
Horizon: A Multi-abstraction Framework for Graph Analytics

Adnan Haider∗

Illinois Institute of Technology
ahaider3@hawk.iit.edu

Fabio Checconi
IBM Research

fchecco@us.ibm.com

Xinyu Que
IBM Research

xque@us.ibm.com

Lars Schneidenbach
IBM Research

schneidenbach@us.ibm.com

Daniele Buono
IBM Research

dbuono@us.ibm.com

Xian-He Sun
Illinois Institute of Technology

sun@iit.edu

ABSTRACT
A graph application written using a distributed graph processing
framework can perform over an order of magnitude slower than its
high-performance, native counterpart. This issue stems from the
aim, common to most graph frameworks, of restricting the scope
of application development to speci�c graph constructs, such as,
for example, vertex or edge programs.

In this paper we present Horizon, a distributed graph processing
framework achieving close to native performance without penal-
izing productivity by providing a multi-layer, multi-abstraction
model of computation. Compared to current frameworks, Horizon
extends the scope of computation by exposing two notions usually
relegated to implementations: graph data models and communica-
tion models. Horizon can reduce execution time by an average of
5.3× across di�erent applications and datasets and process an order
of magnitude larger graphs when compared to the state of the art.

ACM Reference Format:
Adnan Haider, Fabio Checconi, Xinyu Que, Lars Schneidenbach, Daniele

Buono, and Xian-He Sun. 2018. Horizon: A Multi-abstraction Framework

for Graph Analytics. In CF ’18: CF ’18: Computing Frontiers Conference,

May 8–10, 2018, Ischia, Italy. ACM, New York, NY, USA, 4 pages. https:

//doi.org/10.1145/3203217.3203270

1 INTRODUCTION
Graph algorithms have found application in a variety of scienti�c
and business domains, and are employed in �elds such as bioinfor-
matics and machine learning [6]. Yet, the research community has
been struggling to �nd the de�nition of a programming model capa-
ble of describing graph algorithms in a way that is both easy to pro-
gram and e�cient to execute. As part of this e�ort, many distributed
graph frameworks have been developed [2–4, 8, 10]. These frame-
works were designed to provide users with a productive method to
implement graph algorithms on distributed systems, with the pro-
posed programming models o�ering abstractions such as vertices,
edges, blocks, matrices, or domain-speci�c languages to reduce the
amount of e�ort required by users to develop their applications.

∗in IBM Research at the time.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full
citation on the �rst page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.

CF ’18, May 8–10, 2018, Ischia, Italy

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5761-6/18/05. . . $15.00
https://doi.org/10.1145/3203217.3203270

For example, Combinatorial BLAS (CombBLAS) [2] is a dis-
tributed graph processing framework based on linear algebra primi-
tives. Users express sparsematrix and vector operations via di�erent
semirings. GraphX [3] is an embedded graph processing framework
built on top of Apache Spark [9], that allows the user to process
graphs in an interactive, distributed manner.
Graph processing frameworks, however, generally fail to ap-

proach the performance provided by native, hand-optimized code [5,
8]. The authors of [5] showed that many of these frameworks, run-
ning on small-size clusters, can be outperformed by single-threaded
native code running on a laptop. The adoption of techniques gen-
erally used in native code inside the implementation of a frame-
work’s backend has been proposed in several instances; Gemini [10]
is worth noting since it presents an optimized distributed graph
processing system that contribute to making it one of the best per-
forming frameworks currently available. However, the number of
graph frameworks available demonstrates that no single one of
them is able to provide performance comparable to native code for
all input datasets, algorithms, and hardware variations. We believe
the reason is that most graph frameworks operate at a level of ab-
straction that hides performance-critical primitives from the user
in order to make applications easy to develop.

In this paper we present Horizon, a new framework to bridge the
gap between programmability and performance. Horizon presents
the programmer multiple levels of abstraction. This allows the pro-
grammer to select the abstraction that better �t each part of the
application, without giving up on programmability. When required,
speci�c parts of the application can be developed using a lower level
of abstraction, one that provides the programmer with more tools
to optimize the speci�c part and reach nearly-native performance.

