
Incorporating Data Movement into Grid Task Scheduling 

Xiaoshan He1, Xian-He Sun1 

1Department of Computer Science, Illinois Institute of Technology 
Chicago, Illinois, 60616, USA 
{hexiaos, sun}@iit.edu 

Abstract. Task Scheduling is a critical design issue of distributed computing. 
The emerging Grid computing infrastructure consists of heterogeneous 
resources in widely distributed autonomous domains and makes task scheduling 
even more challenging. Grid considers both static, unmovable hardware and 
moveable, replicable data as computing resources. While intensive research has 
been done on task scheduling on hardware computing resources and on data 
replication protocols, how to incorporate data movement into task scheduling 
seamlessly is unrevealed. We consider data movement as a dimension of task 
scheduling. A dynamic data structure, Data Distance Table (DDT), is proposed 
to provide real-time data distribution and communication information. Based on 
DDT, a data-conscious task scheduling heuristics is introduced to minimize the 
data access delay. A simulated Grid environment is set up to test the efficiency 
of the newly proposed algorithm. Experimental results show that for data 
intensive tasks, the dynamic data-conscious scheduling outperforms the 
conventional Min-Min significantly.  

1   Introduction 

Grid computing provides a seamless access to immerse network resources, such as 
high-performance computers and networks, or otherwise unavailable data files. The 
widely available network resources, however, are geographically distributed, 
heterogeneous, and under autonomous administration domains. Task scheduling is a 
vital issue of Grid computing, and, on the other hand, many technical challenges need 
to be addressed before an efficient task scheduling strategy can be developed. In this 
study, incorporating data movement and replication into task scheduling is proposed. 
Consequently, a light-weighted dynamic adjustable strategy for integrating data 
movement delay with task execution scheduling is introduced. A scheduling heuristic, 
which treats data as one dimension of the quality of service, is derived to address the 
issue of data-conscious task scheduling of Grid computing. 

Intensive research has been conducted in parallel and distributed task scheduling [1, 
2, 3]. Task scheduling can be classified as parallel scheduling, where the tasks may be 
from the same application and have inherent dependence relations, and metatask 
scheduling, where the tasks are independent from each other [4, 5, 6]. Current Grid 
scheduling research has been focusing on metatask scheduling. We will focus on 
metatask scheduling in this study as well. There are two categories of modes of 
metatask: Online mode and batch mode. Online mode schedules a task upon its arrival 



 

whereas batch mode schedules the tasks periodically after a fixed time period. Batch 
mode is a better choice for busy systems. Among various batch mode scheduling 
heuristics, the Min-Min is the most frequently used heuristic. In this work, we 
consider data movement as a factor of QoS requests, and we extend Min-Min to 
integrate the dynamic adjustment of data access cost, thus achieving a better 
scheduling of Grid tasks. 

Data has been recognized as an important resource of Grid computing. Some 
recent works have addressed data movement in task scheduling. Current research is 
developed along two directions: allocate the task to where the data is, and move the 
data to where the task is. Researches on integrating data movement with task 
scheduling seamlessly, however, is rare. Xsufferage [7] considers the data location in 
task scheduling. It finds the “site-level sufferage value” to avoid unnecessary data 
replication. For each task and each site, the function f computes the minimum 
completion times of the task over the hosts in the site. This minimum is called site-
level completion time. For each task, f returns the difference between the second 
minimum and the minimum site-level completion time. The difference is called site-
level sufferage value. Xsufferage allocates task close to data in order to reduce data 
movement, but does not incorporate the data movement into the scheduling.  

Other scheduling heuristics for data-intensive tasks include [8]. [8] tries to 
statistically predict the data request and get data ready before it is called. It schedules 
data movement based on its prediction, and a decoupling strategy is proposed to 
separate data movement scheduling from task scheduling. Within the decoupled 
framework, data movements are operated in a decoupled, asynchronous process on 
the basis of observed data access patterns and load. [8] contributes to data usage 
prediction and moves the data to where the task is, but tries to schedule data and task 
separately.  In this study, we intend to incorporate data movement into task 
scheduling. We use a newly introduced data structure to measure the dynamic data 
movement cost, and integrate this cost into an extended Min-Min scheduling 
heuristics. We dynamically adjust data replica based algorithm to get data ready on 
under-utilized sites, before possible load imbalance occurs.  

