
Leveraging Burst Buffer Coordination to
Prevent I/O Interference

Anthony Kougkas∗†, Matthieu Dorier†, Rob Latham†, Rob Ross†, and Xian-He Sun∗
∗Illinois Institute of Technology, Department of Computer Science, Chicago, IL akougkas@hawk.iit.edu, sun@iit.edu

†Argonne National Laboratory, Mathematics and Computer Science Division, Lemont, IL {mdorier, robl, rross}@anl.gov

Abstract—Concurrent accesses to the shared storage resources
in current HPC machines lead to severe performance degradation
caused by I/O contention. In this study, we identify some key
challenges to efficiently handling interleaved data accesses, and we
propose a system-wide solution to optimize global performance.
We implemented and tested several I/O scheduling policies,
including prioritizing specific applications by leveraging burst
buffers to defer the conflicting accesses from another application
and/or directing the requests to different storage servers inside
the parallel file system infrastructure. The results show that we
mitigate the negative effects of interference and optimize the
performance up to 2x depending on the selected I/O policy.

Keywords—I/O Interference; Parallel File Systems; I/O Policies;
I/O Staging; Burst Buffers

I. INTRODUCTION

Large-scale applications already individually suffer from
unmatched computation and storage performance, leading to a
loss of efficiency in I/O-intensive phases. But another problem
appears when several applications compete for access to a
common parallel file system, leading to further degradation
of I/O performance as a result of contention. Most modern
supercomputers have moved from the paradigm of one large
application using the entire machine to one where many smaller
applications run concurrently. In [1], we see that half of the
jobs executed on Argonne’s Intrepid machine were using less
than 2048 cores (i.e. only 1.25% of the entire available cores);
and since many of the same applications were ported to its
successor, Mira, we suspect the pattern on this new system to
be no different. Consequently, multiple applications commonly
run concurrently and share the underlying storage system. This
practice, however, can severely degrade the I/O bandwidth
that each application experiences. This phenomenon, called
cross-application I/O interference, stems from diverse sources:
network contention at the level of each storage server, poor
scheduling decisions within the storage service (i.e., parallel
file system) leading to different servers servicing requests
from distinct applications in a different order, or additional
disk-head movements when interleaved requests from distinct
applications reach the same storage device.

The use of burst buffers in HPC systems [2], [3] has
emerged with the initial goal to relieve the bandwidth burden on
parallel file systems by providing an extra layer of low-latency
storage between compute and storage resources. The Cori
system at the National Energy Research Scientific Computing
Center (NERSC) [4], uses CRAY’s Datawarp technology [5].
The Los Alamos National Laboratory Trinity supercomputer
[6] will also use burst buffers with a 3.7 PB capacity and 3.3
TB/s bandwidth. Intel has also discussed the use of burst buffer
nodes under the new Fast Forward storage framework [7] for
future HPC systems. One common characteristic in all these

use cases is to increase the total I/O bandwidth available to
the applications and optimize the input/output operations per
second (i.e., IOPS). In addition to serving as a pure storage
option, the notion of a burst buffer can make storage solutions
smarter and more active.

In this paper, we address the problem of cross-application
I/O interference by coordinating burst buffer access to prevent
such I/O degradation. We propose several ways to mitigate the
effects of interference by preventing applications from access-
ing the same file system resources at the same time. We build
on our previous work leveraging cross-application coordination
[1] and propose three new strategies to mitigate interference.
Two of these strategies are based on the use of burst buffers
to delay actual accesses to the storage system when multiple
applications are interfering. The third strategy dynamically par-
titions the parallel file system’s resources in order to dedicate
distinct subsets of storage servers to each application when
contention is detected. In summary, the contributions of this
paper are: (i) we propose the coordination of burst buffer access
to manage concurrent accesses to the underlying storage system
(Section III); (ii) we design and implement several strategies to
mitigate the effects of I/O interference (Section IV); (iii) and
we evaluate these strategies with several microbenchmarks and
show their results (Section V). Section VI presents related
work, and Section VII summarizes our conclusions and briefly
discusses future work.

II. BACKGROUND AND MOTIVATION

A. I/O Interference
Supercomputers generally are designed for maximum com-

puting power to solve a small number of large, tightly-coupled
and compute-intensive problems. While computing and net-
work resources can be shared effectively by state-of-the-art
job schedulers, the same cannot be said about the storage
resources (i.e., shared parallel file systems). In fact, [8] and
[9] suggest that I/O congestion, within and across independent
jobs, is one of the main problems for future HPC machines.
A significant source of performance degradation seen on the
Jaguar supercomputer at Oak Ridge National Laboratory was
identified as concurrent applications sharing the parallel file
system [10].

The I/O performance degradation is caused by contention
for resources. These resources include network hardware used
for I/O requests, file system servers that are responsible for
metadata operations and other I/O requests, the servers that are
responsible for committing the I/O requests to the underlying
storage devices, and the storage media itself, as well as virtual
resources such as locks that are used to manage distributed
accesses [11], [12]. In this study we focus on the file system
level. The main cause of interference in this level is how

the parallel file system services I/O requests from multiple
applications (i.e., the internal scheduler).

Prior work addressed this contention through storage server
coordination, where the basic idea is to serve one application
at a time in order to reduce the completion time and, in the
meantime, maintain the server utilization and fairness [13].
However, applications still experience a bandwidth reduction
since the storage resource is still shared. Other work suggested
solutions in the file system scheduler [14], [15], [16]. How-
ever, those solutions need to be integrated into the parallel
file system’s server code. In this paper, we propose that by
preventing applications from concurrently accessing the same
storage resources, we can exploit the full potential of existing
parallel file systems and allow the system to provide higher
global I/O throughput across multiple applications.

B. Burst Buffers
Scientific applications often demonstrate bursty I/O be-

havior [17], [18]. Typically in HPC workloads intense, short
phases of I/O activities, such as checkpointing and restart,
periodically occur between longer computation phases [19],
[20]. New storage system designs that incorporate non-volatile
burst buffers between the main memory and the disks are of
particular relevance in mitigating such burstiness of I/O [21].

Burst buffers as an intermediate storage tier located be-
tween RAM and spinning disks are designed to help scientific
applications in many ways: improved application reliability
through faster checkpoint-restart, accelerated I/O performance
for small transfers and analysis, fast temporary space for out-
of-core computations and in-transit visualization and analysis
[4]. The most commonly used form of a burst buffer in current
HPC systems is dedicated burst buffer nodes [2], [22]. These
nodes can exist in the I/O forwarding layer or as a distinct
subset of the computing nodes (i.e., not part of the compute
resources but responsible for acting as burst buffer nodes)
or even as entirely different nodes close to the processing
resources (i.e., extra resources if available). A a burst buffer
can also be located inside the main memory of a computing
node or as a fast non-volatile storage device placed in the
computing node (i.e., NVRAM devices, SSD devices, PCM
devices etc). Besides the above, the main functionality of burst
buffers is to quickly absorb I/O requests from the computing
elements and asynchronously issue them to the parallel file
system (PFS), allowing the processing cores to return faster to
computation. In this paper, we propose to use such burst buffers
and, by coordinating them, tackle the I/O interference caused
by multiple applications running concurrently in the system.

