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Abstract* 

 
Process migration is essential for runtime load 

balancing. In Grid and shared networked 
environments, load imbalance is not only caused by the 
dynamic nature of underlying applications, but also by 
the fluctuation of resource availability. In a shared 
environment, tasks need to be rescheduled frequently 
to adapt the variation of resources availability. Unlike 
conventional task scheduling, dynamic rescheduling 
has to consider process migration costs in its 
formulation. In this study, we first model the migration 
cost and introduce an effective method to predict the 
cost. We then introduce a dynamic scheduling 
mechanism that considers migration cost as well as 
other conventional influential factors for performance 
optimization in a shared, heterogeneous environment. 
Finally we present experimental testing to verify the 
analytical results. Experimental results show that the 
proposed dynamic scheduling system is feasible and 
improves the system performance considerably. 
 
1. Introduction 

 
Many distributed environments have been 

developed to meet the demand for more computation 
power. Some of the well-known distributed systems are 
Condor, NetSolve, Nimrod, and the Grid environment 
[14]. Resources in these systems are heterogeneous and 
are shared among different user communities. Each 
resource or organization may have its own resource 
management policies and resource usage patterns. 
Central control does not exist in resource management. 
To harvest Grid computing in these environments 
requires a continued dynamic rescheduling of Grid 
tasks to adapt to the availability of locally controlled 

                                                           
* This research was supported in part by national science foundation 
under NSF grant SCI-0504291, CNS-0406328, EIA-0224377, and 
ANI-0123930. 
 

computing resources. In addition, besides load balance, 
migration-based dynamic scheduling also benefits 
dynamic Grid management [19] in the cases of new 
machines joining or leaving, resource cost variation, 
and local task preemption. 

An appropriate rescheduling should consider the 
migration costs. This is especially true in distributed 
and heterogeneous environments, where plenty of 
computing resources are available at any given time 
but the associated migration costs may vary largely. An 
effective and broadly applicable solution for modeling 
and estimating migration costs, however, has been 
elusive. Even if an estimate is available, integrating 
migration cost into a dynamic scheduling system is still 
a challenging task. Based on our years of experience in 
process migration [8] and task scheduling [24], we 
propose an integrated solution in this study. 

The design of a migration-based dynamic 
scheduling is fourfold: reschedule triggering, migration 
cost modeling, task scheduling, and parameter 
measurement. We have proposed a reschedule 
triggering system [10]. In this paper, we focus on the 
three remaining problems. We choose to analyze the 
migration cost based on our HPCM (High Performance 
Computing Mobility) middleware [12]. HPCM is a 
middleware released under the NSF middleware 
initiative. It has a complex structure to support reduced 
process states and pipelined communication/execution 
for efficient process migration. All the parameters of 
the migration cost model are measured by monitoring 
the system and application running status at runtime. 
Due to the sophistication of HPCM, the analytical 
results presented in this study can be extended to other 
existing migration and checkpointing systems as well. 
Based on the estimated migration cost, we develop an 
integrated dynamic scheduling system to optimize 
application performance.  

In the next section, we give an overview of related 
work. In Section 3, we briefly describe the process 
migration mechanisms and then model the migration 
cost. A dynamic scheduling algorithm is introduced in 



2 

Section 4. Experiments and the parameter measurement 
methodologies are presented in Section 5. Conclusions 
and future work are discussed in Section 6. 