The additional bene�t given by the presence of multiple levels of
abstraction is that it enables the user to specialize the application
incrementally: a developer can start with an initial implementation
entirely written using a high-level vertex-centric programming
model—as they would do in a classic graph framework—and then,
pro�ling the resulting code, they can identify which parts of the
application are performance-sensitive and specialize only those
parts. Our contributions include:

• The design of an API that abstracts optimizations typical of native
codem and its implementation in Horizon, showing it can reduce
runtime on average 5.3× across di�erent graph algorithms and
datasets, and solve problems that are an order of magnitude larger,
compared to the state of the art graph frameworks (Section 4).
• The implementation of four well-known graph analytics bench-
marks, to show the capabilities of Horizon both in terms of ex-
pressiveness and performance.

252

Horizon: A Multi-abstraction Framework for Graph Analytics CF ’18, May 8–10, 2018, Ischia, Italy

Dataset Vertices Edges

Livejournal 4M 68M
Twitter 41M 1,4B
Friendster 65M 1.8B
RMAT-24 16M 536M
RMAT-26 67M 2.1B
RMAT-27 134M 4.3B
RMAT-28 268M 8.6B
RMAT-29 536M 17.2B
bm-24 34M 1B
bm-25 67M 2.1B

Table 2: Graph Datasets

in Section 3, so that the reader is already familiar with the range of
optimizations required by the algorithms. We also discuss the per-
formance impact of using speci�c optimizations on BFS, PageRank
and BM.

Graph Algorithms and Datasets. Table 2 shows the graphs we
used in our evaluation: we consider both social networks and syn-
thetic graphs. RMAT is a synthetic graph model used to replicate
the characteristics of social graphs in benchmark environments
(e.g., Graph500). Bipartite Matching uses a di�erent set of synthetic
graphs because of the requirements from the algorithm. With iter-
ative algorithms (BFS and PR) we execute the �rst ten iterations;
the other algorithms are run until completion.

Graph Frameworks. We compared against three di�erent graph
processing frameworks: GraphX, Gemini, and CombBlas. GraphX
is based on Spark [3] and is known to perform poorly compared
to other frameworks [5]. Gemini is a vertex-centric framework
that signi�cantly outperforms other vertex-centric graph process-
ing [10]. To the best of our knowledge it is the fastest vertex-centric
graph processing framework. CombBlas stand up by o�ering a linear
algebra abstraction to graph analytics. In cases where linear algebra
maps e�ciently to the problem, it has been shown to perform faster
than other graph frameworks [2]. All graph frameworks we used
for comparison are open-source.

Comparison Method. In order to provide a fair comparison with
other frameworks, for each algorithm we use the implementation
provided by the authors when available. However, for some cases
such as triangle counting in CombBlas an open-source implementa-
tion is not avaiable. In these cases, we either use an implementation
based on pseudocode of previous work [7], or avoid the speci�c
comparison. In addition, to keep a fair comparison with other frame-
works, Horizon avoids the usage of any hardware specialized com-
munication library such as RDMA.

Testbed. We conducted our experiments on a cluster consisting
of 8 IBM Power S822LC nodes. Each node consists of two POWER8
processors and 512 GB of memory. Each POWER8 has 10 cores that
run at 3.424GHz. Each core has 64KB of data cache, 32KB of in-
struction cache, 512KB of L2 cache and 8MB of L3 cache. Each core
supports up to 8 hardware threads. The power consumption of each
chip is 190W. The network interconnect is In�niband Connect-X
4x EDR. Each node has a raw injection bandwidth of 12.5GB/s. The
operating system is Red Hat Enterprise Linux Server version 7.3
Maipo. IBM XL C/C++ version 13.1.4 was used for compilation.