The organization of this paper is as follows. In section 2, the Grid scheduling 
model deployed in this study is introduced. Then, a dynamic adjusting strategy for 
moveable resources is proposed in section 3. Section 4 introduces a simulated Grid 
environment. In section 5, the experimental results are presented and discussed. We 
conclude this study in section 6.  

2   The Scheduling Model in Grid 

The Grid considered in this study is composed of a number of non-dedicated hosts 
and each host is composed of several computational resources, which may be 
homogeneous or heterogeneous. To simulate the computational hosts, we represent 
each host with three local parameters for the utilization, arrival rate, and standard 
deviation of service time, respectively. These parameters are the recorded average 
performance of the computing hosts. The host set is the set of available hosts in the 
Grid: 



 

Hosts = {H1, H2, …, Hm} (1) 

Each host in Hosts is composed of the processor sets Pm available in Hm, and the 
data Set Dm available in Hm. 

Hm = Pm ∪ Dm  (2) 

where Dm is the set of all the data sets available in Sm 

U
mhostonisd

nm
n

dD
____

=
 

(3) 

The metatask to be scheduled is composed of a set of independent tasks that is to 
be executed remotely: M = {T1, T2, …, Tl}. For each of those independent tasks Ti, it 
has a set of independent subtasks: Ti = {ti1, ti2, …, tij}. tij denotes the subtask j of task 
Ti.  Iij denotes the input data requested by the subtask j of task Ti. Therefore, the input 
data requested by task i is Ii: 

U
iT

j
iji II

1=

=
 

(4) 

 
A scheduler allocates tasks by selecting the “best” match from a pool of available 

resources. Before moving to the scheduling heuristics, let us first review some terms 
and definitions [5, 6].  

The expected execution time ETij of task ti on machine mj is defined as the amount 
of time taken by mj to execute ti given that mj has no load when ti is assigned. The 
expected completion time CTij of task ti on machine mj is defined as the wall-clock 
time at which mj completes ti (after having finished any previously assigned tasks). 
Let m be the total number of the machines in the H/C suite. Let K be the set 
containing the tasks that will be used in a given test set for evaluating heuristics in the 
study. Let the arrival time of task ti be ai, and the beginning time of ti be bi. From the 
above definitions, CTij = bi + ETij. Let CTi be CTij, where machine j is assigned to 
execute task i. The makespan for the complete schedule is then defined as max{ti∈K} 
(CTi). Makespan is a measure of the throughput of the heterogeneous computing 
system. The objective of Grid scheduling is to minimize the makespan. It is well 
known that the problem of deciding on an optimal assignment of tasks to resources is 
NP-complete. Heuristics are developed to solve the NP-complete problem. In this 
paper, we mount dynamic data adjusting to task scheduling heuristics to achieve 
efficient Grid task scheduling. 

A scheduling hole is defined as an idle period of a host between two busy periods. 
Scheduling holes may be a result of the mismatching of resources and tasks, e.g. the 
idle host is not qualified to execute waiting tasks. For tasks with data requests, a host 
without the requested data has to wait for the qualified tasks, so it may cause idling. 
Meanwhile, tasks that need to access critical data have to wait in the waiting queue to 
access the data, which even more likely lead to scheduling holes. Integrating data 
movement with task scheduling will reduce the scheduling holes and, therefore, 
maximize the host utilization and achieve a better makespan. 



 

3   Dynamic Adjusting Strategy for Moveable Resources 

In Grid task scheduling, we not only are concerned with the availability of those 
hardware static resources, but also with moveable software resources, such as data 
that reside in a host. For this type of the resource, the load imbalance resulted from 
resource constraints could be alleviated by adjusting the resource attributes of the 
hosts. In this section, we intend to investigate those moveable resources, such as data 
replica, as one dimension of QoS. A dynamic adjusting strategy for such problems is 
proposed to address the QoS scheduling in data-intensive applications. 