III. OUR APPROACH

Burst buffers are placed between the application and the
parallel file system layer. Thus they are naturally suitable to
act as I/O traffic controllers and prevent applications from
accessing the underlying file system resources at the same
time. Burst buffers can achieve this objective by making a
certain application stage the I/O (i.e., buffer the requests) while
another one is accessing the shared parallel file system. We
argue that when concurrent accesses from multiple applications
are detected, we can avoid the undesirable I/O interference
by dynamically changing the data distribution to the PFS,
specifically by using burst buffers to direct I/O traffic to the
underlying resources in a nonconflicting manner.

By coordinating burst buffers, we can provide the much

(a) Strategy 1a (b) Strategy 1b

(c) Strategy 2a (d) Strategy 2b

Fig. 1: Buffer-based coordination strategies. Black arrows cor-
respond to cross-application communications that allow them
to know when to switch their buffering system on or off.

needed global, system-wide view of running applications with
concurrent accesses to the underlying parallel file system
and prevent I/O interference in this level by employing the
following policies.

A. I/O Staging Policies
Previously proposed strategies, which consist of simply

blocking one application for the benefit of the other (first come
- first served order or interruption of the running application),
have the disadvantage of completely blocking one application
while it could actually perform some computation. As an
example, if the I/O phase consists of compressing and writing
chunks of data (as implemented in HDF5), the application
could compress multiple chunks and stage them when there is
contention, instead of blocking on a write operation. Another
example is in the case of collective I/O [23] (in particular two-
phase I/O) where instead of blocking on the first write, multiple
rounds of communication could be completed before writing
is performed.

We introduce two strategies based on I/O staging to pre-
vent or mitigate I/O interference. Figure 1 demonstrates our
approach for the cases where an application has some other
options for making progress instead of waiting for another
application to complete its I/O operations. Using the burst
buffers, an application waiting for access to the file system
can actually stage its I/O operations locally and execute them
later, that is, block only when closing the file or forcing a flush.

The goal for these strategies is to prevent applications
from accessing the underlying storage system at the same time
while allowing them to do something else and not wait for
the resource being blocked. Considering two applications A
and B, where A starts its I/O phase before B, we hold the
following assumptions: (a) applications notify each other in
a timely manner about their respective I/O intentions (e.g.,
entering an I/O phase); (b) applications, when instructed to
start staging their I/O, have some other work to perform (e.g.,

some computation); and (c) while an application is staging, its
I/O consists of write-only phases. We propose two strategies
with two variations each as follows.

Strategy 1a: Application A starts staging its operations as
B enters an I/O-intensive phase. It blocks if necessary and
flushes only after B has completed its I/O phase. It continues
writing after flushing if its operations are not completed. This
strategy is shown in Figure 1(a).

Strategy 1b: Application A starts staging its operations as
B enters an I/O-intensive phase. It then flushes its buffer when
it has no more available work even if B has not completed its
operations yet. This strategy is shown in Figure 1(b).

Strategy 2a: As B starts its I/O phase, it learns that A is
already accessing the file system and therefore starts staging
its I/O requests. It blocks if necessary and flushes only after A
has completed its I/O phase. It continues writing after flushing
if its I/O operations are not completed. This strategy is shown
in Figure 1(c).

Strategy 2b: When B starts its I/O phase, it discovers that
application A is already accessing the file system; therefore, it
starts staging its I/O requests. It flushes the buffers as soon as
it has no more available work, even if A has not completed
its I/O phase. It continues writing if its I/O operations are not
completed. This strategy is shown in Figure 1(d).

We propose these strategies having in mind different classes
of applications where the I/O phase might be time sensitive
(i.e., they cannot wait for some other application to finish) or
where more bursty behavior is present in one of them. The
two different approaches in each strategy, stage and block or
stage and flush, offer greater flexibility to the system in order
to execute concurrent applications and get the maximum I/O
throughput from the PFS.

B. Dynamic Partitioning of PFS
The dynamic partitioning strategy involves partitioning in

space rather than in time. Figure 2 illustrates our approach.
We shift from both applications accessing all available servers
to partitioning the PFS into distinct subsets and directing each
application’s requests to different sets of storage servers. The
intuition behind the benefits of this strategy is that the perfor-
mance of a parallel file system usually does not scale linearly
with the number of storage servers accessed by an application.
Preventing applications from accessing the same set of servers
will prevent interference at the level of storage servers and
their disks, leaving only the network as a potential source of
contention, however a reduced set of storage servers will offer
a lower bandwidth than will the full set. We distinguish two
variations of this strategy.

Strategy 3a: We define a static, predefined partitioning
where both applications access different storage servers from
the beginning until the end of their execution. Even though
fewer storage servers can offer less bandwidth to the appli-
cation, the prevention of I/O interference in the file system
level (i.e., exclusive access to the disks) might be enough to
outperform the use of the entire PFS installation. Splitting
the servers into disjoint sets can be performed according to
several criteria; it depends on the available knowledge of the
application’s I/O needs, scale, priority, and so forth. In this
study, we explored proportional sharing of the available storage
servers according to the dataset size (i.e., total amount of
data) and the application size (i.e., number of MPI processes).
For instance, for 8 available storage servers; consider that

(a) Without partitioning (b) With partitioning

Fig. 2: Partition-based strategy. Instead of accessing all the
storage servers, applications communicate and agree to interact
with nonconflicting subsets of servers.

application A writes 48 MB per process and B writes 16 MB.
For the same number of processes, application A would write
on 6 servers and B on the remaining 2.

Strategy 3b: The second variant is dynamic partitioning
of the file system when interference is detected. Burst buffers
can make intelligent decisions; and, when appropriate (i.e.,
when multiple applications try to access the file system at the
same time), they redirect I/O into separate and distinct subsets
of storage servers for each application. When no contention
exists, applications are exposed to the entire set of available
servers in order to achieve maximum bandwidth. This strategy
is appropriate only for write workloads, since read workloads
are tied to the set of servers where the required data is stored. In
our previous example, consider that application A starts writing
to all 8 servers; when B starts an I/O phase, A directs all its
I/O requests to 6 storage servers and B writes to the remaining
2. After B finishes, A goes back to writing on all 8 servers.

IV. DESIGN AND IMPLEMENTATION

In this section we present our design and implementation
for our proposed solution and how we enable those coordina-
tion strategies through our library.