 
2. Related work 

 
Different task scheduling policies have been used in 

distributed shared environments. Condor system [20] 
uses a matchmaking mechanism to allocate resources 
with ClassAds. The scheduling strategy is based on the 
match of the users' specification of their job 
requirements and preferences, with the machines' 
characteristics, availabilities, and conditions. The 
process migration is implemented based on a 
checkpointing-based mechanism. However, it does not 
support run-time process migration in heterogeneous 
environments. AppLeS [5] is a well-known task 
scheduling system in Grid computing. It uses a loop of 
task events to schedule subtasks of a meta-task 
dynamically. While it can reschedule un-started 
subtasks, it does not support checkpointing or process 
migration. Projects like Mosix [3], and OpenSSI [21] 
support Single System Image (SSI) clustering, and 
hence support process migration over the nodes within 
the cluster. Because SSI technologies assume a tightly 
coupled cluster environment, these systems cannot be 
applied to massive message-passing based parallel 
applications or a general loosely coupled Grid 
environment. Virtual Machine Migration [6] may also 
be used in load balancing. However, because it 
requires the migration of the entire running 
environment, including the operating system, it is 
heavy-weighted in nature and only works in local-area 
clusters with fast communication channels. The Linux 
Zap [22] supports migration of legacy applications 
through the use of loadable kernel modules and 
virtualization of both hosts and processes. It uses a 
checkpointing-based mechanism to support process 
migration on Linux. The Zap system, as well as some 
heterogeneous process migration systems [23], has not 
implemented any mechanism for dynamic scheduling 
and reallocation. Their migration costs have never been 
studied in depth and their migrations are conducted 
manually. The benefit of rescheduling may not reach 
its full potential if it does not consider the migration 
cost.  

 
3. Migration cost analysis   

 
Process state collection, transmission and 

restoration are of general importance in process 
migration. While migration has potential performance 
gain for running tasks, the scheduling must be aware of 
the migration cost, which is the cost to migrate a 

running process to its new location. In this section, we 
first present a general migration cost model. Then, to 
provide feasible runtime prediction, we conduct in-
depth analysis on the HPCM middleware [12].  

HPCM is a user-level middleware supporting 
heterogeneous process migration of legacy codes 
written in C, Fortran or other stack-based programming 
languages via denoting the source code. It consists of 
several subsystems to support the main functionalities 
of heterogeneous process migration, including source 
code pre-compiling, execution state collection and 
restoration, memory state collection and restoration, 
communication coordination and redirecting, and I/O 
state redirecting. We have developed several 
optimization mechanisms to reduce the migration cost, 
including communication/execution pipelining, and 
live variable analysis. To make correct decisions and 
achieve precise scheduling, it is important that the 
migration cost, as well as the amount of process state, 
is analyzed and measured at runtime. 

The input of HPCM is the source code of an 
application. The pre-compiler or the users choose some 
points (called poll-points) in the source code. A poll-
point is a point where a migration can occur. The pre-
compiler annotates the source code and outputs the 
migration capable code, namely the annotated code. 
The annotated code is pre-initialized on the destination 
machine before a migration. When a migration is 
demanded, the migrating process first transfers the 
execution state, I/O state, communication state and 
partial memory state to the initialized destination. The 
pre-initialized process resumes execution while the 
remaining memory state is still in transmission. That is, 
the process states are transferred in a pipelined manner. 
The concurrency saves significant time in a networked 
environment, especially when a large amount of state 
data needs to be transmitted. The pipelining, however, 
imposes difficulty in estimating the migration cost. 

To migrate an application over heterogeneous 
systems, we represent the application’s memory space 
by a Memory Space Representation (MSR) model [7], 
which is a machine-independent logical representation 
of memory space. The snapshot of an application’s 
memory space is modeled as a MSR directed graph. 
Each vertex in the graph represents a memory block. 
Each edge represents a relationship between two 
blocks when one of them contains a pointer, which 
points to a memory location within another memory 
block. MSRLT (MSR Lookup Table) is a global 
mapping table between application memory space and 
the conceptual MSR model. Each memory block that 
may be referenced in the MSR, including a dynamic 
memory block, has an entry in the table. To represent a 
pointer, which contains a machine-specific address, the 
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MSRLT is searched for the memory block that contains 
the address. The pointer is then represented in MSR by 
an edge to the referenced memory block. The pre-
initialized process restores the pointer to the correct 
address allocated to the referenced memory block.  

 
3.1. Migration cost 

 
The task scheduling system is based on the 

statistical information gathered by the system 
monitoring and the estimated migration cost.  

Similar to a checkpoint/restart system, the migration 
is separated into three phases: data collection, data 
transmission and data restoration. The times spent on 
these phases are represented as Tc, Tt, and Tr, 
respectively. The source machine and the destination 
machine are represented as ms and md. For a general 
process migration system without any optimization, the 
cost to migrate a running process from ms to md is: 

Csd = Tc + Tt + Tr.    (3-1) 
However, estimating the migration cost based on 

this general migration cost model shown in (3-1) is not 
practical. First, a precise estimation of each parameter 
in (3-1) highly depends on the implementation of the 
migration system, which is not general. Second, (3-1) 
cannot be applied to optimized process migration 
systems such as the HPCM system, where the phases 
are overlapped to reduce the migration cost.  