In a Grid environment, if a data is only statically available in one host, the 
executions of tasks that request the data are restricted to that host. Thus, an 
undesirable congestion brought by data requests from tasks occurs on the host with 
the critical data. To avoid such congestion, we could leverage the data distribution of 
the hosts. We define the data whose replica is requested by tasks as a QoS in the 
system as critical data. The critical data could be replicated to other hosts, so that 
more hosts are able to provide a certain level of QoS. However, we have to be aware 
that the replication of data needs communication cost. A model is proposed to 
implement the scheduling strategy that decides if the replication is worthwhile by 
evaluating if the cost of the communication surpasses the computation delay brought 
by scheduling congestion. We have made the assumption that the replicated data we 
referred to here are the input data that are read-only. Such cases occur in the 
application, such as gene comparison, etc.  

3.1   Data Distance Table 

To make the leverage between communication cost of the data replication and the 
queuing time for the host with data, we have to formulize the information of data 
replica placement of the hosts and the communication cost of each data replication. A 
dynamic data distance table (DDT), is generated to record the information.  

The data distance represents the distance between data copy dn and host Hm. The 
data distance decides the communication cost of replicating data dn to host Hm. Data 
distance is defined as: 

   0                                        if  nd ∈ mD  
{=nmdist           

                       stdtimerep
mktimerep

__
)__min(

           if nd ∉ mD  

 

(5) 

So, if data n is in host m, then distij will be 0. If data n is not in host m, then distij 
will depend on the communication time from host m to the nearest host k that has data 
n. The communication cost of data replication is normalized by a standard 
communication time, which is chose as the shortest path between any two hosts. To 
reflect the real time Grid data distribution, the table is updated once a replication of 
data happens. Therefore, the data replica placement and the communication cost of 
replication are represented by a dynamic data distance table, which may look like: 



 

Table 1. A sample data distance table 

 h1 h2 h3 h4 
d1 0 1.2 2 0 
d2 1.5 0 1.5 3 
d3 0 3 0 1.5 
d4 4 2 2 0 

A row in the table represents a dataset’s distances to each host. A column in the table 
represents the distance of different datasets to a host. The value of each entry distij 
depends on both the replica of data n and host m, and the communication cost of data 
n to host m. 

The DDT not only provides the information of data distribution, but also the real 
time network performance. It enables the calculation of communication cost to be 
independent from the scheduling heuristic, and thus makes the scheduling heuristic 
light-weighted. In the heuristic presented in the next subsection, the replication 
decision is made based on the DDT. DDT is updated periodically based on the data 
distribution, and the network performance. By looking up the DDT, the nearest data 
are located, so that the heuristic is well informed when making data replication 
decision. Hence, a light-weighted data-conscious scheduling heuristic is achieved. 

3.2   A Data-conscious Scheduling Heuristic 

We have to leverage the communication cost of a data replication with the queuing 
time of the task in the host with critical data. Intuitively, a data replication can be 
considered when 1) the communication time can overlap with computing time; and 2) 
the communication time is less than the data access queuing time on the host with 
data. However, we have to consider other factors, such as processing overhead and 
the data update cost.  

If we do not replicate the data, undesirable scheduling holes may exist on the 
receiver hosts due to the data access delay. If we replicate the data at the execution 
time of tasks, the scheduling holes may also appear, resulting from the data 
replication delay. Since the scheduling holes could be filled by executing tasks that do 
not need the critical data, the detriment brought by scheduling holes varies in different 
situations. So it is necessary to make a tradeoff between the detriment brought by 
scheduling holes and computation time gain. 

However, if the extra copy of the data is created, extra communication cost will be 
paid for the data replication. The extra communication cost includes the notification 
of the modification and another round of sending data. A straightforward way to 
compromise is to compare the two makespan brought by scheduling with and without 
data replication. If the scheduling with data replication results in a smaller makespan, 
we replicate the critical data. Otherwise, we do not replicate. 