A. Design Overview
To evaluate the various strategies presented in Section III,

we implemented a userspace buffering system, called BBIO
(Basic Buffered I/O)1 working under the POSIX and LibC
interfaces. BBIO is a library comprising two parts. Its static part
libbbio.a can be linked to any code and provides the user-level
interface to initialize and control buffers. The dynamic part
libbbio posix.so can be preloaded to replace existing POSIX
and LibC functions (such as write and fwrite). Hence, the
application will buffer its I/O only if the dynamic library is
preloaded, making the use of BBIO as simple as setting an
environment variable.

The FILE structure provided by the standard C library
already provides a local memory buffer. Although the user can
control the size of this buffer, the user has no control over when
the program will decide to flush it. In contrast, BBIO allows
the user to control both the size of the buffer allocated to a file
where this buffer is located and the moment the buffer can be
flushed. It can also leverage local storage devices such as SSD
instead of relying on local memory.

1Our implementation is available at https://bitbucket.org/mdorier/bbio.

https://bitbucket.org/mdorier/bbio

B. Interface and API
Our BBIO library presents the following interface to appli-

cation developers.

• BBIO Init(const char* path, size t size): initializes BBIO,
giving it the path to a directory where it can write buffered
data (path to an SSD, for instance). Leaving this path NULL
instructs BBIO to use RAM as storage. The size provided
is the maximum size allowed for a buffer associated with
any single file descriptor. Whenever the buffer is filled or if
a write is issued with a size that cannot fit the buffer, the
buffer automatically resizes if there is available space or is
flushed.

• BBIO Enable(int fd): enables buffering for a particular
file descriptor. By default, buffering is enabled for all files
outside of system directories.

• BBIO Disable(int fd): disables buffering for a particular file
descriptor. If buffering was previously enabled and some data
have been put in the buffer, the buffer is flushed.

• BBIO Flush(int fd): forces a flush on the buffer associated
with the file descriptor.

• BBIO Finalize(): finalizes BBIO. It will flush all the buffers
currently managed.

• BBIO On flush(int fd, BBIO Callback cb): installs a
callback function that will be called before any flush
(whether this flush is triggered manually by BBIO Flush,
BBIO Disable, or BBIO Finalize or automatically when the
buffer is full). The callback will not be called when trying
to flush an empty buffer. The BBIO Callback object must
have the signature void ()(int fd).

Using this interface lets us implement various interference-
avoiding strategies based on cross-application communication.
For example, using BBIO_On_flush can detect some other
application’s I/O traffic, thus preventing the application from
flushing its buffer while another application is accessing the
PFS, and wait for the file system to be available again.

C. Implementation Details
When BBIO captures a POSIX or a LibC function call, it

first checks whether if the referenced file descriptor has a buffer
associated with it. Such a buffer is either an mmap-ed file in
a local disk or an anonymous memory segment. The buffer
associated with a file is not a local copy of this file. Instead,
the local file is a log of the operations to be performed on a
file. For example, a write operation will add an operation
code identifying it, followed by the size of the write and then
a copy of the data. If several contiguous writes are issued,
BBIO combines them by updating the size of the first one and
appending the data of subsequent ones. Because of this log-
structured implementation, BBIO is not yet able to work with
files accessed both in read and write modes. BBIO will still
associate a buffer to files opened in both read and write modes
but will disable it if read operations are issued.

While most parallel file systems provide some ways to
control the distribution policy across servers (stripe size and
number of servers to stripe across), they usually do not provide
a coordinated way to specify which servers should be used
among multiple applications. To simulate such a possibility, we
deployed separate PVFS instances on different sets of storage
servers each, and let each application access its own PVFS
instance.

Fig. 3: Overview of our microbenchmark.

V. EXPERIMENTAL AND EVALUATION RESULTS

A. Methodology
Platform description: All experiments were carried out

on a 65-node SUN Fire Linux-based cluster at the Illinois
Institute of Technology. The computing nodes are Sun Fire
X2200 servers, each with dual 2.3 GHz Opteron quad-core
processors and 8 GB of main memory. A 250 GB hard drive
and an additional PCI-E X4 100 GB SSD are attached to each
node as the storage devices. All 65 nodes are connected with
Gigabit Ethernet. The network topology of the cluster consists
of three groups of nodes connected to three distinct network
switches with adequate capacity (i.e., 22 nodes on a router of
25 Gbits/sec) and a master node. We ran a series of network
benchmarks to investigate the network’s capabilities, and we
found that the Gigabit Ethernet is sufficient to support our
experiments without being a bottleneck. A subset of these
compute nodes on network switch 1 was used to deploy a
PVFS file system [24], and all client processes were dispatched
on switches 2 and 3 simulating a supercomputer infrastructure
with a separate PFS (i.e., all requests to servers go through
the inter-rack network and not through the faster intra-rack
connections).

Software used: The operating system is Ubuntu Server
Edition 12.04, the parallel file system installed is OrangeFS
v2.9.2, and the data distribution policy chosen is the “simple
distribution” [25]. We compiled our code using gcc compiler
version 4.8. The MPI implementation is MPICH 3.1.4. We
developed an IOR-like microbenchmark that starts by split-
ting its set of processes into two separate sets running on
different sets of compute nodes, representing two distinct
applications. Each process writes a series of N requests of
size S contiguously in a file, using POSIX fwrite calls.
Between each request, the processes wait (sleep) a given delay
d representing computation that could occur between requests.
The second group of processes waits a specified amount of time
D before starting its own series of I/O operations while the first
set begins performing I/O. Both applications have a delay d
between each write request. Figure 3 summarizes the behavior
of our microbenchmark. The coordination between applications
in our benchmark is done by using MPI communication. For
example, in strategy 1, to know when B starts its I/O phase, A
posts a nonblocking barrier before beginning its series of I/O
operations. It then checks (MPI_Test) for completion of this
barrier before each write. When B starts its I/O phase, it posts
the matching nonblocking barrier, allowing A to know that B
has started its I/O.

Measurements: For each group of processes acting as a
distinct application, we wrapped all I/O operations between

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 5 10 15 20 25 30 35 40 45 50

In
te

rf
e

re
n

c
e

 f
a

c
to

r

Inter-application delay (D)

delay0
delay250
delay500
delay750

(a) Application A

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 5 10 15 20 25 30 35 40 45 50

In
te

rf
e

re
n

c
e

 f
a

c
to

r

Inter-application delay (D)

delay0
delay250
delay500
delay750

(b) Application B

Fig. 4: Default case with no strategy applied. Interference factor
observed by each application as a function of the delay D (sec)
and for different values of the inter-request delay d (ms).

timing calls (i.e., MPI_Wtime), and we calculated the total
time spent in I/O. We repeated all experiments five times, and
we report the average values. We also leveraged the tools intro-
duced in our previous work [1]: ∆-graphs are plots of a given
performance metric as a function of the interapplication delay
D. We consider only positive values of D (i.e., application B
starts its I/O phase after application A). We also present the
results in terms of an interference factor, which is a slowdown
with respect to the application running without contention (i.e.,
an interference factor of 2 means that the duration of the
write phase has been multiplied by 2). The interference factor
thus is defined as If =

IO timewith interference

IO timealone
We always

measure the duration of an I/O phase as the time between the
moment the file is opened and the moment it is closed; thus
the interrequest delay (N − 1)× d is counted in this duration,
but the interapplication delay D is not.

