
A Windows-NT virtual collaboratory for technical computingq

Dhruv Khettrya, Xian-He Suna,b,*
aDepartment of Computer Science, Louisiana State University, Baton Rouge, LA 70803-4020, USA

bDepartment of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, USA

Abstract

Virtual Collaborative Environment (VCE) addresses enabling technologies to support collaborative, distributed, computer-based problem
solving for engineering applications. The goal is to simulate a virtual laboratory, based on cooperative computing substrate, that integrally
supports a shared workspace, high performance computing, distributed data management, as well as graphical scientific communication. In
this study we present the design and development of a Windows-NT based VCE for technical computing.q 2000 Elsevier Science Ltd. All
rights reserved.

Keywords: Virtual collaboratory; Collaborative computing; IP multicast

1. Introduction

A Window-NT Technical (computing virtual) Collabor-
ative Environment (WTCE) has been developed enabling
technologies to support collaborative, distributed, compu-
ter-based problem solving for engineering applications.
WTCE simulates a virtual laboratory for cooperative
computing work for engineering and scientific applications.
It enables researchers, educators and industrial developers
to work in conjunction with each other by accessing and
sharing common resources and by collaborating over the
Internet. This WTCE environment is for Windows based
machines and the entire development is done using C/
C11. It has been designed for supporting high performance
compute intense applications. C/C11 applications provide
excellent support for high performance applications and
hence have been chosen for the WTCE project.

WTCE is a suite of software systems, communications
protocols, and tools that enable computer-based cooperative
work. WTCE constructs a virtual work environment on
multiple computer systems connected over the Internet, to
form a collaboratory. In this setting, participants interact
with each other, simultaneously access and operate compu-
ter applications, refer to global data repositories or archives,
collectively create and manipulate documents, perform

computational transformations, and conduct a number of
other activities via telepresence. WTCE is built upon several
existing software systems. It combines the SNOW (Scalable
Network of workstations) environment [1–3] and collabor-
ative computing. SNOW delivers the high performance
computing power via parallel computation and process
migration. WTCE is also combined with SCALA (perfor-
mance and SCALability Analyzer) for performance opti-
mization [6,7]. The collaboration interface of WTCE is
designed based on Collaborative Computing Frameworks
(CCF) which is an environment on UNIX, developed at
the Emory University [4,5]. CCF uses multicasting, session
level protocols, atomic and consistent message passing
schemes. All these ideas have been extended to WTCE.
The APIs used for multicasting in WTCE are significantly
different from the one used in CCF. CCF uses UNIX
Berkeley sockets while WTCE uses Windows sockets.
Other differences between WTCE and CCF have been
discussed in the other sections of the paper. One of the main
concepts implemented in the WTCEproject is IPmulticast and
hence it is discussed in detail throughout this paper.

2. Related projects

Some of the other projects implementing collaborative
environments include the Mbone tools, ISIS/Horus [8],
and RMP [9]. The advances in network based parallel
computing in projects like SNOW [3] extends such collab-
orative computing models. TeamWave is a groupware
system that combines synchronous groupware technologies
such as whiteboards and chat sessions. However TeamWave

Advances in Engineering Software 31 (2000) 717–722

0965-9978/00/$ - see front matterq 2000 Elsevier Science Ltd. All rights reserved.
PII: S0965-9978(00)00020-X

www.elsevier.com/locate/advengsoft

q This work was supported in part by National Science Foundation under
grant ASC-9720215 and CCR-9972251.
* Corresponding author. Department of Computer Science, Illinois Insti-

tute of Technology, Chicago, IL, USA.
E-mail addresses:dhruv@csc.lsu.edu (D. Khettry), sun@cs.iit.edu

(X.-H. Sun).



is a closed system that is based on the GroupKit [12] group-
ware toolkit, and only applications developed for GroupKit
can be used with TeamWave. TeamWave is used for simple
applications that are easy to develop and require facilities
like text windows and simple graphical interfaces. Another
class of collaborative systems is those based on the World
Wide Web. Tango [11] is a prototype of an open system that
provides mechanisms to rapidly integrate applications into a
multiuser collaborative environment on the web. Tango uses
a client–server architecture and uses a central server to
control and distribute information among the clients.
Local daemons on each participating machine intercept
application traffic and distribute them via server and brow-
ser plugins. This tool consists of a session manager that
controls the operation of various tools within a web browser
and includes audio and video conferencing, televiewers and
electronic instrument control. Netscape’s Conference and
Microsoft Netmeeting can also be considered as collabor-
ative systems, but they are limited in their functions with
regard to computation and shared data space support.

