1. CosmoFlow I/O Behaviors: sub-figure a) showcases that 8% of the
application time is spent on I/O. sub-figure b) showcases the distribution of
the transfer size for all the I/O operations. It shows that all the I/O requests
has transfer size of 256 KB which is the default setting in TFRecord APIs.

holistic I/O information of the application, such as I/O access
pattern, transfer size distributions for all the I/O operations,
I/O access timeline, etc. All the results described below are
the outcome of the analysis produced by VaniDL.

B. I/O analysis of Scientific Deep Learning Applications

In this section, we present the characteristics of 2 (of the
8) DL applications. The applications were run on 128 nodes
with 4 processes per node (total of 512 processes).

1) CosmoFlow [14]: CosmoFlow is a 3D convolutional
neural network model for studying the features in the
distribution of dark matter. The dataset contains 327,680
images, each of size (128, 128, 128, 4). They are stored in
1,024 TFRecord files, each of which contains 256 samples.
The total size of the dataset is 2 TB. The application uses
TensorFlow data pipeline to stream the data from the file
system. The whole process includes randomly selecting a
subset of files to read for each rank and pre-processing the
samples. In the benchmark, we set the batch size to be one,
and ran the application for 256,000 steps (4 epochs).

As shown in Figure 1, the benchmark was executed for 624
seconds, out of which 8% is spent in I/O. The whole dataset
(2 TB) was read entirely in parallel during the first epoch and
cached in the memory as the dataset fits into the total memory
of 128 nodes on Theta (shown in Figure 1(a) from VaniDL).
For the later epochs, the data were read directly from the
cache instead of going to the file system. Therefore, there is no
I/O performed for the later epochs. The transfer size (the size
of the read buffer) for each read operation is 256 KB. The I/O
is consecutive with an aggregate read bandwidth of 145 GB/s.

2) Distributed Flood Filling Networks [8]: It is a recurrent
3D convolutional network for segmenting complex and large
shapes of neurons from a raw image of brain tissue. The
dataset is stored in two HDF5 files, one for real data and
the other for metadata associated with the dataset (e.g., size
of samples, location of samples within the dataset, etc.). The
dataset is composed of 4,096 grayscale map images of size
32×32×32. The total size of the dataset is 2.28 GB. One
thing to mention is that the application uses a 4K field of
view to traverse each sample. Therefore, only part of each
sample within the field of view is accessed.

0 2000 4000 6000
Timeline (sec)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

I/O
 p

er
fo

rm
ed

 (M
B)

(a) I/O Timeline

0 20000 40000 60000
Transfer Size (bytes)

0

500000

1000000

1500000

2000000

2500000

3000000

Fr
eq

ue
nc

y

(b) Transfer size distribution for
all the I/O operations.

Fig. 2. FFN I/O Behaviors: sub-figure a) showcases the consecutive I/O on
the HDF5. After the first epoch the data is accessed from the HDF5 chunk
cache. sub-figure b) showcases how small access (i.e., 100 B) happens on the
metadata file and 60 KB happens on the images maps file.

As shown in Figure 2, the application spent 1,314 seconds
in I/O, which is 18.4% of the overall execution time. The I/O
does not overlap with computations. The I/O happens only
at the first epoch since the data was directly fetched from the
chunk cache for the subsequent epochs. At each training step,
each process randomly reads an image from the data file based
on the location provided from the metadata. The distribution
of the transfer size centers at two places [Figure 2(b)], one
at about 62 KB (for reading images), the other at about
100B (for reading metadata). A chunk size of 65KB is used
in the data file. That is why the transfer size for reading
images is about 62KB. Because the transfer size is relatively
small and the access pattern is random due to shuffling, the
aggregate read bandwidth for the application is only about 42
GB/s. One can potentially read a larger buffer of images and
perform in-memory shuffling to improve the I/O bandwidth.

In conclusion, we have analyzed the I/O in selected sci-
entific workloads at current stage of development. Currently,
the datasets are still relatively small and fit into the aggregate
memory of the compute nodes. I/O only occurs at the first
epoch. However, as the datasets grow larger than the main
memory, I/O will happen at every epoch and might potentially
become a bottleneck. We observe that the TensorFlow Data
Pipeline enables efficient I/O by overlapping the I/O with
computation in a pipepline fashion. However, it does not sup-
port parallel I/O, which will potentially limit its I/O scalability.
Additionally, we observe that many scientific applications
utilizing data formats such as HDF5 and NPZ use their custom
I/O functions instead of framework provided data APIs can be
further optimized, particularly in the area of overlapping I/O
with computation through data prefetching and in-memory
shuffling to avoid any performance degradation due to random
I/O. These are area of research we plan to explore in future.