In our heuristics, the replication of datasets should take place when replication of 
some datasets could bring a shorter makespan of the metatask. The source host of the 
dataset to be replicated should be an over-loaded host, a host that is queued while 
scheduling holes exist at other hosts due to the queuing delay. We select a threshold 
of the queue to decide the time to replicate. Here in our algorithm, we select the 
threshold as 0. This means we will test to see if we need replication once there are 



 

tasks in the queue. As the complexity of the algorithm is low, we trade the 
computation cost of scheduling heuristic for less cost on waiting for the data. 

Based on these considerations, we propose our data-conscious scheduling heuristic 
in Figure 1, where MCT denotes the Minimum Completion Time of the current 
metatask according to the scheduling. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Fig. 1. Data-conscious Scheduling Heuristic 

In the data-conscious scheduling heuristic, we consider the matching of the data 
request and data replica between the tasks and hosts based on the conventional Min-
Min. Similar to Min-Min, the data-conscious scheduling heuristic computes MCTim, 
the minimum completion times of each task on all the hosts at the start. Then, we get 
the MCT i0 according to the Min-Min heuristic. Instead of selecting the task/host pair, 
we take a test on all the tasks that request data in the metatask: For each task i with 
data request dataj, firstly, compute the MCT’im based on the replication of dataj for all 
the m hosts available using the information provided by dynamic data distance table 
(DDT). Secondly, among the m data replications, algorithm finds the one with the 
minimum completion time MCT’i0. If MCT’i0 is less than the minimum completion 
time before the replication MCTi0, we make the data replication that result in MCT’i0, 
and set it as MCTmin. Otherwise, we do not make the replication. By repeating the 
same process as we described on all the tasks, we get a group of data replications and 
the minimum completion time MCTmin for each task. We schedule the data replication, 
if necessary, and the task/host pair that results in minimum MCTmin. The scheduling 
process will be repeated till all tasks are scheduled. The data-conscious scheduling 
heuristic will be executed at every scheduling event. 

While there are tasks to be scheduled 
For each task i in M but not run yet 
          For all Hm in Hosts 

  Compute MCTim. 
          Endfor 
          MCTi0 = min (MCTim) 
          If subtask tij needs any data dn in set Ii 

  For all Hm in Hosts 
      Compute MCT’im based on copying nearest 
copy of dataj to m by looking up  
      the DDT  
  Endfor 
  MCT’i0 = min (MCT’im) 
  If MCT’i0 < MCTi0  

             Copy dataj from host 1 to host r 
      MCTmin = MCT’i0 
  Else 

             MCTmin = MCTi0 
           Else  
        MCTmin = MCTi0 
Endfor 
Schedule MCTmin 

Endwhile 



 

3.3   A Sample Scenario 

Tables 2 and 3 give a scenario in which the data-conscious scheduling heuristic 
outperforms the Min-Min. It shows the expected execution time of four tasks on two 
hosts. The hosts are assumed to be idle in the beginning. In this particular case, the 
Min-Min heuristic gives a makespan of 11, whereas the data-conscious scheduling 
heuristic gives a makespan of 9. Figures 2 and 3 give a pictorial representation of the 
assignments made for the case in Table 2 and 3. 

Table 2 shows the four tasks with their data requests. The entry of required data 
indicates the data d that is requested by task i. Task 4 does not have data request, so it 
is x. The execution time of the four tasks is assumed to be the same on the two hosts. 
Table 3 shows the data distribution on two hosts. In this case, data 1, 2, 3 initially 
reside in host 1, and data 4 is in host 2. The communication cost of data replication is 
assumed to be 1. 

Table 2. The data request of 4 tasks          Table 3. The data distribution on 2 hosts 

Task Execution Time Required Data
t1 4 1 
t2 5 2 
t3 2 3 
t4 3 x 

  

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Min-min gives a makespan of 11 Fig. 3. Data-conscious scheduling heuristic 
gives a makespan of 9 

4   Implementation Details 

The goal of implementing the simulation model is to demonstrate the efficiency of our 
dynamic adjusting strategy. The model consists of a simulated Grid environment and 
a scheduler that implements different scheduling strategies. The system is illustrated 
in Figure 4. 