In the following, we derive a migration cost model 
to estimate the migration cost of a process at a given 
migration point (the break point in the execution 
sequence where migration occurs). Though we use 
HPCM middleware throughout the analysis, the model 
is general and can be extended to provide accurate 
estimation of other migration systems. 

Given an application App running on a machine, at 
time t = 0, it reaches a poll point P. If App does not 
migrate at time t, it finishes on mj at tjj. If App is 
scheduled to migrate to another machine at time t, it 
finishes on mi at tji. For convenience, tj is used instead 
of tjj in the following. The available communication 
bandwidth from mj to mi is bji, which can be estimated 
with existing network performance prediction tools 
such as [25] and [13]. The available computing 
capacity of mj for application App is τj. In Section 4, 
we will discuss how to measure and predict this 
parameter.  

The migration cost Cji is defined as the time spent to 
migrate App from mj to mi. So,  tji = Cji + tjτj/τi.. If mi 
has the same computing capacity as mj, that is τj = τi 
(in most cases, this means mi is identical to mj), then 
the migration cost is 

Cji = tji – tj .     (3-2) 

3.2 Process state 
 
A process’s state is represented as S = <App, P, M, 

IO, Comm>. They are the execution state P, memory 
state M, I/O state IO, and communication state Comm. 
f(S) is the size of S. In HPCM, data collection, 
transmission and restoration overlap with each other. 
We assume the migration is from mj to mi and C is the 
abbreviation for Cji. So the migration cost,  

rtcrtc TTTCTTT ++<<),,max(  
The complexity of data collection and restoration is 

application-specific. Based on the data collection and 
restoration algorithm, we can define the data collection 
time as: 

cT   = search(MSRLT) + encode(S) + copy(S) 
and the data restoration time as: 

rT   = update(MSRLT) + decode(S) + copy(S). 
where search(MSRLT) is the time searching the 

MSRLT data structure; update(MSRLT) is the time 
updating the MSRLT data structure with machine-
specific address; encode(S) is the time encoding  the 
data to a machine-independent format; decode(S) is the 
time decoding data; copy(S) is the time copying data to 
or from a buffer. For homogeneous migration, it is not 
necessary to encode data, so encode(S) and decode(S) 
can be omitted from the formula.  

Suppose there are n fully-connected nodes in MSR 
graph. Because the MSRLT is searched in a depth-first 
manner, search(MSRLT) has the upper bound 
complexity of )log( nnO . To update the references in 
MSRLT, update(MSRLT) takes O(n) time complexity. 
encode(S), decode(S) and copy(S) state have the 
complexity of ))(( SfO  . The transmission time tT also 
takes the time complexity of ))(( SfO . Putting them all 
together, the migration cost is represented as: 

)(0 SfC µα +≈ ,    (3-3) 
α0 is a small migration overhead that is application 

specific and depends on the number and size of fully-
connected subgraphs in the MSR model. If the 
application has a large amount of referenced or 
dynamic allocated memory blocks, α0 is bigger. For 
other systems without the MSR model and 
performance optimization, α0 is a constant. µ is called 
migration processing rate, and it is represented as 
seconds per byte. µ is proportional to the reciprocal of 
the current available bandwidth, jib , between the 

source and destination node, that is 
jib
1αµ = . α1 is an 

application dependent constant that reflects the 
overlapping factor. α1 can be analytically computed 



4 

without consider overlapping. The overlapping factor 
can be measured directly.  

Experiments shown in Figure 1 confirm formula (3-
3). The linear increase of migration cost shows that the 
migration cost is proportional to the size of the state for 
a given application App and migration point P. The 
migration cost is determined by the amount of state to 
be collected, transmitted and restored during the 
migration. 