B. Experimental Results
1) Default case with interference (no strategies): We first

quantify the interference encountered by the applications for
different values of d and as a function of D. In this set of
experiments, two groups of 256 processes write a series of
32 blocks of 1 MB in individual files, leading to 8 GB of
output per application. We do not implement any coordination
strategy; instead, we let the two applications interfere. Figure 4
shows the observed interference factor for applications A (a)
and B (b). We first observe that when a delay is introduced
between I/O requests, the interference factor experienced by
each application is lower than when there is no delay at all.
A second observation is that although the two applications
are identical, the interference factor in both is often larger
than 2 (up to 2.3 here) even when the two I/O phases do
not start at the same time. This shows that the slowdown
produced by interference is larger than what we would expect
from a proportional sharing of resources, thus motivating our
strategies. We also observe that when the applications start
at the same time, the slowdown is significant and cannot be

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 5 10 15 20 25 30 35 40 45 50

In
te

rf
e

re
n

c
e

 f
a

c
to

r

Inter-application delay (D)

Delay0
Delay250
Delay500
Delay750

(a) Application A

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 5 10 15 20 25 30 35 40 45 50

In
te

rf
e

re
n

c
e

 f
a

c
to

r

Inter-application delay (D)

Delay0
Delay250
Delay500
Delay750

(b) Application B

Fig. 5: Strategy 1a. Interference factor observed by each
application as a function of the delay D(sec).

ignored; on the other hand, when the inter-application delay
is larger than 25-30 seconds, the interference factor reduces
because the first application is almost finished when the second
starts accessing the PFS.

2) I/O staging-based strategies: We evaluated our two I/O
staging-based strategies with their two respective variations
presented in Section III-A using the same configuration as
above.

Results with Strategy 1a: Figure 5 presents the results
where A buffers when B starts writing. Application A flushes
and continues only after B is finished. This strategy is advanta-
geous to B, whose observed interference factor is around 1 (no
slowdown) since it enjoys exclusive access to the PFS. From
A’s perspective, staging its requests instead of interfering with
B leads to a lower interference factor, between 1.2 and 1.8,
instead of 1.2 to 2.2 in the default case with interference. For
B there is no slowdown (since it is prioritized), and for A the
interference factor is lower because burst buffers allow it to
continue executing until it is absolutely necessary to block and
wait for B to finish.

Results with Strategy 1b: Figure 6 depicts the results
of the other variation, where A is buffering when it detects
that B is writing; but instead of blocking waiting for B to
finish, it flushes and continues. The intuition for this variation
of the strategy is that we could tolerate some interference to
happen in both applications. It lies somewhere between the
previous variation of the same strategy and the pure blocking
of A until B finishes. For A the behavior is similar to that
described earlier, with the difference that interference is less
apparent as D increases, because A is allowed to flush the
buffer and need not block waiting for B to finish. Specifically
for interapplication delay less than 30 seconds, the interference
factor for A is kept around 1.5 (lower than the default but
slightly lower than strategy 1a) and drops to 1.2 after that.
Application B experiences an interference factor of around 1.2,
slightly higher than before since the flushing of A happens
earlier and forces B to lose the exclusive access to the PFS.

Results with Strategy 2a: This strategy is similar to
Strategy 1a but with priority reversed. Here, A writes having
exclusive access to the PFS, and B upon entering its I/O
phase starts staging the requests until it blocks waiting for
A to finish. Application B flushes the buffers and continues
writing only after A has finished its I/O operations. Figure 7
shows the results. As expected, A demonstrates an interference
factor close to 1, while B starts with around 1.5-1.6 for
interapplication delay 0 seconds (i.e., when both applications

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 5 10 15 20 25 30 35 40 45 50

In
te

rf
e

re
n

c
e

 f
a

c
to

r

Inter-application delay (D)

Delay0
Delay250
Delay500
Delay750

(a) Application A

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 5 10 15 20 25 30 35 40 45 50

In
te

rf
e

re
n

c
e

 f
a

c
to

r

Inter-application delay (D)

Delay0
Delay250
Delay500
Delay750

(b) Application B

Fig. 6: Strategy 1b. Interference factor observed by each
application as a function of the delay D(sec), when A buffers
its operations and flushes even if B has not finished.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 5 10 15 20 25 30 35 40 45 50

In
te

rf
e

re
n

c
e

 f
a

c
to

r

Inter-application delay (D)

Delay0
Delay250
Delay500
Delay750

(a) Application A

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 5 10 15 20 25 30 35 40 45 50

In
te

rf
e

re
n

c
e

 f
a

c
to

r

Inter-application delay (D)

Delay0
Delay250
Delay500
Delay750

(b) Application B

Fig. 7: Strategy 2a. Interference factor observed by each
application as a function of the delay D(sec).

start at the same time) and drops close to 1 for delays larger
than 30 seconds, approximately the time needed to complete
the I/O phase.

Results with Strategy 2b: As with Strategy 1b, in this case
B stages its operations when it enters its I/O phase because A
is writing, however B flushes the buffers even if application A
is not finished yet. Figure 8 demonstrates the results for both
applications. Application A performs stably with interference
factor around 1.2 for all values of D. Application B, on the
other hand, when it starts at the same time as A, observes an
interference factor of 1.6, which gradually decreases as delay
D increases. One observation is that this decrease comes with
higher interapplication D than Strategy 2a has, because the
flushing of the buffers, before A has finished, increases the
interference for both applications.

3) Partition-based Strategies: To evaluate the partitioning
strategy, we conducted three tests with four configurations each
as follows. The first test considers two applications A and B,
identical in scale (i.e., same processes) and workload (i.e., data
per process), and is referred as 50-50% in the figures. The
proportional split of 8 available storage servers is in half for
this test case. The second test considers two applications with
the same scale, but A writes three times more data per process
than does B, and is referred as 75-25% D in the figures. In the
third test A has three times more processes than does B, but
writes the same data per process and is referred as 75-25% S
in the figures. For those two test cases the proportional split is
6 servers for A and the remaining 2 for B. As we presented
in Section III-B, we have two cases for the partition-based
strategy; static and dynamic partitioning of the PFS, referred
to as Strategy 3a and 3b, respectively.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 5 10 15 20 25 30 35 40 45 50

In
te

rf
e

re
n

c
e

 f
a

c
to

r

Inter-application delay (D)

Delay0
Delay250
Delay500
Delay750

(a) Application A

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 5 10 15 20 25 30 35 40 45 50

In
te

rf
e

re
n

c
e

 f
a

c
to

r

Inter-application delay (D)

Delay0
Delay250
Delay500
Delay750

(b) Application B

Fig. 8: Strategy 2b. Interference factor observed by each
application as a function of the delay D(sec), when B buffers
its operations and flushes even if A has not finished.