Machine Data Hosted 

1 1, 2, 3 

2 4 

m0 

t3 

 
t1 

 
t2 

2 

11 

6 

m1 

t4 

 
t5 

Scheduling
    Holes 

m0 

9 

6  
t1 

t3 

t4 

 
t2 

m1 



 

Simulation 
Agent

Task Submission 
with Poisson 

Distribution arrival 
rate Allocation

Agent

Host 
Queue

Match 
Queue

Task 
Queue

Predicting 
CT

Function

Host 
File

Task Files

 
Fig. 4. The scheduling model in a simulated Grid environment 

Task Attributes. For each task, the attributes of the task include interarrival time, 
number of subtasks, data request, and the workloads of the subtasks. The task arrival 
rate follows the Poisson distribution. The number of the subtasks is generated to 
randomly fall from 1 to 20. The data request is generated according to different 
request ratios. The workloads of the subtasks are generated randomly between 1000 
and 2000.  

Machine Attributes. For each set of machines, the attributes of the machine 
include number of workstations (or computing nodes), replica of the data, and the 
information of each workstation, which includes the utilization, arrival rate, and 
standard deviation of service time. Each data initially has only one copy in the system. 
Data sizes vary from 0 to 5, and 20 to 40 unit sizes in two experiments. The network 
speeds between hosts are set to vary from 0 to 1. 

5   Experimental Results 

5.1   Experiments Overview 

We have developed a simulator to compare the performance of the data-conscious 
scheduling heuristic and the general Min-Min [9] under the same load conditions 
representing a wide variety of system states. In this simulator, we fix the parameters 
of the hosts during all these simulations with four data request and distribution 
scenarios. In addition, we compare the scheduling performance under different 
communication cost of the data replication. The metric of the comparison is the 
makespan of the tasks. 

Based on the analysis above, the experimental evaluation of the scheduling 
algorithm is performed in two parts. In the first part, the data-conscious scheduling 
heuristics and the general Min-Min heuristics will be compared in four data request 
and distribution scenarios, respectively, with smaller data set size, and thus smaller 
communication cost. In the second part, the effect of the scheduling frequency will be 



 

discussed using a larger data size, thus, larger communication cost, which is averagely 
about four times as much as in the first experiment. 

5.2   Host and Task Setup 

As we mentioned before, all configurations about the hosts remain the same during all 
the simulations. The four non-dedicated networks are settled as follows. Each network 
has 20 workstations and the local parameters, such as util, arri and serstd, are 
generated randomly in given scope, such as util is from 0.0 to 1.0, arriving rate is 
from 0.01 to 0.15 and serstd is about 25. This setup makes this Grid non-dedicated 
and heterogeneous. For the data status, we assume there are 60 different data on four 
hosts. Initially, there is only on copy for each data. The distribution of the data on four 
hosts varies in the four scenarios. In scenarios (a) and (b), the distribution of the data 
is uneven. Host 1 has 30 data whereas the host 2, 3, and 4 each has 10 data. In 
scenarios (c) and (d), the data is evenly distributed. All four hosts have 15 data. 

A hundred independent tasks are created based on Poisson distribution. Each task 
has randomly 1-20 subtasks and each subtask has randomly 1000-2000 work demand. 
The running time interval is one time unit. For data request, we assume each task 
requests exactly one data or requests none. The data requests of 100 tasks vary in the 
four scenarios. In scenarios (a) and (c), the data request percentage from tasks is 50%, 
whereas in scenarios (b) and (d), the data request percentage from tasks is 35%. Based 
on the actual world, the four different scenarios simulated are shown in Table 4:  

Table 4. The four scenarios of data request and distribution 

Scenarios Date Request Task % Data Distribution on 
the 4 Hosts 

a 50% 30, 10, 10, 10 
b 35% 30, 10, 10, 10 
c 35% 15, 15, 15, 15 
d 50% 15, 15, 15, 15 

5.3   The comparison based on smaller data size 

For each scenario presented in the previous section, we compare the performance of 
the general Min-Min with the data-conscious scheduling heuristics. For each scenario, 
we create the 100 tasks 100 times independently and get the average makespan by 
two algorithms 100 times. The data size is randomly between 0 to 5 unit sizes. Figure 
5 and Table 5 show the comparison. The data is in unit size.  