We measure α0 and α1 by experiments. As shown in 
Figure 1, 0004.00 =α  seconds, and 025.0=µ  
second/MB when there is no other traffic on the 
experimental platform. So 23.21 =α . The migration cost 
C increases from 0.01 to 15.46 seconds when f(S) 
increases from 0.415 to 635.22 MBytes. 

In the following, we estimate the size of the process 
state. A process state consists of execution state, 
memory state, communication state, and I/O state. 
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Figure 1. Process State and Migration Cost 
 
Execution State. A stack containing the functions in 
the calling sequences and their current execution 
locations represents the execution state P. The 
migration point is represented by <function, location> 
couples in a stack, which are maintained by macros 
inserted at the beginning and the end of each function. 
For example, the execution state of a process is P = < 
<main, main_L2>, <foo1, foo1_L1>, <foo2, foo2_L4>,  
<foo1, foo1_L2>, …>, where main_L2 represents the 
second poll point in the function main. So,  

f(P) = β • depth(P)    (3-4) 
where the depth(P) is the depth of the stack at the 

migration point P and β is the amount of data for a 
single entry in the execution stack. 
 
Memory State. There are three memory spaces in a 
running process: heap space, global space, and stack 
space. For programming languages like C and C++, 
variables are defined at different locations and with 
different storage type modifiers to indicate their 
storage idiosyncrasies and locations. Blocks in heap 
space are allocated at runtime and referenced by 

pointers. Also there are some variables residing in the 
register file for fast access. The global variables and 
static variables reside in global space and can be 
accessed after a function call. So, all the variables in 
the global space are collected, transmitted and restored 
as a part of the memory state. The dynamic allocated 
memory blocks reside in the heap space with pointers 
referencing to these blocks. A dynamic memory block 
may lose all its references during execution, and then it 
is called “garbage” and cannot be accessed afterward. 
Only valid memory blocks need to be collected and 
transmitted. Each function in the running sequence has 
a stack segment and a local address space in stack.  All 
the parameters, including local auto variables and 
temporary variables (variables defined by a compiler to 
store the intermediate computing values) are stored in 
the stack. They are only valid before the function 
return to its caller. We perform live variable analysis 
on these variables. That is, only variables that are live 
(may be accessed after the migration point) at the 
migration point are collected and transmitted. The 
amount of memory state is represented as: 

f(M)= Mg+ Ms(P) + Mh(P)   (3-5) 
where Mg is the size of variables in global address 

space; Ms(P) is the size of live variables at migration 
point P in stack space; Mh(P) is the size of the dynamic 
memory blocks at migration point P in the heap space. 
 
I/O State. Distributed applications may use many 
approaches to store and access their data. Commonly 
used approaches include network file systems such as 
NFS, distributed file systems such as DFS and Coda 
[4], and data transfer protocols such as FTP and 
GridFTP [16]. The data migration cost highly depends 
on these storage systems and data transfer protocols. 
Estimating the performance of these systems is out of 
the scope of this paper. In the following, we assume 
the presence of the globally accessible storages. The 
application data are not moved during the migration. 
The I/O state of a process is registered into a data 
structure called I/O Information Table. This table is 
created and maintained at runtime. An entry in the I/O 
Information Table is initialized when an I/O instance is 
created. The I/O information table is transmitted to the 
destination process and restored accordingly. The 
amount of the I/O state is:  

f(IO) = γ •  iob(P)    (3-6) 
where γ  is the size of each I/O entry in the I/O 

Information Table; iob(P) is the size of I/O Information 
Table at the migration point P. 
 
Communication State. The communication state of a 
process is composed of all its active connections 
established with other processes [8]. For each 
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connection, the migrating process coordinates with its 
communication partners to direct new messages to the 
destination process, drains the message queue and 
saves the incoming message to the received-message-
list. The communication state is forwarded to the 
destination machine with its received-message-list. The 
destination process then restores the communication 
connections. It first checks the received-message-list 
for incoming messages in future execution. The size of 
communication state is: 

f(Comm) = ∑
∈ )(

))((
PNi

imsglength  (3-7) 

where N(P) is the set of all the established 
connections of the process App at the migration point P; 
msg(i) is the size of the received_message_list of 
connection i. 