 0

 50

 100

 150

 200

 250

50%-50% 75%-25% D 75%-25% S

B
a

n
d

w
id

th
 (

M
B

/s
)

PFS partitioning

A (A alone, all servers)
A (A alone, proportional)

A (A+B, all servers)
A (A+B, proportional)

(a) Application A

 0

 50

 100

 150

 200

 250

 300

 350

50%-50% 75%-25% D 75%-25% S

B
a

n
d

w
id

th
 (

M
B

/s
)

PFS partitioning

B (B alone, all servers)
B (B alone, proportional)

B (A+B, all servers)
B (A+B, proportional)

(b) Application B

Fig. 9: Strategy 3a. Throughput observed by the applications
when writing alone and in contention to all available servers
or to proportional number of servers.

Results with Strategy 3a (static partitioning): The results
are reported in Figure 9. We notice that when dividing by 2 the
number of servers that an application accesses, the throughput
observed by the application is decreased to about 75% of the
throughput observed with all the servers, instead of 50%. When
two applications concurrently access all 8 servers however, the
slowdown is more than 2×. By partitioning the file system
and letting each application access its own set of servers, we
achieve an expected result: the application’s throughput lies
somewhere between the throughput observed with contention
and the throughput observed with proportional servers for an
individual application. This shows that by partitioning the file
system so that concurrent applications do not access the same
set of servers, we are able to mitigate the I/O interference
and increase the I/O performance up to 40% relative to the
default case where applications interfere while sharing the
same storage resources. Note that each application, from the
beginning till the end of its execution, has exclusive access to
a distinct subset of servers.

Results with Strategy 3b (dynamic partitioning): In this
experiment, we modified our benchmark to simulate the dy-
namic partitioning of the parallel file system’s storage servers.
There are three different installations of PVFS: one full deploy-
ment on all 8 storage servers, and two deployments with the
proportional split. For instance, for the identical applications
scenario where we split the PFS in half, two new deployments
of PVFS on 4 storage servers each were used. Application A
opens two files, one on the full and one on the proportional
installation of the PVFS. Application B opens a file on the other
proportional deployment. When A starts executing, it uses the

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 5 10 15 20 25 30 35 40 45 50

B
a

n
d

w
id

th
 (

M
B

/s
)

Inter-application delay (D)

No Interference on 8 servers
No Interference on 4 servers

With Interference on 8 servers
With Interference on 4 servers

Dynamic Partition

(a) Application A

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 5 10 15 20 25 30 35 40 45 50

B
a

n
d

w
id

th
 (

M
B

/s
)

Inter-application delay (D)

No Interference on 8 servers
No Interference on 4 servers

With Interference on 8 servers
With Interference on 4 servers

Dynamic Partition

(b) Application B

Fig. 10: Strategy 3b. Throughput observed by the applications
when writing alone and in contention to all available servers
or to proportional number of servers.

full installation on 8 servers. Upon the arrival of B, A redirects
all its conflicted I/O requests to the proportional deployment.
Thus no interference occurs since the applications are accessing
a different set of servers. Once B finishes, A goes back to using
all 8 servers.

Figure 10 demonstrates this dynamic partitioning strategy.
The results are expressed in terms of bandwidth (MB/s). We
can see that when both applications start at the same time in the
case of interfering (i.e., blue and purple lines), the performance
is around 70-80 MB/s, and it increases as the interapplication
delay D increases (i.e., interference is less). After 30 seconds
of delay D, there is no more interference since A has finished
its operations and the bandwidth reaches maximum values. The
dynamic partitioning strategy offers application A a bandwidth
of 123 MB/s at delay 0, an increase of 75% with respect
to the default case with interference. Bandwidth continues to
increase with D since A is taking advantage of a full 8-
server PFS deployment until it is forced, when B enters its
I/O phase, to use the smaller 4-server PFS resource. On the
other hand, B experiences stable performance since it always
operates on a separate set of 4 servers, representing applications
with smaller I/O bursts. We conducted the same dynamic
partitioning strategy for the case 75-25% on data size and job
size, and the results are similar. Because of space limitation,
however, we do not present the results here. We note that, this
partitioning strategy should be selected based on information
on the applications’ scale, I/O patterns, and the scalability of
the file system.

4) Real Scientific Applications Workloads: To evaluate our
strategies with real workloads we used three scientific ap-
plications, CM1 [26], Anonymous Application 1 and 2 by
Los Alamos National Lab (referred to as LANL App1 and
LANL App2) [27]. These applications are real-world codes
that run on current supercomputers (for instance CM1 has been
used on NCSI’s Kraken and NCSA’s BlueWaters). All of them
use the POSIX I/O interface and follow the one-file per process
logic for the write operations. Their workload comprises mostly
by the check-pointing behavior they exhibit (i.e., periodically
write their progress to the disk).

For the experiments in this paper, we created a workload
generator that takes the I/O trace as an input and replays all
the operations to the parallel file system. The applications are
run on 256 cores on the same testbed. Since the I/O behavior
is repetitive, we isolated the I/O access pattern from the traces
for only one checkpoint phase and fed this to our workload
generator to study the I/O interference. This means that for

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 5 10 15 20 25 30 35 40 45 50

In
te

rf
e

re
n

c
e

 f
a

c
to

r

Inter-application delay (D)

Interference with LANL_App2
Strategy 1
Strategy 2
Strategy 3

(a) LANL App1 - LANL App2

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 5 10 15 20 25 30 35 40 45 50

In
te

rf
e

re
n

c
e

 f
a

c
to

r

Inter-application delay (D)

Interference with CM1
Strategy 1
Strategy 2
Strategy 3

(b) LANL App1 - CM1

Fig. 11: Interference factor observed by LANL App1 when
interfering with LANL App2 and CM1 as a function of the
delay D(sec).

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30 35 40 45 50

In
te

rf
e

re
n

c
e

 f
a

c
to

r

Inter-application delay (D)

Interference with LANL_App1
Strategy 1
Strategy 2
Strategy 3

(a) CM1 - LANL App1

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30 35 40 45 50

In
te

rf
e

re
n

c
e

 f
a

c
to

r

Inter-application delay (D)

Interference with LANL_App2
Strategy 1
Strategy 2
Strategy 3

(b) CM1 - LANL App2

Fig. 12: Interference factor observed by CM1 when interfering
with LANL App1 and LANL App2 as a function of the delay
D(sec).

