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ABSTRACT
A graph application written using a distributed graph processing
framework can perform over an order of magnitude slower than its
high-performance, native counterpart. This issue stems from the
aim, common to most graph frameworks, of restricting the scope
of application development to speci�c graph constructs, such as,
for example, vertex or edge programs.

In this paper we present Horizon, a distributed graph processing
framework achieving close to native performance without penal-
izing productivity by providing a multi-layer, multi-abstraction
model of computation. Compared to current frameworks, Horizon
extends the scope of computation by exposing two notions usually
relegated to implementations: graph data models and communica-
tion models. Horizon can reduce execution time by an average of
5.3× across di�erent applications and datasets and process an order
of magnitude larger graphs when compared to the state of the art.
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1 INTRODUCTION
Graph algorithms have found application in a variety of scienti�c
and business domains, and are employed in �elds such as bioinfor-
matics and machine learning [6]. Yet, the research community has
been struggling to �nd the de�nition of a programming model capa-
ble of describing graph algorithms in a way that is both easy to pro-
gram and e�cient to execute. As part of this e�ort, many distributed
graph frameworks have been developed [2–4, 8, 10]. These frame-
works were designed to provide users with a productive method to
implement graph algorithms on distributed systems, with the pro-
posed programming models o�ering abstractions such as vertices,
edges, blocks, matrices, or domain-speci�c languages to reduce the
amount of e�ort required by users to develop their applications.
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For example, Combinatorial BLAS (CombBLAS) [2] is a dis-
tributed graph processing framework based on linear algebra primi-
tives. Users express sparsematrix and vector operations via di�erent
semirings. GraphX [3] is an embedded graph processing framework
built on top of Apache Spark [9], that allows the user to process
graphs in an interactive, distributed manner.
Graph processing frameworks, however, generally fail to ap-

proach the performance provided by native, hand-optimized code [5,
8]. The authors of [5] showed that many of these frameworks, run-
ning on small-size clusters, can be outperformed by single-threaded
native code running on a laptop. The adoption of techniques gen-
erally used in native code inside the implementation of a frame-
work’s backend has been proposed in several instances; Gemini [10]
is worth noting since it presents an optimized distributed graph
processing system that contribute to making it one of the best per-
forming frameworks currently available. However, the number of
graph frameworks available demonstrates that no single one of
them is able to provide performance comparable to native code for
all input datasets, algorithms, and hardware variations. We believe
the reason is that most graph frameworks operate at a level of ab-
straction that hides performance-critical primitives from the user
in order to make applications easy to develop.

In this paper we present Horizon, a new framework to bridge the
gap between programmability and performance. Horizon presents
the programmer multiple levels of abstraction. This allows the pro-
grammer to select the abstraction that better �t each part of the
application, without giving up on programmability. When required,
speci�c parts of the application can be developed using a lower level
of abstraction, one that provides the programmer with more tools
to optimize the speci�c part and reach nearly-native performance.

The additional bene�t given by the presence of multiple levels of
abstraction is that it enables the user to specialize the application
incrementally: a developer can start with an initial implementation
entirely written using a high-level vertex-centric programming
model—as they would do in a classic graph framework—and then,
pro�ling the resulting code, they can identify which parts of the
application are performance-sensitive and specialize only those
parts. Our contributions include:

• The design of an API that abstracts optimizations typical of native
codem and its implementation in Horizon, showing it can reduce
runtime on average 5.3× across di�erent graph algorithms and
datasets, and solve problems that are an order of magnitude larger,
compared to the state of the art graph frameworks (Section 4).
• The implementation of four well-known graph analytics bench-
marks, to show the capabilities of Horizon both in terms of ex-
pressiveness and performance.
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Dataset Vertices Edges

Livejournal 4M 68M
Twitter 41M 1,4B
Friendster 65M 1.8B
RMAT-24 16M 536M
RMAT-26 67M 2.1B
RMAT-27 134M 4.3B
RMAT-28 268M 8.6B
RMAT-29 536M 17.2B
bm-24 34M 1B
bm-25 67M 2.1B

Table 2: Graph Datasets

in Section 3, so that the reader is already familiar with the range of
optimizations required by the algorithms. We also discuss the per-
formance impact of using speci�c optimizations on BFS, PageRank
and BM.

Graph Algorithms and Datasets. Table 2 shows the graphs we
used in our evaluation: we consider both social networks and syn-
thetic graphs. RMAT is a synthetic graph model used to replicate
the characteristics of social graphs in benchmark environments
(e.g., Graph500). Bipartite Matching uses a di�erent set of synthetic
graphs because of the requirements from the algorithm. With iter-
ative algorithms (BFS and PR) we execute the �rst ten iterations;
the other algorithms are run until completion.

Graph Frameworks. We compared against three di�erent graph
processing frameworks: GraphX, Gemini, and CombBlas. GraphX
is based on Spark [3] and is known to perform poorly compared
to other frameworks [5]. Gemini is a vertex-centric framework
that signi�cantly outperforms other vertex-centric graph process-
ing [10]. To the best of our knowledge it is the fastest vertex-centric
graph processing framework. CombBlas stand up by o�ering a linear
algebra abstraction to graph analytics. In cases where linear algebra
maps e�ciently to the problem, it has been shown to perform faster
than other graph frameworks [2]. All graph frameworks we used
for comparison are open-source.

Comparison Method. In order to provide a fair comparison with
other frameworks, for each algorithm we use the implementation
provided by the authors when available. However, for some cases
such as triangle counting in CombBlas an open-source implementa-
tion is not avaiable. In these cases, we either use an implementation
based on pseudocode of previous work [7], or avoid the speci�c
comparison. In addition, to keep a fair comparison with other frame-
works, Horizon avoids the usage of any hardware specialized com-
munication library such as RDMA.