Various projects address a subset of the goals defined by
WTCE. It combines collaborative computing with high
performance computing, performance evaluation and opti-
mization, and process migration. It is developed over other
existing software and incorporates the features of other soft-
ware too. WTCE provides all elements of collaboration and
is based on a distributed architecture. One of its main advan-
tages over other traditional methods is that it is capable of
supporting existing as well as collaboration-aware applica-
tions. WTCE provides insight into the effectiveness of the
benefits of scientific computing. Various distinguishing
features of WTCE over other existing systems include
domain specific focus, open interfaces and security. CCF
had problems in processing ‘channel leave’ messages.
Dynamic maintenance of channel membership was a
problem and has been overcome in WTCE.

3. WTCE architecture

WTCE operates over standard Internet protocols, but
builds its own fast and efficient multiway protocols there-
upon—these core modules are identified as VCTL (Virtual
Collaboration Transport Layer) and VCE-API. VCTL is a
communication layer consisting of a suite of multiparty
protocols, providing varying service qualities among
process groups. VCTL explicitly supports distributed
collaborative and multimedia applications. VCTL is based
on a two-level group hierarchy. Logical interconnections
among entities, called channels, define an efficient and
light weight group mechanism. Channels support a variety
of service qualities such as reliability and message ordering.
Related channels can also be combined to form sessions,
heavy weight groups which provide a default atomic multi-
cast service. VCTL supports membership protocols tailored
to the quality of service offered by a channel. The VCTL

group module consists of channel membership and QoS
submodules. The channel membership module enforces
ordering and reliability guarantees for regular messages.
The QoS module also provides an interface to lower level
network protocols such as IP multicast or UDP and handles
inter-network routing (IP-multicast to a LAN, UDP over
WANs). The VCTL group caters to distributed and collab-
orative applications. The protocol stack of the reliable
channel is implemented through three threads: sender,
receiver and acker. The sender thread takes messages
from the send queue, and fragments them into packets.
The fragments are transmitted using the VCTL routing
protocol. VCTL adopts a TCP-like flow and congestion
control. The receiver thread acquires packets through a
multicast socket and reassembles fragments into messages.
Based on the channel ID contained in a message, it multi-
plexes the message into the receive queues of channels. It
sends acknowledgements and passes them to the sender
thread which adjusts its flow and congestion windows
based on these acknowledgements. VCTL is more efficient
when there are more clients because TCP uses unicast
whereas VCTL uses multicast to transfer messages. A hier-
archical architecture is used for WTCE. The lowest layer of
WTCE is the physical network and over that UDP and IP
multicast is implemented. The VCTL library implements
multiway transport protocols supporting different QoS.
This library provides the collaborative environment neces-
sary for cooperative work. This library is used by the higher
level of WTCE. An API is developed over VCTL to encap-
sulate all the low-level network functions. This API is called
VCE-API and is responsible for running a session name
server and maintains all the channel membership informa-
tion. This layer is responsible for maintaining the multicast
group and it sends queries to other members in the group for
dynamically detecting group members. Applications are the
highest layer in the WTCE architecture. Some VCE tools
have been implemented. Other existing applications can use
the VCE-API and perform collaborative work across the
network. Fig. 1 shows the overall architecture of WTCE.

The entire communication layer (VCTL) has been
designed and developed as a library consisting of different
types of protocols supporting varying QoS. The design of
the VCTL library is similar to the one used for CCF [5].
Applications have been developed to support WTCE and
they just need to link with the VCTL library to be able to
support collaborative computing. In the current version of
WTCE, a chat tool has being developed. Due to the modular
design, tools like audio, clearboard, and other multimedia
tools can be developed over VCTL to support collaborative
computing. Fig. 2 shows the architecture of VCTL. VCTL is
the main component of WTCE and hence has been
discussed on detail in this paper. A hierarchical design has
also been used for VCTL. The channel membership module
is the main module inside VCTL. This runs over the physi-
cal network and the application modules run over it. When
an application comes up, it sends a join message to the

D. Khettry, X.-H. Sun / Advances in Engineering Software 31 (2000) 717–722718



channel membership (CM) module on its node. It uses the
channel communication (COM) module to inform all the
other members in its group. The COM module either uses
UDP or IP multicast to inform all the other members in the
group about this new member. Similarly a session module is
also implemented and it is responsible for the name service
and reliable delivery over the network. Fig. 2 shows how
messages are transmitted from one module to another.