CM1 each process writes 52 MB, and for LANL App1 and
LANL App2 each process writes 50 MB. The rest of the tests
are similar to the ones presented previously.

Figure 11 shows the slowdown experienced by
LANL App1 (expressed in interference factor). In figure
11(a), when LANL App1 executes at the same time with
LANL App2 the execution time is 2.2 times higher compared
to when the applications execute with no interference. Strategy
1 prioritizes LANL App2 but also allows LANL App1 to
lower the interference factor to 1.9. On the other hand, strategy
2 offers LANL App1 exclusive access to the PFS thus there
is no slowdown at all. Finally, strategy 3 forces the two
concurrent apps to share the PFS in half and the results are
similar as before. Note that we used dynamic partitioning for
this test. In figure 11(b), LANL App1 interferes with CM1
and the results are similar.

In Figure 12 (a) and (b), we see the results for CM1. All
three strategies help alleviate the negative impact of the I/O
interference in the performance of the application. We notice a
slightly lower interference factor when CM1 runs at the same
time with LANL App1 and LANL App2 mostly due to the
different access patterns. However, the trend is the same and by
using our proposed strategies one can mitigate the performance
slowdown.

C. Scaling of Our Strategies
In this subsection, we first present how concurrent ap-

plications affect each others performance. By increasing the
number of concurrent instances, we see that the execution
time increases dramatically. In the following tests, we run

multiple instances of the same applications with the exact
same parameters to investigate the relationship between the
number of concurrent instances and the increase in the overall
execution time (an interference factor of 3 means three times
higher execution time). We used our benchmark and the three
scientific applications to perform the following test. We varied
the number of concurrent instances and measured the overall
execution time. Due to the limitations of our testbed, we used
80 processes per instance (320 processes in total when running
four instances). For example, we first ran one instance of our
benchmark and measured the execution time. We then ran it
again but this time interfering with one exact same instance,
and then with two same instances and so on. In figure 13,
we see the results. The slowdown is significant even with
only two concurrent instances with interference factor around
2.4 and the situation gets worse with three and four where
the interference factor reached 3.9. This shows that there is
great potential to optimize performance by mitigating the I/O
interference between concurrent applications.

We achieved this performance optimization by using our
proposed solution. We can utilize our strategies one by one as
is, or we can use a combination of all three strategies to achieve
even better results. We distinguish some different scenarios. For
strategies 1 and 2 burst buffers are heavily used to buffer I/O
requests, and thus there might be a situation where all of the
burst buffers would want to flush the data at the same time.
This would create a new contention to the PFS and the benefits
of using the burst buffers would be possibly eliminated. To
alleviate this issue, we propose three heuristics to coordinate
the flushing of the buffers. The first one is token-based where
each app flushes the data from its burst buffers to the PFS
if it holds the token. Upon completion, it simply passes the
token to the next application. The second heuristic we propose
is based on a time-window. In order to avoid ”starving” an
application by waiting for the token, we allocate a time-window
in a round robin fashion to each application that can use it to
flush data to the PFS. The third heuristic is a priority-based
flushing of the buffers. This allows the system administration to
assign the priority according to the needs. Thus, BBIO offers,
through coordination of the burst buffers, a solution to the
interference problem. Our third strategy is able to entirely avoid
contention by efficiently sharing the available storage servers
but it cannot scale to a large number of concurrent applications.
A combination of all three strategies is likely to offer an overall
efficient solution.

Consider the following scenario. App A is starting and then
App B joins the system. We can utilize strategy 3 and solve
the interference by sharing the servers. After a while, App C
is also joining. Instead of further dividing the available storage
servers we use either one of the other two strategies. Thus, App
C uses the burst buffers to divert the I/O traffic from the PFS.
When App A finishes, storage servers become available to App
C again which flushes the buffers and continues normally.

In Figure 14 we report the execution time for all appli-
cations that run concurrently. The delay between applications
was set to 0 and we employed our strategies in a first-come
first-server fashion. Strategy 1 and 2 are somewhat mirroring
the effect of prioritizing a certain application. For strategy 3,
App A initially shares the 8 available servers with App B and
then App B share its 4 servers with App C in half. Since the
applications are exactly the same in terms of size and workload
and due the limitation of space we do not present results from

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4

In
te

rf
e
re

n
c
e
 f
a
c
to

r

Number of concurrent instances of the same application

Benchmark
LANL_App1
LANL_App2

CM1

Fig. 13: Slowdown expressed in interference factor due to
concurrent instances of the same application.

 0

 10

 20

 30

 40

 50

 60

 70

 80

App A App B App C
E

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

No interference
With Interference

Strategy 1
Strategy 2
Strategy 3

Fig. 14: Execution time (in seconds) for App A, App B and App
C when running concurrently with each other. All strategies are
activated in a FCFS manner.

all the proposed heuristics on when to flush the buffers.

D. Benefits and Limitations of Buffering
During our experiments we noticed an effect taking place

in certain test cases. Figure 15 shows the performance of
Application A for the following test: A is writing with a 750
ms delay between each I/O request (simulating a computa-
tion/communication pattern), and B is writing with no delays
in between each I/O request. As a base case we include the
test where both applications are writing with 0 delay between
each I/O operation. When A is running alone with delay 0 it
achieves 170 MB/s bandwidth and for delay 750 ms, 162 MB/s.
When interfering with B, those values become 75 MB/s and
90 MB/s, respectively. By turning on the buffering system, we
would intuitively expect a boost in performance. For delay 0, A
achieves 96 MB/s bandwidth, which is 20% better compared
with the interference case with buffering off. For delay 750
ms however, application A experiences a bandwidth of 87
MB/s, which is slightly lower than that with buffering off.
Additionally, the interference factor between delay 0 is higher
than the case with delay 750 ms.

This behavior is further examined and analyzed as follows.
We investigated the internal behavior of every process inside
each application. We focus on one application. The test com-
prises our microbenchmark where each process is writing 1
MB of data 32 times with a delay between each I/O operation.
In Figure 16 we can see the duration of each I/O request
for some randomly selected processes during our tests. When

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Delay 0 Delay 750

B
a
n
d
w

id
th

 (
M

B
/s

)

Delay between each I/O request(ms)

No interference
Interference (Buffer OFF)
Interference (Buffer ON)

Fig. 15: Throughput observed within one application when
buffering is turned on and off. Different workloads representing
an I/O burst phase (delay 0) and a computation-I/O intensive
alternating (delay 750).

all processes are writing at the same time with no delay
between each I/O request, we see that the duration of those
I/O operations is longer because of the interference. As the
delay between each I/O request increases (i.e. 250 ms, 500 ms,
750 ms), we see a decrease on the duration of each request,
a self-stabilizing effect where the computation/communication
phase of one process might allow the I/O phase of another one
to complete faster. Thus, turning on the buffer and flushing it
at some later point make all processes of a single application
interfere internally with one another. Hence, this solution is
worse than allowing the interference with a second application
in the first place. Therefore, counterintuitively, staging the I/O
of one application to allow another one to exclusively access
the shared storage resource and then flushing all the buffers
from the delayed application at the same time might actually
hurt the overall performance and highly depends on the access
patterns the applications have.

