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ABSTRACT

A graph application written using a distributed graph processing
framework can perform over an order of magnitude slower than its
high-performance, native counterpart. This issue stems from the
aim, common to most graph frameworks, of restricting the scope
of application development to specific graph constructs, such as,
for example, vertex or edge programs.

In this paper we present Horizon, a distributed graph processing
framework achieving close to native performance without penal-
izing productivity by providing a multi-layer, multi-abstraction
model of computation. Compared to current frameworks, Horizon
extends the scope of computation by exposing two notions usually
relegated to implementations: graph data models and communica-
tion models. Horizon can reduce execution time by an average of
5.3% across different applications and datasets and process an order
of magnitude larger graphs when compared to the state of the art.
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1 INTRODUCTION

Graph algorithms have found application in a variety of scientific
and business domains, and are employed in fields such as bioinfor-
matics and machine learning [6]. Yet, the research community has
been struggling to find the definition of a programming model capa-
ble of describing graph algorithms in a way that is both easy to pro-
gram and efficient to execute. As part of this effort, many distributed
graph frameworks have been developed [2-4, 8, 10]. These frame-
works were designed to provide users with a productive method to
implement graph algorithms on distributed systems, with the pro-
posed programming models offering abstractions such as vertices,
edges, blocks, matrices, or domain-specific languages to reduce the
amount of effort required by users to develop their applications.
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For example, Combinatorial BLAS (CombBLAS) [2] is a dis-
tributed graph processing framework based on linear algebra primi-
tives. Users express sparse matrix and vector operations via different
semirings. GraphX [3] is an embedded graph processing framework
built on top of Apache Spark [9], that allows the user to process
graphs in an interactive, distributed manner.

Graph processing frameworks, however, generally fail to ap-
proach the performance provided by native, hand-optimized code [5,
8]. The authors of [5] showed that many of these frameworks, run-
ning on small-size clusters, can be outperformed by single-threaded
native code running on a laptop. The adoption of techniques gen-
erally used in native code inside the implementation of a frame-
work’s backend has been proposed in several instances; Gemini [10]
is worth noting since it presents an optimized distributed graph
processing system that contribute to making it one of the best per-
forming frameworks currently available. However, the number of
graph frameworks available demonstrates that no single one of
them is able to provide performance comparable to native code for
all input datasets, algorithms, and hardware variations. We believe
the reason is that most graph frameworks operate at a level of ab-
straction that hides performance-critical primitives from the user
in order to make applications easy to develop.

In this paper we present Horizon, a new framework to bridge the
gap between programmability and performance. Horizon presents
the programmer multiple levels of abstraction. This allows the pro-
grammer to select the abstraction that better fit each part of the
application, without giving up on programmability. When required,
specific parts of the application can be developed using a lower level
of abstraction, one that provides the programmer with more tools
to optimize the specific part and reach nearly-native performance.

The additional benefit given by the presence of multiple levels of
abstraction is that it enables the user to specialize the application
incrementally: a developer can start with an initial implementation
entirely written using a high-level vertex-centric programming
model—as they would do in a classic graph framework—and then,
profiling the resulting code, they can identify which parts of the
application are performance-sensitive and specialize only those
parts. Our contributions include:

o The design of an API that abstracts optimizations typical of native
codem and its implementation in Horizon, showing it can reduce
runtime on average 5.3x across different graph algorithms and
datasets, and solve problems that are an order of magnitude larger,
compared to the state of the art graph frameworks (Section 4).

o The implementation of four well-known graph analytics bench-
marks, to show the capabilities of Horizon both in terms of ex-
pressiveness and performance.
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Figure 1: Overview of Horizon

2 HORIZON DESIGN

Horizon is, by design, a collection of components that allow users
to develop graph applications. We define Horizon’s API as an object
oriented C++ interface. The components provided by Horizon can
be grouped into two categories: data model and communication, as
depicted in Fig. 1. We incorporated into the API data structures and
communication methods frequently encountered in native code,
and we defined the object interfaces in a way that allows high-
performance implementations (e.g., allowing asynchronous mes-
saging, in order to overlap computation and communication). Such
components provide the lower level of Horizon. To provide flexibil-
ity, they do not adhere to a specific programming model, and do not
offer concepts commonly found in current programing models. On
top of such API, Horizon provides vertex-centric and edge-centric
APIs. To provide a high level of interchangeability, such APIs are im-
plemented using the components of the “low-level”. This common
base allows the developer to mix different APIs within the same
program, and to use the low-level of Horizon only when deemed
necessary.