VCTL is logically implemented as a group module, inter-
posed between applications (clients) and the physical
network. This module implements the VCTL API and
provides session and channel abstractions to clients. The
group module consists of channel membership (CM),
communication (COM), and session sub-modules. The
session module supports the services that a session provides.
The CM module implements membership protocols for
channels using the reliable message delivery service of the
session module. The COM module implements data
communication services of channels. The session module
implements a virtually synchronous reliable multicast

group that provides group management services, such as
virtual synchronous membership, failure detection, and
authorization. Applications can join and leave a session
through the API of the session module, and the CM module
communicates with the CM modules of other session
members through the session module. The session module
notifies the CM module of session membership updates
including member failures. A process must join a session
to participate in a collaboration session. Every channel
created after session join becomes a child group. The CM
module implements membership protocols for different
types of channels. It uses the session module to communi-
cate with the CM modules of other session members, and
uses the COM module to enforce virtual synchrony for the
channels that require virtual synchrony (e.g. reliable
channels). If a channel needs virtual synchrony, the applica-
tion module uses the API of the CM module to receive and
send messages. A VCTL channel currently supports one of
three data communication services: total-ordering reliable,
FIFO reliable, and unreliable. These services are implemen-
ted within the COM module.

The COM module implements a protocol stack for each
channel type. Multiple channels of the same type may share
a protocol stack or they may create their own. Channel ID is
included in messages sent through the protocol stack and the
COM module multiplexes messages to the appropriate
channel based on this ID. The COM module discards
messages not intended for the current process. Sockets are
allocated on a per-stack basis so sharing protocol stacks
saves descriptors.

Each protocol stack uses bounded IP multicast. If a
channel contains members on two or more isolated subnets,
messages are sent to the remote subnet via a UDP tunnel and
then multicast locally. Fig. 3 illustrates VCTL’s routing
mechanism. A limited form of pruning is implemented.
When a packet does not contain a member in a remote
subnet, its stack does not send the packet to the subnet.

D. Khettry, X.-H. Sun / Advances in Engineering Software 31 (2000) 717–722 719

Fig. 2. VCTL architecture.

Fig. 1. WTCE system architecture.



This technique reduces interference between channels
sharing a stack but with distinct memberships.

One of the main features in the implementation of VCTL
is the use of IP multicast. IP multicast is widely used for
collaborative computing applications where sessions can be
dynamically added to the multicast group. Researchers can
collaborate with each other by sending multicast packets to
all members connected over a session. This is far more
efficient than requiring the source to send an individual
copy of a message to each requester (point-to-point unicast),
in which case the number of receivers is limited by the
bandwidth available to the sender. It is also more efficient
than broadcasting one copy of the message to all nodes
(broadcast) on the network, since many nodes may not
want the message, and because broadcasts are limited to a
single subnet. The concepts of IP multicasting have been
discussed in detail because this is one of the main com-
ponents of the WTCE project.

IP multicast uses Class D Internet Protocol addresses,
with 1110 as their high-order four bits, to specify multicast
host groups. In Internet standard “dotted decimal” notation,
host group addresses range from 224.0.0.0 to
239.255.255.255 for multicasting. The range of addresses
between 224.0.0.0 and 224.0.0.255 is reserved for routing
protocols and other low-level topology discovery or main-
tenance protocols. Other addresses and ranges have been
reserved for applications, such as 224.0.13.000 to
224.0.13.255 for Net News. All multicast addresses in that
range that are not reserved can be used by user applications
for multicasting.