Graph GraphX CombBlas Gemini Horizon

BFS

Twitter 545.74 1.92 0.28 0.17
Friendster 1981.19 2.97 0.41 0.37
RMAT-26 533.34 0.40 0.34 0.07
RMAT-27 - 0.81 0.43 0.20
RMAT-28 - 1.55 1.04 0.31
RMAT-29 - 3.10 1.81 0.56

Pagerank

Twitter 360.87 19.90 1.82 1.51
Friendster 563.39 36.58 4.67 1.84
RMAT-26 611.47 4.38 2.81 2.36
RMAT-27 - 10.67 6.18 4.29
RMAT-28 - 24.74 13.45 8.35
RMAT-29 - 58.44 30.92 15.53

Triangle Counting

Livejournal 149.86 - 33.01 8.66
RMAT-24 394.56 - 292.69 190.81
Twitter - - - 271.23
RMAT-26 - - - 1146.78
RMAT-27 - - - 2949.74
RMAT-28 - - - 9047.26

Bipartite Matching

BM-24 N/A N/A 3.65 0.26
BM-25 N/A N/A 7.5 0.47

Table 3: Performance on 8 Nodes in Runtime seconds ("-"
means the framework ran out of memory, N/A means the
algorithm was not available for the framework)

4.1 Comparison with other frameworks
Table 3 summarize the execution runtimes for our set of algorithms,
using the entire cluster (8 nodes). The results show a clear advan-
tage of Horizon over the other frameworks in terms of performance.
Speci�cally, Horizon performs on average 2.72× better than Gemini
and 6.60× better than CombBlas on BFS. The larger speedup over
CombBlas is because CombBlas does not use direction optimiza-
tion; Gemini, however, does. The speedup with respect to Gemini
originates from the use of blocked data structures to reduce the
amount of sparse random reads of vertex states.
Horizon performs 1.67× better than Gemini and 7.35× better

than CombBlas on Pagerank. The larger speedup over CombBlas
is due to the use of local pagerank vectors to reduce the amount
of communication. The bene�ts of blocked data structures vary de-
pending on the natural locality of vertices within the graph, which
is why there exists a 2.54× speedup on the friendster dataset but
only a 1.21× speedup on twitter.
Triangle Counting is an example of an application that can sig-

ni�cantly bene�t from �ne-grained communication by leveraging
the communication model abstraction of Horizon. The advantage is
most evident on the size of the datasets we can process on Horizon.
Table 3 shows that Horizon allows for TC on graphs that are an or-
der of magnitude larger than those allowed by any other framework.
As vertices add their neighborhood to message bu�ers, Gemini runs
out of memory. In CombBlas, triangle counting is expressed as a

the intersection between a matrix A and its square A2, making the
algorithm even more ine�cient in terms of memory requirements,
as studied before in [7].

254

CF ’18, May 8–10, 2018, Ischia, Italy A. Haider et al.

●

●

●

0.25

0.50

0.75

1.00

2 4 6 8
Nodes

T
im

e
 (

s
e
c
)

● Gemini Horizon Native

(a) BFS RMAT27

●

●

●

●

0

1

2

3

4

2 4 6 8
Nodes

T
im

e
 (

s
e
c
)

● CombBlas Gemini Horizon

(b) BFS Twitter

●

●

●

0

20

40

60

2 4 6 8
Nodes

T
im

e
 (

s
e
c
)

● CombBlas Gemini Horizon

(c) Pagerank Twitter

●

●

●

0

50

100

2 4 6 8
Nodes

T
im

e
 (

s
e
c
)

● CombBlas Gemini Horizon

(d) Pagerank Friendster

Figure 3: Strong scaling of Horizon

0

5

10

15

20

Friendster RMAT24 RMAT25
Dataset

T
im

e
 (

s
e

c
)

Gemini Horizon

Figure 4: Single node performance of Pagerank

Since there are no o�cial implementations of Bipartite Matching
on CombBlas and GraphX, for BM we compare only with Gemini.
Horizon performs 14× better than Gemini. The core issue for Gem-
ini is that, since the scope of computation is limited to vertices and
their data, the algorithm cannot exploit knowledge of distributed
execution. In contrast, Horizon assigns working sets to each process
so that their updates to data structures do not con�ict.