VI. RELATED WORK

Many research studies have tried to address the I/O inter-
ference issue by scheduling I/O requests at the PFS level. In
the network request scheduler presented by Qian et al. [28],
requests embed deadlines and the targeted object’s identifier.
Song et al. [13] achieve the same result with applications’ ids
instead of objects’ ids. AGIOS, proposed by Boiteau et al. [15],
also guides the file system’s scheduler’s decision through
additional information that future I/O requests predicted thanks
to traces. Zhang et al. [12] leverage a “reuse distance” to
state whether it is worthwhile for a data server to wait for an
application’s new I/O request or to service other applications
requests. Lebre et al. [14] provide multi-applications scheduling
with the goal of better aggregating and reordering requests,
while trying to maintain fairness across applications. Gainaru et
al. [16] propose scheduling techniques to optimize the system’s
I/O efficiency under congestion. In [29], an efficient distributed
message queue was used to increase the latency and minimize
the interference in the network.

Closer to our work, Batsakis et al. [30] propose a system in
which clients price their nonblocking requests depending on the
ability to delay the requests, and an auction mechanism chooses
which requests should be serviced first. In a way, the ability to

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

D
u

ra
ti

o
n

(s
e

c
)

Rank

(a) Delay 0 ms

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

D
u

ra
ti

o
n

(s
e
c
)

Rank

(b) Delay 250 ms

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

D
u

ra
ti

o
n

(s
e
c
)

Rank

(c) Delay 500 ms

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

D
u

ra
ti

o
n

(s
e
c
)

Rank

(d) Delay 750 ms

Fig. 16: Timelines per process with delays between each I/O
request.

delay a request is also present in our proposed Strategies 1 and
2, where requests can be staged in a burst buffer to allow the
computation to continue. But our proposed strategies work with
any type of request, whereas theirs is tied to nonblocking re-
quests only. Tanimura et al. [31] propose to reserve throughput
from the storage system. This approach can be compared with
our third strategy based on file system partitioning. However,
this reservation is made at job submission in their approach,
whereas ours leverages communications between applications
in order to understand when and how the file system’s resources
should be partitioned.

In a recently published work [32], an I/O orchestration
framework named TRIO is proposed that also coordinates the
timing when burst buffers are moving the checkpointing data to
the PFS. By controlling the flushing orders among concurrent
burst buffers TRIO tries to alleviate the contention on storage
servers. However, it does not consider the application’s I/O
access patterns, and an alternating computation-I/O behavior is
not taken advantage of. TRIO focuses more on when the burst
buffers will spill the data to the PFS, whereas we leverage
the existence of burst buffers to act as a traffic controller and
prevent I/O interference while allowing applications to do other
usefull tasks. We also provide a comprehensive set of strategies
to mitigate the negative effects of I/O interference, and we
propose other ways to use burst buffer coordination (dynamic
partitioning of PFS).

VII. CONCLUSION

Cross-application I/O interference is becoming an important
issue as we move toward exascale. This issue has initiated
unconventional approaches in which independent applications

can learn each other’s behavior and coordinate their accesses
to the shared, parallel file system. In this paper, we have
proposed three strategies that applications can employ to better
coordinate their accesses. Two rely on burst buffers and on the
fact that instead of blocking, applications can stage their I/O
requests and reissue them later, when the file system is more
available. The third strategy ensures that the applications access
distinct sets of storage servers. We have shown the potential of
our three strategies with a microbenchmark; the results show
performance improvements up to 2x.

As future work, we plan to move from the cross-application
coordination scheme, where applications communicate their
I/O behavior to each other, to a system wide coordination
scheme where a global, centralized entity is responsible for
managing all concurrent applications’ accesses to the shared
underlying storage resources using our strategies. In this direc-
tion, we plan to equip this entity with I/O prediction capabil-
ities, using the Omnisc’IO [33] approach, and thus select the
best coordination strategy.

ACKNOWLEDGMENT

This material was based upon work supported by the U.S.
Department of Energy, Office of Science, under Contract No.
DE-AC02-06CH11357.

REFERENCES
[1] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim, “CALCioM:

Mitigating I/O interference in HPC systems through cross-application
coordination,” in Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS ’14), 2014.

[2] G. Grider, “Exascale FSIO,” https://institute.lanl.
gov/hec-fsio/conferences/2010/presentations/day1/
Grider-HECFSIO-2010-ExascaleEconomics.pdf, LANL.

[3] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn, “On the role of burst buffers in leadership-class storage
systems,” in Mass Storage Systems and Technologies (MSST), 2012 IEEE
28th Symposium on. IEEE, 2012, pp. 1–11.

[4] “NERSC’s Cori burst buffers,” https://www.nersc.gov/users/
computational-systems/cori/burst-buffer/.

[5] “CRAY’s datawarp technology,” http://www.cray.com/sites/default/files/
resources/CrayXC40-DataWarp.pdf.

[6] “LANL’s Trinity specs,” http://www.lanl.gov/projects/trinity/
specifications.php.

[7] Intel, “Extreme-Scale Computing R&D Fast Forward Storage and I/O
Final Report,” Intel, The HDF Group, CRAY, EMC, Tech. Rep., June
2014.

[8] Y. Hashimoto and K. Aida, “Evaluation of Performance Degradation
in HPC Applications with VM Consolidation,” in Networking and
Computing (ICNC), 2012 Third International Conference on. IEEE,
2012, pp. 273–277.

[9] J. Lofstead and R. Ross, “Insights for Exascale IO APIs from Building
a Petascale IO API,” in High Performance Computing, Networking,
Storage and Analysis (SC), 2013 International Conference for. IEEE,
2013, pp. 1–12.

[10] B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and
N. Podhorszki, “Characterizing Output Bottlenecks in a Supercomputer,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE Computer Society
Press, 2012, p. 8.

[11] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf, “Managing variability in the io performance
of petascale storage systems,” in Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society, 2010, pp. 1–12.

[12] X. Zhang, K. Davis, and S. Jiang, “IOrchestrator: improving the per-
formance of multi-node I/O Systems via inter-server coordination,” in
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, 2010.

[13] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang, “Server-Side
I/O Coordination for Parallel File Systems,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2011, p. 17.