To send an IP multicast datagram, the WTCE sender
specifies an appropriate destination address, which repre-
sents a host group. IP multicast datagrams are sent using
the same “Send IP” operation used for unicast datagrams.
Compared to sending of IP multicast datagrams, reception
of IP multicast datagrams is much more complex, particu-
larly over a WAN. To receive datagrams, a user’s host
application requests membership in the multicast host
group associated with a particular multicast. This member-

ship request is communicated to the LAN router and, if
necessary, on to intermediate routers between the sender
and the receiver. As another consequence of its group
membership request, the receiving host’s network interface
card starts filtering for the LAN-specific hardware (data-link
layer) address associated with the new multicast group
address. WAN routers deliver the requested incoming multi-
cast datagrams to the LAN router, which maps the host
group address to its associated hardware address and builds
the message (for example, an Ethernet frame) using this
address. The receiving host’s network interface card and
network driver, listening for these addresses, pass the multi-
cast messages to the TCP/IP protocol stack, which makes
them available as input to the user’s application, such as a
video viewer or other collaborative applications.

Whereas an IP unicast address is statically bound to a
single local network interface on a single IP network, an
IP host group address is dynamically bound to a set of local
network interfaces on a set of IP networks. An IP host group
address is not bound to a set of IP unicast addresses. Multi-
cast routers do not need to know the list of member hosts for
each group—only the groups for which there is one member
on the subnetwork. A multicast router attached to an Ether-
net need associate only a single Ethernet multicast address
with each host group having a local member.

Each IP multicast packet uses the time-to-live (TTL) field
of the IP header as a scope-limiting parameter. The TTL
field controls the number of hops that an IP multicast packet
is allowed to propagate. Each time a router forwards a
packet, its TTL is decremented. A multicast packet whose
TTL has expired (is 0) is dropped, without an error notifi-
cation to the sender. This mechanism prevents messages
from needless transmission to regions of the worldwide
Internet that lie beyond the subnets containing the multicast
group members.

A local network multicast reaches all immediately-neigh-
boring members of the destination host group (the IP TTL is
1 by default). If a multicast datagram has a TTL greater than
1, the multicast router(s) attached to the local network take

D. Khettry, X.-H. Sun / Advances in Engineering Software 31 (2000) 717–722720

Fig. 3. Routing in VCTL.



responsibility for internetwork forwarding. The datagram is
forwarded to other networks that have members of the desti-
nation group. On those other member networks that are
reachable within the IP time-to-live, an attached multicast
router completes delivery by transmitting the datagram as a
local multicast. TTL thresholds in multicast routers prevent
datagrams with less than a certain TTL from traversing
certain subnets. This can provide a convenient mechanism
for confining multicast traffic to within campus or enterprise
networks. Several standard settings for TTL are used for
multicasting: 1 for local net, 15 for site, 63 for region and
127 for world [10].

4. Implementation

WTCE has been implemented for Windows platform. It
has been tested on Windows NT v4.0. Microsoft Foundation
Classes (MFC) have been extensively used to implement all
user interfaces. The applications are ‘Dialog based applica-
tions’ supporting MFC. The software is implemented in C/
C11 using the Visual C11 environment. The VCTL
library is built over Windows Sockets version 2 (WinSock 2).
It provides an API for communication over the network using
UDP, TCP and IP multicasting. WTCE uses Windows socket
multicast APIs. WinSock 2 has been used. Multicasting is also
possible on a WinSock 1.1 implementation but it should support
BSD multicast APIs. These APIs are used for the following:

• to join a multicast group;
• to leave a multicast group;
• to set the IP time to live (TTL) on a multicast datagram to

adjust the scope;
• to set the local interface for multicast transmission and

receipt;
• to disable loopback of outgoing multicast datagrams.

5. Requirements and challenges

To support native IP multicast, the sending and receiving
WTCE nodes and network infrastructure between them
must be multicast-enabled, including intermediate routers.
Requirements for native IP multicast at the end node hosts
are [10]:

• support for IP multicast transmission and reception in the
TCP/IP protocol stack;

• software supporting Internet Group Management Proto-
col (IGMP) to communicate requests to join a multicast
group(s) and receive multicast traffic;

• network interface cards which efficiently filter for LAN
data link layer addresses mapped from network layer IP
multicast addresses;

• IP multicast application software such as video conferen-
cing, collaborative computing applications etc.

The above are some of the pre-requisites for running
WTCE. To run or evaluate IP multicast on a LAN, only
the above are needed; no routers need to be involved for a
host’s adapter to create or join a multicast group and share
multicast data with other hosts on that LAN segment. For IP
multicast over a WAN, traffic needs to be expanded as
follows:

• All intermediate routers between the sender(s) and recei-
ver(s) must be IP multicast-capable. Many new routers
have support for IP multicast; older ones may require
memory before they can be upgraded.