 

0

50

100

150

200

250

1

a             b               c               d

M
ak

es
pa

n 
(S

ec
on

ds
)

General QoS
guided
dynamic
adjusting

 
Fig. 5. The comparison based on data size of 0 to 5 unit size 

As shown in Figure 5, for all four scenarios the dynamic adjusting scheduling 
heuristics for data-intensive task outperforms the general Min-Min heuristics. The 
makespan using data-conscious scheduling heuristics can be as much as 46.02% 
shorter than that using the general Min-Min. For scenario (a), where the tasks that 
request the data contribute 50% of the metatask and the data are unevenly distributed, 
the performance gain reaches as high as 38.57%. For scenario (b), where the tasks that 
request data are in lower density (35%), a satisfactory performance gain of 25.46% is 
acquired. For scenario (c), where only 35% of the tasks request data and the data 
distribution becomes even, the performance gain of the data-conscious scheduling 
heuristics is relatively small, i.e., 13.21% better than the general Min-Min. Finally, in 
scenario (d), the data request rate of tasks becomes 50% with all data evenly 
distributed on the hosts, and the performance gain is 19.70%. 

5.4   The comparison based on larger data size 

The size of the data plays an important role in the efficiency of the data-conscious 
scheduling heuristics, since the larger the data size is, the larger the communication 
cost is. If the communication cost is too high, we would be less likely to overlap the 
communication of the data by the computation of execution of other tasks.  

In this subsection, we compare the performance of the general Min-Min heuristics 
with the data-conscious scheduling heuristic under different data sizes. The data sizes 
are randomly generated between 20 to 40 unit sizes. For each scenario, we create the 
100 tasks 100 times independently and get the average makespan by two algorithms 
100 times. Table 5 and Figure 6 show the comparison. The data is in unit size.  

0

50

100

150

200

250

1

a                        b                       c                       d

M
ak

es
pa

n 
(S

ec
on

ds
)

General QoS
guided

Dynamic
Adjusting

 
Fig. 6. The comparison based on data size of 20 to 40 unit size 

As shown in Figure 6, for all four scenarios the general Min-Min heuristic is 
outperformed by data-conscious scheduling heuristics. The best performance gain of 



 

the data-conscious scheduling heuristics over general Min-Min can be as much as 
33.20%. For scenario (a), where the tasks that request the data contribute 50% of the 
metatask and the data are unevenly distributed, the performance gain reaches as high 
as 33.20%. For scenario (b), where the tasks that request data are in lower density 
(35%), a satisfactory performance gain of 18.24% is acquired. For scenario (c), where 
only 35% of the tasks request data and the data distribution becomes even, the 
performance gain of the data-conscious scheduling heuristics is relatively small, i.e., 
12.96% better than the general Min-Min. Finally, in scenario (d), the data request rate 
of tasks becomes 50% with all data evenly distributed on the hosts, and the 
performance gain is 13.95%. 

Table 5. The experiment result of the comparison 

Scenarios Gain 
(0-5) 

Gain 
(20-40) 

Date Request 
Task % 

Data 
Distribution on 

the 4 Hosts 
a 38.57% 33.20% 50% 30, 10, 10, 10 
b 25.46% 18.24% 35% 30, 10, 10, 10 
c 13.21% 12.96% 35% 15, 15, 15, 15 
d 19.70% 13.95% 50% 15, 15, 15, 15 

Table 5 shows the performance gain of the comparison. The green parts in the table 
show the performance gains of the four scenarios, according to different data sizes. 
The first column is measured based on the relatively smaller data sizes that are 
randomly between 0 to 5 unit sizes. The second column is measured based on the 
relatively larger data sizes that are between 20 and 40 unit size.  