[14] A. Lebre, G. Huard, Y. Denneulin, and P. Sowa, “I/O Scheduling Service
for Multi-Application Clusters,” in IEEE International Conference on
Cluster Computing, Sept 2006.

[15] F. Zanon Boito, R. Kassick, P. Navaux, and Y. Denneulin, “AGIOS:
Application-Guided I/O Scheduling for Parallel File Systems,” in Pro-
ceedings of the International Conference on Parallel and Distributed
Systems (ICPADS ’13), Dec 2013.

[16] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir,
“Scheduling the I/O of HPC Applications Under Congestion,” in 2015
IEEE International Parallel and Distributed Processing Symposium,
IPDPS 2015, Hyderabad, India, May 25-29, 2015, 2015.

[17] N. Mi, A. Riska, Q. Zhang, E. Smirni, and E. Riedel, “Efficient
management of idleness in storage systems,” ACM Transactions on
Storage (TOS), vol. 5, no. 2, p. 4, 2009.

[18] Y. Kim, R. Gunasekaran, G. M. Shipman, D. Dillow, Z. Zhang, B. W.
Settlemyer et al., “Workload characterization of a leadership class
storage cluster,” in Petascale Data Storage Workshop (PDSW), 2010
5th. IEEE, 2010, pp. 1–5.

[19] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham,
and R. Ross, “Understanding and improving computational science
storage access through continuous characterization,” ACM Transactions
on Storage (TOS), vol. 7, no. 3, p. 8, 2011.

[20] “Leadership Computing Requirements for Computational Science,”
https://www.olcf.ornl.gov/wp-content/%20uploads/2010/03/ORNL%
20TM-2007%2044.pdf.

[21] “Large Memory Appliance/Burst Buffers Use Case,” https://asc.llnl.gov/
CORAL-benchmarks/Large memory use cases llnl.pdf.

[22] D. Brown, P. Messina, D. Keyes, J. Morrison, R. Lucas, J. Shalf,
P. Beckman, R. Brightwell, A. Geist, J. Vetter et al., “Scientific grand
challenges: Crosscutting technologies for computing at the exascale,”
Office of Science, US Department of Energy, February, pp. 2–4, 2010.

[23] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective i/o in
romio,” in Frontiers of Massively Parallel Computation, 1999. Frontiers
’99. The Seventh Symposium on the, 1999.

[24] R. B. Ross, R. Thakur et al., “PVFS: A Parallel File System for
Linux Clusters,” in Proceedings of the 4th annual Linux Showcase and
Conference, 2000.

[25] “PVFS2 data distribution schemes,” http://www.orangefs.org/trac/
orangefs/wiki/Distributions.

[26] G. Bryan, “CM1 code,” http://www2.mmm.ucar.edu/people/bryan/cm1/.
[27] “LANL anonymous applications trace files,” http://institutes.lanl.gov/

plfs/maps/, LANL.
[28] Y. Qian, E. Barton, T. Wang, N. Puntambekar, and A. Dilger, “A

Novel Network Request Scheduler for a Large Scale Storage System,”
Computer Science - Research and Development, vol. 23, 2009.

[29] I. Sadooghi, K. Wang, D. Patel, D. Zhao, T. Li, S. Srivastava, and
I. Raicu, “Fabriq: Leveraging distributed hash tables towards distributed
publish-subscribe message queues,” in 2015 IEEE/ACM 2nd Interna-
tional Symposium on Big Data Computing (BDC). IEEE, 2015, pp.
11–20.

[30] A. Batsakis, R. Burns, A. Kanevsky, J. Lentini, and T. Talpey, “CA-NFS:
a Congestion-Aware Network File System,” in Proceedings of the 7th
conference on File and storage technologies, ser. FAST ’09. Berkeley,
CA, USA: USENIX Association, 2009.

[31] Y. Tanimura, R. Filgueira, I. Kojima, and M. Atkinson, “Poster:
Reservation-Based I/O Performance Guarantee for MPI-IO Applications
Using Shared Storage Systems,” in High Performance Computing,
Networking, Storage and Analysis (SCC), 2012 SC Companion:, 2012.

[32] T. Wang, S. Oral, M. Pritchard, B. Wang, and W. Yu, “Trio: Burst buffer
based i/o orchestration,” in Cluster Computing (CLUSTER), 2015 IEEE
International Conference on. IEEE, 2015, pp. 194–203.

[33] M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross, “Omnisc’IO: A
Grammar-Based Approach to Spatial and Temporal I/O Patterns Pre-
diction,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’14),
2014.

https://institute.lanl.gov/hec-fsio/conferences/2010/presentations/day1/Grider-HECFSIO-2010-ExascaleEconomics.pdf
https://institute.lanl.gov/hec-fsio/conferences/2010/presentations/day1/Grider-HECFSIO-2010-ExascaleEconomics.pdf
https://institute.lanl.gov/hec-fsio/conferences/2010/presentations/day1/Grider-HECFSIO-2010-ExascaleEconomics.pdf
https://www.nersc.gov/users/computational-systems/cori/burst-buffer/
https://www.nersc.gov/users/computational-systems/cori/burst-buffer/
http://www.cray.com/sites/default/files/resources/CrayXC40-DataWarp.pdf
http://www.cray.com/sites/default/files/resources/CrayXC40-DataWarp.pdf
http://www.lanl.gov/projects/trinity/specifications.php
http://www.lanl.gov/projects/trinity/specifications.php
https://www.olcf.ornl.gov/wp-content/%20uploads/2010/03/ORNL%20TM-2007%2044.pdf
https://www.olcf.ornl.gov/wp-content/%20uploads/2010/03/ORNL%20TM-2007%2044.pdf
https://asc.llnl.gov/CORAL-benchmarks/Large_memory_use_cases_llnl.pdf
https://asc.llnl.gov/CORAL-benchmarks/Large_memory_use_cases_llnl.pdf
http://www.orangefs.org/trac/orangefs/wiki/Distributions
http://www.orangefs.org/trac/orangefs/wiki/Distributions
http://www2.mmm.ucar.edu/people/bryan/cm1/
http://institutes.lanl.gov/plfs/maps/
http://institutes.lanl.gov/plfs/maps/

	Introduction
	Background and Motivation
	I/O Interference
	Burst Buffers

	Our Approach
	I/O Staging Policies
	Dynamic Partitioning of PFS

	Design and Implementation
	Design Overview
	Interface and API
	Implementation Details

	Experimental and Evaluation Results
	Methodology
	Experimental Results
	Default case with interference (no strategies)
	I/O staging-based strategies
	Partition-based Strategies
	Real Scientific Applications Workloads

	Scaling of Our Strategies
	Benefits and Limitations of Buffering

	Related Work
	Conclusion
	References