• Firewalls may need to be reconfigured to permit IP multi-
cast traffic.

Fig. 4 depicts the components that must be multicast-
enabled. The direction of traffic shown is for multicast
datagrams.

D. Khettry, X.-H. Sun / Advances in Engineering Software 31 (2000) 717–722 721

Fig. 4. Multicast-enabled components.



In Fig. 4, different forms of multicasting have been illu-
strated. It shows how multicasting can be implemented
across a WAN as well as on a LAN. Within a subnet, it is
relatively simple to implement multicasting but across the
Internet, it becomes subsequently difficult. Routing over the
Internet is much more complicated and it employs IP, IGMP
or ICMP. This transfer is performed at different layers. TCP/
IP is the highest layer followed by network driver and the
network interface. Communication is through UDP or
through IP multicast over the internetwork. Multicasting
over a WAN is a challenge as lots of networks do not
provide support for multicasting. Security features may
also be turned on by a network thus not allowing other
networks to communicate with it. These are significant
challenges for WTCE. Connections to WTCE are not fully
secure. Significant steps might be taken in the future to
provide secure connections when transferring data to and
from insecure networks.

6. Conclusion

WTCE environment was thoroughly tested on Windows
platforms for applications collaborating on the same
network as well as on networks with different subnets.
Certain performance evaluation is yet to be done for the
WTCE system. It works very efficiently with increasing
number of members in a session.

Current implementation of WTCE is designed for
Windows based machines only. CCF had been implemented
for UNIX based architecture. WTCE can be combined with
CCF to support collaborative computing across UNIX and
Windows architecture. As an improvement, heterogeneous
platforms could be supported by making use of platform
independent features of Java. Currently heterogeneity has
been sacrificed because of the poor performance of Java on
computation intensive applications. Java is currently in its
rudimentary stage and its status as a scientific programming
language has been continuously under question due to its

poor performance on computationally intense applications.
As an enhancement, a Java 3D browser interface for WTCE
could be designed. Java would then be adopted for visual-
ization and telepresence, C/FORTRAN will be used for
computing, and SNOW will serve as a computing layer
that facilitates parallel processing under MPI/PVM inter-
face.

References

[1] Chanchio K, Sun X. MpPVM: a software system for non-dedicated
heterogeneous computing. Proceedings of the International Confer-
ence on Parallel Processing 1996:III;215–22.

[2] Leutenegger S, Sun X. Limitations of cycle stealing of parallel
processing on a network of homogeneous workstations. Journal of
Parallel and Distributed Computing 1997:169–78.

[3] Sun X, Naik V, Chanchio K. A coordinated approach for process
migration in heterogeneous environments. Proceedings of the Ninth
SIAM Conference on Parallel Processing for Scientific Computing
1999.

[4] Sunderam V, et al. Collaborative computing frameworks for natural
sciences research. http://emily.mathcs.emory.edu/ccf/, 1997.

[5] Rhee I, et al. Group communication support for distributed collabora-
tion systems. ICDCS Proceedings, 1997.

[6] Sun X-H, Zhu J. Performance prediction: a case study using a scalable
shared-virtual-memory machine. IEEE Parallel and Distributed Tech-
nology 1996:36–49.

[7] Sun X, Pantano M, Fahringer T. Integrated range comparison for data-
parallel compilation systems. IEEE Transactions on Parallel and
Distributed Systems 1999:448–58.

[8] Birman K, Joseph T. Reliable communication in the presence of fail-
ures. ACM Transactions on Computer Systems 1987;5(1):47–76.

[9] Whetten B, Montgomery T, Kaplan S. A high performance totally
ordered multicast protocol. Proceedings of the Dagstuhl Distributed
Systems Workshop 1994:33–57.

[10] Johnson V, Johnson M. Implementing IP multicast in different
network architectures, www.ipmulticast.com.

[11] Beca L, et al. TANGO—a collaborative environment for the World
Wide Web. http://trurl.npac.syr.edu/tango/, Syracuse University,
1996.

[12] Roseman M, Greenberg S. Building real time groupware with Group-
Kit, a groupware ToolKit. ACM Transactions on CHI 1996;3(1):66–
106.

D. Khettry, X.-H. Sun / Advances in Engineering Software 31 (2000) 717–722722