Putting them all together, the size of process state is: 
f(S)= β • depth(P) + Mg+ Ms(P) + Mh(P) + 
γ •  iob(P) + ∑

∈ )(
))((

PNi
imsglength  (3-8) 

where f(S) is the data size of state S; β is the size of 
an entry in the running stack; Mg is the size of variables 
in global address space; Ms(P) is the size of live 
variables at migration point P in stack space; Mh(P) is 
the size of the dynamic memory blocks at migration 
point P in the heap space; γ is the size of each I/O entry 
in the I/O Information Table; iob(P) is the size of I/O 
Information Table at the migration point P; N(P) is the 
set of  all the established connections of  the process 
App at the migration point P; msg(i) is the size of the 
received_message_list of connection i.  

 
4. Dynamic task scheduling 

 
We have developed a dynamic task scheduling 

system to reallocate applications dynamically at 
runtime. To choose a machine as the destination 
machine, we calculate the expected application 
execution time after migration and the cost of 
migration. Let jm  denote the source machine and im  

is the magration destingation machine. As shown in 
Section 3, jiC , the time of migrating a process from 

jm  to im ,  is 

)(0 SfC ji µα +=    (3-3) 

Let '
jw  denote the unfinished workload on jm . The 

completion time of the unfinished workload '
jw , jiT , 

is calculated as follows. 
)( '

jjiji STCT +=    (4-1) 

where )( '
jST  denotes the execution time of the 

application with unfinished workload on machine im .  

When the destination machine im  is dedicated to 
the execution of the migrated application, we can 
calculate jjj wST τ/)( ' ′=  where jτ  denotes the 

computing power of the machine im . If the 
destination machine is in a shared environment, for 
example, in a Grid environment, its resource 
availabilities may vary with time. To estimate the 

application execution time on a shared resource, we 
need to identify the availability of computing resources 
and its influence on the application performance.  

We use parameters λ , ρ , σ  to describe the 
dynamic resource usage pattern of a shared machine. 
λ  is the local job arrival rate, σ  is the standard 
deviation of job service time, and ρ  is the resource 
utilization. We assume the arrival of local jobs follows 
a Poisson distribution withλ . The service time of local 
jobs follows a general distribution with mean µ/1  and 
standard deviation σ . These assumptions are based on 
the observations of machine usage patterns reported by 
researchers in Wisconsin-Madison, Berkeley, 
Maryland et. al. [2]. The cumulative distribution 
function of the application completion time on a 
machine can be calculated as [15]: 

⎪⎩

⎪
⎨
⎧ ≥>−≤−−+−

=≤
otherwise

wtifSwtSUwewe
tT

,0

),0|/)(Pr()/1(/
)Pr(

ττλτλ   

Assumption: an application is located on machine, 0m . 
Objective: dynamically reallocate an application when an 
abnormality is noticed 
---------------------------------------------------------------------- 
Begin 
Receiving the triggering signal 
List a set of idle machines that are lightly loaded over an 
observed time period, },{ ,21 qmmmM K= ; 

1=′p ; 
For each machine km )1( qk ≤≤ , 

Use Formula (3-3) to calculate the migration cost, 
kC0
;

Use Formula (4-2) to calculate the mean of the remote 
task execution time, )( '

kST ; 
Use Formula (4-1) to calculate the application 
completion time, 

kT0
 

If  
'0 p

T  > kT0 , then kp =′ ; 

End For 
Migrate the application from 

0m  to 
pm ′

; 

End

Figure 2. Dynamic task scheduling algorithm

(4-2)



6 

where )(SU  is the sum of busy periods of local 
jobs on the machine. τ  is the computing capacity of 
the machine and w  is the workload of the application. 

After identifying the cumulative distribution 
function of )( '

jST , we can decide which machine 

should be selected as the destination machine. The 
basic idea is given below. First, we list a set of idle 
machines that are lightly loaded over an observed time 
period. Then for each machine, we calculate the 
migration cost and the expected application execution 
time with formula (3-3) and (4-2) respectively. The 
machine which has the minimum expected application 
completion time will be chosen as the destination.  
Figure 2 gives the detailed dynamic task scheduling 
algorithm.  