Testbed. We conducted our experiments on a cluster consisting
of 8 IBM Power S822LC nodes. Each node consists of two POWER8
processors and 512 GB of memory. Each POWER8 has 10 cores that
run at 3.424GHz. Each core has 64KB of data cache, 32KB of in-
struction cache, 512KB of L2 cache and 8MB of L3 cache. Each core
supports up to 8 hardware threads. The power consumption of each
chip is 190W. The network interconnect is In�niband Connect-X
4x EDR. Each node has a raw injection bandwidth of 12.5GB/s. The
operating system is Red Hat Enterprise Linux Server version 7.3
Maipo. IBM XL C/C++ version 13.1.4 was used for compilation.

Graph GraphX CombBlas Gemini Horizon

BFS

Twitter 545.74 1.92 0.28 0.17
Friendster 1981.19 2.97 0.41 0.37
RMAT-26 533.34 0.40 0.34 0.07
RMAT-27 - 0.81 0.43 0.20
RMAT-28 - 1.55 1.04 0.31
RMAT-29 - 3.10 1.81 0.56

Pagerank

Twitter 360.87 19.90 1.82 1.51
Friendster 563.39 36.58 4.67 1.84
RMAT-26 611.47 4.38 2.81 2.36
RMAT-27 - 10.67 6.18 4.29
RMAT-28 - 24.74 13.45 8.35
RMAT-29 - 58.44 30.92 15.53

Triangle Counting

Livejournal 149.86 - 33.01 8.66
RMAT-24 394.56 - 292.69 190.81
Twitter - - - 271.23
RMAT-26 - - - 1146.78
RMAT-27 - - - 2949.74
RMAT-28 - - - 9047.26

Bipartite Matching

BM-24 N/A N/A 3.65 0.26
BM-25 N/A N/A 7.5 0.47

Table 3: Performance on 8 Nodes in Runtime seconds ("-"
means the framework ran out of memory, N/A means the
algorithm was not available for the framework)

4.1 Comparison with other frameworks
Table 3 summarize the execution runtimes for our set of algorithms,
using the entire cluster (8 nodes). The results show a clear advan-
tage of Horizon over the other frameworks in terms of performance.
Speci�cally, Horizon performs on average 2.72× better than Gemini
and 6.60× better than CombBlas on BFS. The larger speedup over
CombBlas is because CombBlas does not use direction optimiza-
tion; Gemini, however, does. The speedup with respect to Gemini
originates from the use of blocked data structures to reduce the
amount of sparse random reads of vertex states.
Horizon performs 1.67× better than Gemini and 7.35× better

than CombBlas on Pagerank. The larger speedup over CombBlas
is due to the use of local pagerank vectors to reduce the amount
of communication. The bene�ts of blocked data structures vary de-
pending on the natural locality of vertices within the graph, which
is why there exists a 2.54× speedup on the friendster dataset but
only a 1.21× speedup on twitter.
Triangle Counting is an example of an application that can sig-

ni�cantly bene�t from �ne-grained communication by leveraging
the communication model abstraction of Horizon. The advantage is
most evident on the size of the datasets we can process on Horizon.
Table 3 shows that Horizon allows for TC on graphs that are an or-
der of magnitude larger than those allowed by any other framework.
As vertices add their neighborhood to message bu�ers, Gemini runs
out of memory. In CombBlas, triangle counting is expressed as a

the intersection between a matrix A and its square A2, making the
algorithm even more ine�cient in terms of memory requirements,
as studied before in [7].
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Figure 3: Strong scaling of Horizon

0

5

10

15

20

Friendster RMAT24 RMAT25
Dataset

T
im

e
 (

s
e

c
)

Gemini Horizon

Figure 4: Single node performance of Pagerank

Since there are no o�cial implementations of Bipartite Matching
on CombBlas and GraphX, for BM we compare only with Gemini.
Horizon performs 14× better than Gemini. The core issue for Gem-
ini is that, since the scope of computation is limited to vertices and
their data, the algorithm cannot exploit knowledge of distributed
execution. In contrast, Horizon assigns working sets to each process
so that their updates to data structures do not con�ict.

4.2 Scalability
In this section, we analyze the scalability properties of Horizon, by
presenting strong scaling and single node performance. For the sake
of conciseness, we only report results for BFS and PR. Figure 3 shows
strong scaling for di�erent frameworks with two di�erent data sets.
Horizon outperforms all frameworks on any con�gurations and
scales at a better rate than Gemini, although scalability is obviously
not ideal. A more interesting picture emerges in Figure 3a, where
the comparison includes the native code (that is only available on
syntetic graphs). Horizon scales at the same rate from 2 to 4 nodes
but is less e�ective from 4 to 8 nodes when compared to native code.

Recently, the authors of [5] highlighted a signi�cant problem, of
graph frameworks by showing that the performance of distributed
graph analytics frameworks can in fact be lower than single-node
shared memory implementations, because of added overheads.

To show that Horizon’s performance is not signi�cantly a�ected
by such overheads, we also present sigle-node performance on PR.
We compare with Gemini, that in turn demostrated to provide per-
formance comparable to shared memory graph frameworks [10].
Figure 4 shows that Horizon can provide roughly 2× shorter run-
time than Gemini even on a single node case.

5 CONCLUSION
In this paper, we presented Horizon, a graph processing framework
extending the toolset available to the users by exposing data and
communication models. Horizon provides on average 5.3× reduc-
tion in runtime as well as processing an order of magnitude larger
graphs when compared to the state-of-the-art.
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