3 APPLICATION
DEVELOPMENT IN HORIZON

In Section 4 we will compare Horizon and a set of over a set of
four algorithms. Because of the level of optimization required, the
algorithms presented will exploit the low-level API offered by Hori-
zon. This is, however, solely because of performance requirements.
To highlight that, we compare, in Table 1, the source lines of code
(SLOC) required to implement all of the algorithm using both the
vertex-centric and the low-level interfaces of Horizon.

For the sake of simplicity we will present single-threaded dis-
tributed code. While this can still exploit multicore architectures by
just running multiple processes within the node, the codes analyzed
in the experiments section employ thread-level parallelism inside
each node.

3.1 Breadth-first Search: a case study

To offer a brief idea of how algorithms can be implemented in
Horizon, we discuss a possible implementation of BFS. We will
focus on implementing the Direction-optimized[1] variant of BES,
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Application Gemini | Horizon vertex-centric | Horizon low-level
Breadth-first Search (BFS) 81 30 145
Pagerank 100 22 118
Triangle Counting 72 29 126
Bipartite Matching 77 92 42

Table 1: Number of source lines of code (SLOC) across
different frameworks and apps

void process_edge(msg m)
// If the node was not yet visited, mark it visited and active
if(!visited_bitmap.get(local(m.src)))
active_bitmap.set(local(m.src));
visited_bitmap.set(local(m.src));
void send_edge(edge e)
// Send the edge to the destination node
msg m = { .dst = e.dst_id, .src= e.src_id };
comm. add_msg(m, comm.get_owner(e.dst_id));
int main()
csr_out = new bcsr(graph_path, in_edges=0,
block_dim=bdim);
= new bcsr(graph_path, in_edges=1,
block_dim=bdim);
active_bitmap = new bitmap(num_local_vertices,0);
visited_bitmap = new bitmap(num_local_vertices,0);
comm = new bitmap_comm();
comm. set_handler(process_edge);
active = 1;
while(active > 0)
// Select the visit depending on the threshold
if (active < THRESHOLD)
foreach_edge(csr_out, send_edge,
vertex_filter = active_bitmap);

csr_in

else
foreach_edge(csr_in, send_edge,
vertex_filter = active_bitmap);
// Reduce to get global active count
active = comm.sync(popcnt(active_bitmap));

Figure 2: Pseudo-code of DOBFS in Horizon

given the performance advantage over the classic approach. In
order to support processing with in-edges and out-edges, we use
two different representations of the same graph, and count the
active vertices to select which visit to trigger at each BFS iteration.
The pseudocode of the algorithm is shown in Figure 2. The main
function initializes the representations, the communicators and the
auxiliary data structures (two bitmaps), and then starts computing
BFS. The main loop is executed until we don’t have active edges (i.e.
the whole graph has been traversed). For each iteration, depend-
ing on the set of active vertices, we trigger a visit on one of the
two representations. The sync call is used to guarantee that all the
messages have been sent and processed, and to compute the global
number of active vertices. popcnt is a generalization of the well-
known assembler instruction and counts the number of bits set to 1
in the bitmap. In addition to the main function, we need two other
functions, send_edge which is called by the foreach construct, and
send a message containing the edge to the node with the destination
vertex, and process_edge which is the callback invoked every time a
message is received, and is in charge of updating the local bitmaps.

In order to improve cache locality, both representations ( csr_out
and csr_in) are blocked matrices. Users can specify the dimensions
of the matrix to make block sizes fit in the last level cache for per-
formance tuning. A further optimization is introduced by using a
bitmap communicator, to compress outgoing messages.

4 EXPERIMENTS

In this section we compare Horizon, against state-of-the-art graph
frameworks. We continue to use the four benchmarks introduced
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Dataset Vertices | Edges
Livejournal 4M 68M
Twitter 41M 1,4B
Friendster 65M 1.8B
RMAT-24 16M 536M
RMAT-26 67M 2.1B
RMAT-27 134M 4.3B
RMAT-28 268M 8.6B
RMAT-29 536M 17.2B
bm-24 34M 1B
bm-25 67M 2.1B

Table 2: Graph Datasets

in Section 3, so that the reader is already familiar with the range of
optimizations required by the algorithms. We also discuss the per-
formance impact of using specific optimizations on BFS, PageRank
and BM.

Graph Algorithms and Datasets. Table 2 shows the graphs we
used in our evaluation: we consider both social networks and syn-
thetic graphs. RMAT is a synthetic graph model used to replicate
the characteristics of social graphs in benchmark environments
(e.g., Graph500). Bipartite Matching uses a different set of synthetic
graphs because of the requirements from the algorithm. With iter-
ative algorithms (BFS and PR) we execute the first ten iterations;
the other algorithms are run until completion.