 
5. Experiment results 

 
We implemented the dynamic scheduling algorithm 

to verify the correctness of the migration cost model. 
We performed experiments on the sunwulf Computer 
Farm in the Scalable Computing Software (SCS) 
laboratory at the Illinois Institute of Technology. 
Sunwulf is a heterogeneous cluster in both computing 
and communication capacity. In our previous work, 
HPCM has been proven to work well on both 
heterogeneous and homogeneous ISAs. In this paper, 
we focus on the heterogeneities in computation and 
communication capacity and their impact on the 
scheduling mechanism. ISA heterogeneity, which does 
not affect our model and scheduling mechanism, is not 

discussed. Sunwulf is composed of one Sun Enterprise 
450 server node (sunwulf node), 64 Sun Blade 
workstations 100 (hpc-1 to hpc-64) and 20 Sun Fire 
V210R (hpc-65 to hpc-84) compute nodes. The Sun 
Enterprise 450 server has four CPUs, 8M cache and 

4GB memory. Each CPU is 480 MHz. The Sun Blade 
compute node has one 500-MHz CPU, 256K L2 cache, 
and 128M memory. The Sun Fire V210R compute 
node has two 1GHz CPUs, 1M L2 cache and 2GB 
memory. All the systems are running SunOS 5.9 
operating system. All the Sun Fire 210R servers are 
connected with a Gigabits Ethernet. The maximum 
bandwidth is 89.1M bytes/s. Other communication 
channels within the workstations or between the 
servers and the workstations are 100Mbps internal 
Ethernet. The maximum bandwidth is 11.8M bytes/s. 
The workstations are organized as a “fat tree” structure. 
The computation and communication heterogeneities 
make sunwulf a good test bed for our system.  

In the first experiment, we have tested four 
applications to verify the migration cost model. The 
first one is the linpack C sequential program, which 
solves a dense system of linear equations with 
Gaussian elimination [11]. The second is the bitonic 
program written by Joe Hummel [18], which builds a 
random binary tree and then sorts it. The third is gzip, a 
popular compression utility. The last application 
xlintims is from CLAPACK [9] with single precision 
real timing routines. CLAPACK provides routines for 
solving systems of simultaneous linear equations, least-
squares solutions of linear systems of equations, 
eigenvalue problems, and singular value problems.  

According to formula (3-3), the migration cost is 
proportional to the data size of the process state. 
Because the data collection overlapped with data 
communication, α0 is very small. The maximum value 
we observed in our experiments is less than 0.01 

seconds for bitonic program which has a large amount 
of dynamically allocated memory blocks. In the 
following experiments, we assume it is a constant. α1 is 
an application dependant constant and bji is the 
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available bandwidth from mj to mi. We perform our 
tests on Sun Fire nodes with Gigabit Network and 
randomly generate communication load to simulate the 
traffic in Grid. Since the source and destination 
machine are identical and have the same computing 
capacity, the actual migration cost can be measured by 
formula (3-2). The parameters in formula (3-8) are 
measured at runtime by querying the running 
applications for current status. After receiving a 
migration request, the dynamic scheduling system 
sends a query to the running process asking for current 
size of state by a user-defined signal. The running 
process checks its current execution state, memory 
state, I/O state and communication state and generates 
a process description schema in XML language 
describing current data size of each process state. The 
process schema includes the static and dynamic 
information about a running process such as 
application name, type (computational intensive, data 
intensive, dynamic memory management intensive, 
etc.), and data size of each state. β, γ and the size of 
global memory state Mg are provided by a precompiler. 
In our experiments, β = 4 and γ = 28. The depth of 
execution stack depth(P), the memory size of stack 
space Ms(P), heap space Mh(P), and the size of I/O 
information table iob(P) are measured and maintained 
by HPCM middleware. The number of live 
communication connections N(P) and the length of the 
received message list length(msg(i)) are measured at 
runtime through querying. Based on the information 
provided by the process schema, the dynamic 
scheduling system calculates the size of process state 
using formula (3-8) and then estimates the migration 
cost using formula (3-3).  