4.2 Scalability
In this section, we analyze the scalability properties of Horizon, by
presenting strong scaling and single node performance. For the sake
of conciseness, we only report results for BFS and PR. Figure 3 shows
strong scaling for di�erent frameworks with two di�erent data sets.
Horizon outperforms all frameworks on any con�gurations and
scales at a better rate than Gemini, although scalability is obviously
not ideal. A more interesting picture emerges in Figure 3a, where
the comparison includes the native code (that is only available on
syntetic graphs). Horizon scales at the same rate from 2 to 4 nodes
but is less e�ective from 4 to 8 nodes when compared to native code.

Recently, the authors of [5] highlighted a signi�cant problem, of
graph frameworks by showing that the performance of distributed
graph analytics frameworks can in fact be lower than single-node
shared memory implementations, because of added overheads.

To show that Horizon’s performance is not signi�cantly a�ected
by such overheads, we also present sigle-node performance on PR.
We compare with Gemini, that in turn demostrated to provide per-
formance comparable to shared memory graph frameworks [10].
Figure 4 shows that Horizon can provide roughly 2× shorter run-
time than Gemini even on a single node case.

5 CONCLUSION
In this paper, we presented Horizon, a graph processing framework
extending the toolset available to the users by exposing data and
communication models. Horizon provides on average 5.3× reduc-
tion in runtime as well as processing an order of magnitude larger
graphs when compared to the state-of-the-art.

REFERENCES
[1] Scott Beamer, Krste Asanović, and David Patterson. 2012. Direction-optimizing

Breadth-�rst Search. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (SC ’12). IEEE
Computer Society Press, Los Alamitos, CA, USA, Article 12, 10 pages.
http://dl.acm.org/citation.cfm?id=2388996.2389013

[2] Aydin Buluc and John R Gilbert. 2011. The Combinatorial BLAS: Design,
Implementation, and Applications. Int. J. High Perform. Comput. Appl. 25, 4 (Nov.
2011), 496–509. https://doi.org/10.1177/1094342011403516

[3] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Data�ow Framework. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). USENIX Association, Broom�eld, CO, 599–613.

[4] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System
for Large-scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’10). ACM, New York,
NY, USA, 135–146. https://doi.org/10.1145/1807167.1807184

[5] Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! But at
what COST?. In 15th Workshop on Hot Topics in Operating Systems (HotOS XV).
USENIX Association, Kartause Ittingen, Switzerland. https://www.usenix.org/
conference/hotos15/workshop-program/presentation/mcsherry

[6] Sujith Ravi. 2016. Graph-powered Machine Learning at Google. (2016).
http://arxiv.org/abs/1107.0922

[7] Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo,
Jongsoo Park, M. Amber Hassaan, Shubho Sengupta, Zhaoming Yin, and Pradeep
Dubey. 2014. Navigating the Maze of Graph Analytics Frameworks Using
Massive Graph Datasets. In Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’14). ACM, New York, NY, USA,
979–990. https://doi.org/10.1145/2588555.2610518

[8] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Subra-
manya R. Dulloor, Michael J. Anderson, Satya Gautam Vadlamudi, Dipankar
Das, and Pradeep Dubey. 2015. GraphMat: High Performance Graph An-
alytics Made Productive. Proc. VLDB Endow. 8, 11 (July 2015), 1214–1225.
https://doi.org/10.14778/2809974.2809983

[9] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012.
Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory
Cluster Computing. In Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation (NSDI’12). USENIX Association, Berkeley,
CA, USA, 2–2. http://dl.acm.org/citation.cfm?id=2228298.2228301

[10] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.
2016. Gemini: A Computation-Centric Distributed Graph Processing
System. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, GA, 301–316. https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/zhu

255

	Paper_01 new
	Paper_02 new
	Paper_03
	Paper_04
	Paper_05
	Paper_06
	Paper_07
	Paper_08
	Paper_09
	Paper_10
	Paper_11
	Paper_12
	Paper_13
	Paper_14
	Paper_15