Graph Frameworks. We compared against three different graph
processing frameworks: GraphX, Gemini, and CombBlas. GraphX
is based on Spark [3] and is known to perform poorly compared
to other frameworks [5]. Gemini is a vertex-centric framework
that significantly outperforms other vertex-centric graph process-
ing [10]. To the best of our knowledge it is the fastest vertex-centric
graph processing framework. CombBlas stand up by offering a linear
algebra abstraction to graph analytics. In cases where linear algebra
maps efficiently to the problem, it has been shown to perform faster
than other graph frameworks [2]. All graph frameworks we used
for comparison are open-source.

Comparison Method. In order to provide a fair comparison with
other frameworks, for each algorithm we use the implementation
provided by the authors when available. However, for some cases
such as triangle counting in CombBlas an open-source implementa-
tion is not avaiable. In these cases, we either use an implementation
based on pseudocode of previous work [7], or avoid the specific
comparison. In addition, to keep a fair comparison with other frame-
works, Horizon avoids the usage of any hardware specialized com-
munication library such as RDMA.

Testbed. We conducted our experiments on a cluster consisting
of 8 IBM Power S822LC nodes. Each node consists of two POWERS
processors and 512 GB of memory. Each POWERS has 10 cores that
run at 3.424 GHz. Each core has 64 KB of data cache, 32 KB of in-
struction cache, 512 KB of L2 cache and 8 MB of L3 cache. Each core
supports up to 8 hardware threads. The power consumption of each
chip is 190 W. The network interconnect is Infiniband Connect-X
4x EDR. Each node has a raw injection bandwidth of 12.5GB/s. The
operating system is Red Hat Enterprise Linux Server version 7.3
Maipo. IBM XL C/C++ version 13.1.4 was used for compilation.
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Graph GraphX [ CombBlas [ Gemini [ Horizon ‘
BFS

Twitter 545.74 1.92 0.28 0.17
Friendster 1981.19 2.97 0.41 0.37
RMAT-26 533.34 0.40 0.34 0.07
RMAT-27 - 0.81 0.43 0.20
RMAT-28 - 1.55 1.04 0.31
RMAT-29 - 3.10 1.81 0.56
Pagerank

Twitter 360.87 19.90 1.82 1.51
Friendster 563.39 36.58 4.67 1.84
RMAT-26 611.47 4.38 2.81 2.36
RMAT-27 - 10.67 6.18 4.29
RMAT-28 - 24.74 13.45 8.35
RMAT-29 - 58.44 30.92 15.53

Triangle Counting

Livejournal 149.86 - 33.01 8.66
RMAT-24 394.56 - 292.69 190.81

Twitter - - - 271.23
RMAT-26 - - - 1146.78
RMAT-27 - - - 2949.74
RMAT-28 - - - 9047.26

Bipartite Matching
BM-24 N/A N/A 3.65 0.26
BM-25 N/A N/A 7.5 0.47

"_n

Table 3: Performance on 8 Nodes in Runtime seconds (
means the framework ran out of memory, N/A means the
algorithm was not available for the framework)

4.1 Comparison with other frameworks

Table 3 summarize the execution runtimes for our set of algorithms,
using the entire cluster (8 nodes). The results show a clear advan-
tage of Horizon over the other frameworks in terms of performance.
Specifically, Horizon performs on average 2.72X better than Gemini
and 6.60x better than CombBlas on BFS. The larger speedup over
CombBlas is because CombBlas does not use direction optimiza-
tion; Gemini, however, does. The speedup with respect to Gemini
originates from the use of blocked data structures to reduce the
amount of sparse random reads of vertex states.

Horizon performs 1.67X better than Gemini and 7.35X better
than CombBlas on Pagerank. The larger speedup over CombBlas
is due to the use of local pagerank vectors to reduce the amount
of communication. The benefits of blocked data structures vary de-
pending on the natural locality of vertices within the graph, which
is why there exists a 2.54x speedup on the friendster dataset but
only a 1.21X speedup on twitter.

Triangle Counting is an example of an application that can sig-
nificantly benefit from fine-grained communication by leveraging
the communication model abstraction of Horizon. The advantage is
most evident on the size of the datasets we can process on Horizon.
Table 3 shows that Horizon allows for TC on graphs that are an or-
der of magnitude larger than those allowed by any other framework.
As vertices add their neighborhood to message buffers, Gemini runs
out of memory. In CombBlas, triangle counting is expressed as a
the intersection between a matrix A and its square A%, making the
algorithm even more inefficient in terms of memory requirements,
as studied before in [7].
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Figure 3: Strong scaling of Horizon
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In this paper, we presented Horizon, a graph processing framework
15 extending the toolset available to the users by exposing data and
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