Table 1. Comparisons of scheduling Strategies 

As shown in Figure 3-6, the migration cost can be 
estimated with error ranging from 0%-18%. Each 
application is tested 6 times. The migration is triggered 
randomly so the running state varies each time. As 
shown in the figures, the migration cost may vary 
according to the application’s current running state. 
The average error is 8.19% for linpack, 5.76% for 

bitonic, 6.51% for gzip and 2.51% for xlintims. The 
overall average error for these tests is 5.74%. This 
experiment shows that the migration cost can be 
precisely predicted by our migration cost model. 

To evaluate the efficiency of the proposed dynamic 
scheduling algorithms (DSA) in selecting a destination 
machine for process migration, we conduct 
experiments to compare its performance with other 
machine selection strategies: migration-cost-minimum 
(MCM), execution-time-minimum (ETM), and random 
selection (RS). The migration-cost-minimum approach 
chooses a machine to which the migration cost is the 
minimum. The execution-time-minimum approach is to 
find a machine where the unfinished workload of the 
application will be executed in a minimum time.  We 
have mentioned that the sunwulf cluster is 
heterogeneous in terms of the nodes’ computer power 
and the underlying communication infrastructure. To 
further increase the heterogeneity of our test platform 
to simulate a Grid environment, we generate synthetic 
traffic on the network and workload on the nodes. In 
our simulation environment, the arrival rate of local 
jobs on each machine follows Poisson distribution. The 
local jobs’ lifetime is simulated with x/0.2  [1], which 
follows the observation of real-life processes in [17]. 
x  is a random number between 0 and 1. The local job 
arrival rate and the job service rate on each machine 
are randomly generated in an adjustable range. The 
resource utilization of each machine is thus different. 
We randomly generate the network traffic so that the 
end-to-end network performance among those nodes is 
different. Table 1 shows the application execution time 
with different machine selection approaches. The job 
execution time of each selection strategy is compared 
with the minimum completion time of all strategies and 
is marked with different grey levels for ≤5%, 5% to 
20%, 20% to 50% and >50% higher than minimum 
completion time respectively. The experiment results 
show that with considering the migration cost, the 
proposed scheduling algorithm (DSA) is the best in 
performance. ETM may find acceptable destination for 
the process for light process migration. However, as 
shown in Table 1 for Linpack C applications, when the 
communication channel is busy, ETM cannot avoid 
performance degradation caused by increased 
migration cost.  

 
6. Conclusion and Future Work 

 
In this paper, we study dynamic scheduling in a 

shared distributed environment. We have introduced a 
migration cost model, derived a dynamic scheduling 
algorithm that considers migration costs as a decision 

seconds DSA MCM ETM RS 
1 2395.33 2578.52 2468.12 4174.63
2 494.91 619.49 553.46 526.54 
3 65.83 89.42 81.29 90.82 

linpack  
 

4 21.52 23.60 25.02 76.81 
1 557.78 1359.56 557.81 557.72 
2 57.18 67.45 69.54 92.83 

xlintim
s  
 3 615.97 1489.73 616.15 1466.6 
≤5%  5%-20% 20%-50% >50% 
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factor, and implemented an automatic dynamic 
scheduling system that integrates the model, algorithm, 
and a triggering/monitor subsystem. Experimental 
results show that the model is precise, the scheduling 
algorithm is more appropriate than existing scheduling 
algorithms, and the dynamic scheduling system is 
effective and practical. The proposed dynamic 
scheduling system has a real potential to positively 
impact parallel and distributed computing.  

We have considered worst-case scenarios in our 
analysis and implementation. The Grid environment is 
heterogeneous and shared, and the HPCM migration 
system supports the transfer of runtime, memory, and 
communication states. The analysis and 
implementation can be extended to other less powerful 
migration systems or to dedicated environments. Since 
checkpointing and migration mechanisms differ mostly 
in communication state, the results can be also applied 
to checkpointing systems.   

We have proposed and implemented a prototype of 
the dynamic task scheduling system to reallocate 
processes dynamically. Currently, we select the 
destination machine based on an estimate of the 
completion time of the migrated process. When an 
application consists of multiple processes running 
concurrently on different machines, we need to 
consider the overall application completion time as a 
selection criterion. We plan to extend our current work 
to this more complicated scenario in the future.  
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