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ABSTRACT
Deep learning has been shown as a
successful machine learning method
for a variety of tasks, and its pop-
ularity results in numerous open-
source deep learning software tools.
This had led to its application in
scientific domains such as cosmol-
ogy, particle physics, computer vi-
sion, fusion, and astrophysics. Sci-
entists have performed a great deal
of work to optimize their computa-
tional performance. However, the
same cannot be said for I/O perfor-
mance. As deep learning algorithms
rely on big-data volume and variety
to effectively train the underlying
neural network accurately, I/O is
a significant bottleneck on large
scale distributed deep learning
applications. In this study, we aim
to unravel a deep understanding of
the I/O behavior of various scien-
tific deep learning applications. We
present our findings on scientific
deep learning workloads running
on a production super computer.
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METHODOLOGY

1. We explore a collection of scientific deep learning workloads which are currently running at
Argonne Leadership Computing Facility (ALCF).

2. We ran the scientific deep learning applications on the Theta supercomputer’s KNL nodes with
data on lustre filesystem of strip size of 1 MB and stripe count of 48.

3. We use 128 Intel KNL compute nodes, each with 192 GB of main memory, a 128 GB SSD,
and 16 GB of MCDRAM in cache mode.

4. We run the tensorflow framework on CPUs with 2 hyperthreads available for a total of 64
threads.

5. We run with 128 node configuration with each node containing 4 processes (total of 512
processes).

6. We configure tensorflow to run with 32 OpenMP threads with 32 intra-threads and 2 inter-
threads.

7. We utilize Darshan (with extended tracing) and tensorboard as our profiler to capture I/O
behavior of the applications.

8. We developed an in-house analyzer tool, called VaniDL (https://github.com/hariharan-
devarajan/vanidl), which merges the low-level Darshan logs with high-level tensorboard logs to
generate a more holistic view of the application.

9. We utilize VaniDL software to create summarization, request distribution histograms, and I/O
timelines at various granularity to have an in-depth view of the application’s I/O behavior.

Imagenet Benchmark (TFRecord)

1. It is an image classification benchmark which contains implementations of several popular
convolutional models such as resnet50, inception3, vgg16, and alexnet.

2. Dataset contains 1024 tfrecord files which each file containing 1024 sample image (approx 256
KB in size).

3. The benchmark was configured to use a batch size of 512 images and it ran for 100 steps with
ten warm-up steps.

(a) Compute and I/O timeline.
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(b) Data distributions between files.

Figure 1: Imagenet I/O Characteristics

1. 14.3% of the total time was spent on performing I/O with a bandwidth of 32 GBps.
2. The data pipline (i.e., I/O plus preprocessing) takes 28% of the overall time.
3. The files are read on-demand during the training, and hence the samples per file access are

not uniformly distributed among the files.
4. The files are accessed sequentially within the file with most the I/O is overlapped with compute.
5. Data Transfer size for each request is 256 KB which is the default in TFDataset APIs.

Neutrino and Cosmic Tagging with UNet (HDF5)

1. It uses a convolutional network to separate cosmic pixels, background pixels, and neutrino
pixels in a neutrinos dataset.

2. We configured the application to run for 150 steps with checkpointing every 50 steps.
3. It reads the HDF5 files using larcv APIs with a batch size of 32 images. The application is run

with 12 initial filters with the adam optimizer.

(a) Compute and I/O timeline.
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(b) I/O Bandwidth Timeline.
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(c) Data transfer size distribution.

Figure 2: Comsic Tagger I/O Characteristics

1. 22% of time (i.e., 227.24 seconds) was spent in I/O with a bandwidth of 10.43 MB/s.
2. The application reads data sequentially.
3. 22.54 seconds of I/O is overlapped with compute during the application lifetime.
4. I/O occurs throughput the execution of the application before each step executes.
5. The dataset contains images of sizes 40KB - 50KB. However, due to chunking in the dataset,

we observe a smaller I/O of 2 KB and 6 KB transfer size per request.

Distributed Flood Filling Networks (HDF5)

1. It is a synchronous instance segmentation of complex and large shapes, particularly in volume
EM datasets of brain tissue.

2. The application trains over an HDF5 file using 400 steps with a small batch size of 1 image.
3. It uses a field of view of 32X32X32 and a learning rate of 0.001.

(a) Compute and I/O timeline.
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(b) Data and Bandwidth distri-
bution across ranks.

0 20000 40000 60000
Transfer Size (bytes)

0

200000

400000

600000

800000

1000000

1200000

Fr
eq

ue
nc

y

(c) Distribution of Transfer
sizes.

Figure 3: FFN I/O Characteristics

1. 18.4% of the overall time (370 seconds) is spent on I/O with a bandwidth of 10 GBps.
2. The I/O happens just before the compute where each process reads 33% of the dataset with

no overlap between I/O and compute.
3. The distribution of the transfer size centers at two places, one at about 62 KB (for reading

images), the other at about 100B (for reading metadata). A chunk size of 65KB is used in the
data file. That is why the transfer size for reading images is about 62KB.

4. The data access pattern is random to due random selection of image and then sequentially
reading of images.

CosmoFlow Benchmark (TFRecord)

1. It is an implementation of the CosmoFlow 3D convolutional neural network.
2. The benchmark runs with 4 epochs with 1024 training files with batch size of one.

(a) Compute and I/O timeline.
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(b) Data and Bandwidth distri-
bution across ranks.
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(c) Distribution of Transfer
sizes.

Figure 4: Cosmoflow I/O Characteristics

1. 12% of the overall time (370 seconds) is spent on I/O with a bandwidth of 36 GBps.
2. 23% of the the time is spent on data pipeline (i.e., I/O + preprocessing).
3. 50.16 seconds of the I/O (almost 98%) is hidden behind compute.
4. Data Transfer size for each request on file system is 256 KB which is the default in

TFDataset APIs.

Fusion Recurrent Neural Net (NPZ)

1. It implements DL models for disruption prediction in tokamak fusion plasmas.
2. Application uses 1M samples with 100 estimates in a random forest model.

(a) Compute and I/O timeline.
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(b) Data and Bandwidth
distribution across ranks.
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(c) Distribution of Transfer
sizes.

Figure 5: FRNN I/O Characteristics

1. 42% of its total time in performing I/O with a bandwidth of 29 GBps.
2. The signal files are read before and if required during the training with no overlap with

compute.
3. Lot of calls happens on the signals metadata file which are few 100 bytes and big I/O

happen on signals data files (2MB) size. dataset is accessed sequentially within the
file. The files are accessed in random.

CONCLUSIONS

1. We observe the tf.data pipeline enables efficient I/O access in HPC environment.
2. However, scientific apps which utilize data formats such as HDF5 and NPZ are not

optimized.
3. HDF5 library is not optimized to enable efficient I/O access for Deep Learning work-

loads and doesn’t hide I/O cost behind computations of the applications.
4. As future work, we envision to build a library which can optimize HDF5 workloads for

Deep Learning applications.