ACKNOWLEDGMENT
We would like to thank the application developers including

Sam Foreman, Rafael Vescovi, Corey Adams, Murali Emani,
Kyle Gerard Felker, Xingfu Wu, and Murat Keceli for pro-
viding the workloads and helpful discussion in running the
workloads on Theta. This work used resources of the Argonne
Leadership Computing Facility, which is a DOE Office of
Science User Facility under Contract DE-AC02-06CH11357.

2



REFERENCES

[1] Z. Jiang, W. Gao, L. Wang, X. Xiong, Y. Zhang, X. Wen, C. Luo,
H. Ye, X. Lu, Y. Zhang et al., “Hpc ai500: a benchmark suite for hpc
ai systems,” in International Symposium on Benchmarking, Measuring
and Optimization. Springer, 2018, pp. 10–22.

[2] S. Shams, R. Platania, K. Lee, and S.-J. Park, “Evaluation of deep
learning frameworks over different hpc architectures,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2017, pp. 1389–1396.

[3] C. Chin and D. E. Brown, “Learning in science: A comparison of deep
and surface approaches,” Journal of Research in Science Teaching: The
Official Journal of the National Association for Research in Science
Teaching, vol. 37, no. 2, pp. 109–138, 2000.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[5] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in
deep learning based natural language processing,” ieee Computational
intelligenCe magazine, vol. 13, no. 3, pp. 55–75, 2018.

[6] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement
learning framework for autonomous driving,” Electronic Imaging, vol.
2017, no. 19, pp. 70–76, 2017.

[7] C. J. Adams, “Neutrino and Cosmic Tagging with UNet,” 2015.
[Online]. Available: https://github.com/coreyjadams/CosmicTagger

[8] W. Dong, M. Keceli, R. Vescovi, H. Li, C. Adams, E. Jennings,
S. Flender, T. Uram, V. Vishwanath, N. Ferrier et al., “Scaling dis-
tributed training of flood-filling networks on hpc infrastructure for brain
mapping,” in 2019 IEEE/ACM Third Workshop on Deep Learning on
Supercomputers (DLS). IEEE, 2019, pp. 52–61.

[9] G. B. Goh, N. O. Hodas, and A. Vishnu, “Deep learning for computa-
tional chemistry,” Journal of computational chemistry, vol. 38, no. 16,
pp. 1291–1307, 2017.

[10] X. Wu, V. Taylor, J. M. Wozniak, R. Stevens, T. Brettin, and F. Xia,
“Performance, energy, and scalability analysis and improvement of
parallel cancer deep learning candle benchmarks,” in Proceedings of the
48th International Conference on Parallel Processing, 2019, pp. 1–11.

[11] O. Faust, Y. Hagiwara, T. J. Hong, O. S. Lih, and U. R. Acharya, “Deep
learning for healthcare applications based on physiological signals: A
review,” Computer methods and programs in biomedicine, vol. 161, pp.
1–13, 2018.

[12] S. W. Chien, S. Markidis, C. P. Sishtla, L. Santos, P. Herman,
S. Narasimhamurthy, and E. Laure, “Characterizing deep-learning i/o
workloads in tensorflow,” in 2018 IEEE/ACM 3rd International Work-
shop on Parallel Data Storage & Data Intensive Scalable Computing
Systems (PDSW-DISCS). IEEE, 2018, pp. 54–63.

[13] Y. Kwon and M. Rhu, “Beyond the memory wall: A case for memory-
centric hpc system for deep learning,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2018,
pp. 148–161.

[14] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann,
L. Shao, S. He, T. Kärnä, D. Moise, S. J. Pennycook et al., “Cos-
moflow: Using deep learning to learn the universe at scale,” in SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2018, pp. 819–829.

[15] D. Levy, M. D. Hoffman, and J. Sohl-Dickstein, “Generalizing
hamiltonian monte carlo with neural networks,” arXiv preprint
arXiv:1711.09268, 2017.

[16] G. Dong, K. G. Felker, A. Svyatkovskiy, W. Tang, and J. Kates-Harbeck,
“Fully convolutional spatio-temporal models for representation learning
in plasma science,” arXiv preprint arXiv:2007.10468, 2020.

[17] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,
A. Mahesh, M. Matheson, J. Deslippe, M. Fatica et al., “Exascale
deep learning for climate analytics,” in SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2018, pp. 649–660.

[18] Tensorflow, “TensorFlow benchmarks,” 2018. [Online]. Available:
https://github.com/tensorflow/benchmarks

[19] H. Devarajan, “VaniDL: Deep Learning I/O Analyzer,” 2020. [Online].
Available: https://github.com/hariharan-devarajan/vanidl

3