From the table, we can conclude that our dynamic adjusting heuristics outperforms 
the general Min-Min. Especially, when the data is not evenly distributed, our dynamic 
adjusting strategy greatly reduces the makespan of a metatask. This is because our 
dynamic adjusting strategy can dynamically replicate the data among hosts. Hence, it 
is able to alleviate the load balance caused by the improper distribution data replica. 
Further, the metatask with a larger portion of tasks with data requests will benefit 
more from our dynamic adjusting strategy. The reason is that the denser the tasks with 
data request (constraints), the more likely hosts are to be imbalanced with load. Our 
strategy performs real-time adjusting on the data replica distribution. Therefore, it 
results in better makespan on metatask with larger portion of tasks with data request. 

6   Conclusion 

In this study, we have investigated the scheduling of data-intensive tasks in Grid 
environments. We have first formulized the Grid resources, including static resources, 
as well as the movable resources. Then, we have incorporated data movement into 
Grid task scheduling. The scheduling holes caused by the data access delay have been 
reduced through integrating data movement into the traditional Min-Min scheduling 
heuristics. By replicating the data, a tradeoff has been made between the 
communication cost and load balance of the hosts. The lack of administration-level 
information in a Grid computing environment has been redeemed by the newly 



 

introduced dynamic data distance table (DDT) data structure, which provides the 
sufficient real-time information for the data replication decision making. A dynamic 
adjusting scheduling heuristics has been proposed.  

To verify our scheduling heuristics, a simulation architecture of Grid environment 
has been introduced. The simulation is composed of two parts: the simulation agent 
generates the task and host information, whereas the allocation agent executes the 
scheduling algorithms. We have carried out a series of experiments based on the 
simulation environment. Experimental results show that the new data-conscious 
dynamic adjusting scheduling heuristics outperforms the general Min-Min 
significantly for data intensive application, especially when the critical data are 
unevenly distributed.  

Acknowledgments 
This research was supported in part by national science foundation under NSF grant 
EIA-0130673, ANI-0123930, and by Army Research Office under ARO grant 
DAAD19-01-1-0432. 

References 

1. Buyya, R., Murshed, M., Abramson, D.: A Deadline and Budget Constrained Cost-Time 
Optimization Algorithm for Scheduling Task Farming Applications on Global Grids. 2002 
Intl. Conference on Parallel and Distributed Processing Techniques and Applications 
(PDPTA'02), Las Vegas, Nevada, USA, (2002) 

2. Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for Scheduling 
Parameter Sweep applications in Grid environments. Proceedings of the 9th Heterogeneous 
Computing workshop (HCW'2000) 349-363. 

3. Raman, R., Livny, M., Solomon, M.: Matchmaking: Distributed Resource Management for 
High Throughput Computing. Proceedings of the Seventh IEEE International Symposium 
on High Performance Distributed Computing, July 28-31, 1998, Chicago, IL 

4. T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. I. Reuther, J. P. Robertson, 
M. D. Theys, and B. Yao: A taxonomy for describing matching and scheduling heuristics for 
mixed-machine heterogeneous computing systems. IEEE Workshop on Advances in Parallel 
and Distributed Systems (1998) 330-335. 

5. M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. Freund, ``Dynamic mapping of a 
class of independent tasks onto heterogeneous computing systems,'' 8th IEEE 
Heterogeneous Computing Workshop (HCW '99), San Juan, Puerto Rico (1999) 30-44 

6. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems, Prentice Hall, Englewood Cliffs, 
NJ (1995) 

7. Henri Casanova, Graziano Obertelli, Francine Berman and Rich Wolski, "The AppLeS 
Parameter Sweep Template: User-Level Middleware for the Grid", Proceedings of the Super 
Computing Conference (SC'2000), (2000) 

8. Kavitha Ranganathan and Ian Foster. “Decoupling Computation and Data Scheduling in 
Distributed Data Intensive Applications”. International Symposium for High Performance 
Distributed Computing (HPDC-11), Edinburgh, July 2002. 

9. Xiaoshan He, Xian-He Sun, and Gregor von Laszewski, "QoS Guided Min-Min Heuristic for 
Grid Task Scheduling", Journal of Computer Science and Technology, Special Issue on Grid 
Computing, 18(4), 2003.  


