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Abstract: In this paper, we propose and present the design and initial development of the Fault awareness Enabled 

Computing Environment (FENCE) system for high end computing. FENCE is a comprehensive fault management 

system in the sense that it consists of both post and runtime analysis, integrates both proactive and reactive 

mechanisms, and combines both application level and system level fault management.  Component-based systems 

are also developed to support the comprehensive FENCE design. Preliminary implementation results are presented. 

 

 

1. Introduction 
Checkpointing/restart mechanism is the 

conventional fault management approach for high end 

computing (HEC). It is simple and capable of 

mitigating the impact of failures, but it is becoming 

increasingly costly for high end computing. 

Checkpointing periodically saves snapshots of the 

system onto disks and, when a failure occur, all the 

processes, including nonfaulty processes, have to 

rollback to a previously saved consistent state [1]. Both 

of the saving and rollback costs increase with the 

number of processors. A new fault tolerant approach is 

a must for next generation high end computers. 

Unlike the checkpointing/restart approach, newly 

emerged proactive methods (e.g., process migration) 

do not require periodic checkpointing, thereby 

preventing failure experiencing and reducing the fault 

management cost [2, 3]. Yet proactive methods rely on 

accurate fault prediction, which is hardly achievable in 

practice. It is more than often unexpected failures 

occur, and false alarms are produced. Hence, proactive 

approach alone is unlikely sufficient to provide a 

reliable solution for fault management in HPC. 

In this paper, we propose a novel approach to build a 

Fault awareness ENabled Computing Environment 

(FENCE) system, for HEC. The design of FENCE is 

three fold: Increasing the accuracy of fault prediction, 

integrating different fault management mechanisms, 

and developing runtime support systems. Three key 

technologies are associated with the design. They are 

post analysis, runtime analysis, and runtime systems.  

 

2. FENCE Design 
     The structure of the FENCE system is shown in 

Figure 1. It consists of four major components, namely 

fault analysis and prediction, dynamic decision-

making, runtime resilience support, and task 

scheduling support. The fault analysis and prediction 

component learns and models both long-term and 

short-term fault trends. The long-term prediction is 

based on rigorous mathematical models to model the 

possibility of failures and analyze the effects of 

failuresfailure effects on application performance 

based on collected historical data. We call it post 

analysis. The short-term prediction dynamically 

analyzes health-related information (e.g.,  by hardware 

sensors or through software error checkers) and 

forecasts imminent and potential failures at runtime. 

We call it runtime analysis. The long-term analysis can 

identify the weak point of a computing system and 

provide suggestions on the optimization of system 

configuration. The task scheduling component supports 

a variety of application-level fault-aware scheduling 

schemes. Here, the “application-level” means that the 

prediction and task scheduling focus on improving 

application performance, and “fault-aware” means the 

factors of fault management, such as fault recovery 

(e.g. checkpointing) and fault prevention (e.g. 

migration) are considered in performance optimization. 

The dynamic decision making component 

automatically evaluates different fault tolerance actions 

and selects the best action at runtime based on short-

term fault prediction.  It includes an adaptation 

manager to dynamically determine a best-fit action in 

response to short-term failure prediction by 

considering a number of factors, including prediction 

accuracy, cost and benefit of different action, and 

available resources. The runtime resilience support 

component carries the actions including selective 

checkpointing (i.e., the runtime support system 

dynamically determines whether the checkpointing 

request will be granted or not), process migration, and 

application rescheduling, to avoid or mitigate the 

impact of imminent/potential failures.  In particular, a 

new concept of dynamic virtual machine (DVM) is 

introduced, so a virtual machine (VM) can be 

customized and deployed swiftly. DVM provides a 

feasible mean of system configuration and VM 

incarnation, and is a big help of process migration. A 

software system, named MPI Mitten is also developed 



2 

 

to support group communication and membership 

management during and after process migration. The 

combination and integration of these components 

makes FENCE unique and having a potential to be 

significantly better than existing fault management 

systems. 

 

 
Figure 1. Structure Overview of FENCE  

 

3. Challenge and Current Results 
    The FENCE design is promising. However, each 

component of HFT is a challenge in development. 

Integrating them together seamlessly is another. While 

the development of FENCE is an ongoing project, we 

have already overcome the major “key” technical 

hurdles and all the major components have been 

developed and tested. We discuss three technical 

hurdles in this study: better fault prediction, fault 

management, and system support.  

3.1 Improving Prediction Accuracy 
The key of proactive fault management is fault 

prediction. The first step of our research is improving 

the accuracy of fault prediction.  

For long-term prediction, based on stochastic 

modeling and analysis, we have developed a set of 

practical and effective performance models to predict 

the application completion time under system failures.  

By assuming the entire system as an M/G/1 queuing 

system, we have derived the mean, variance and 

distribution of sequential task execution time [4]. 

Based on the common assumption in the reliability 

research that failures in a computer system are usually 

exponentially distributed (or the occurrence of failures 

is essentially random) [5, 6, 7], we assume that for one 

sequential task, the arrival of failures follows a Poisson 

distribution with 
fλ , and the downtime of failures 

follows a general distribution with mean fµ  and 

standard deviation fσ , which is a generalization on 

the exponential downtime distribution used in [5, 7]. 

Checkpointing has been widely used for fault tolerance 

in HPC. Hence, we focus on modeling the performance 

influence of checkpointing in this study. We assume 

that the checkpointing/recovery cost follows a general 

distribution with mean cµ  and standard deviation cσ . 

Here the checkpointing-recovery cost refers to the time 

required by the system to recover the application from 

the last checkpoint to the failure point. Let w  denote 

the subtask workload, and the application’s execution 

is interrupted by failures S  times, the completion time 

of the subtask can be expressed as, 

1 1 1 2 2 2 ...  
s s s

T X Y Z X Y Z X Y Z L= + + + + + + + + + +  

where )1( SiX i ≤≤ are the computing time consumed 

by the application, )1( SiYi ≤≤  are the downtime of 

system failures, )1( SiZ i ≤≤  are the checkpoint-

recover cost after failure interruption and L  is the 

execution time of the last application process that 

finishes the application. Since LXXw +++= ...21
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The cumulative distribution function (CDF) of the 

application completion time is expressed as: 
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Based on [9], the Gamma distribution is an 

appropriate distribution to describe the 

)0|)(Pr( >≤ SuSU , which can be used to derived 

the distribution of sequential task execution time.  

The study of sequential task can be extended to 

parallel processing and workflow applications. Most 

scientific applications can be modeled by directed 

acyclic graphs (DAG) [8]. In a DAG, each node 

represents one sequential task and the edges represent 

the dependencies among the nodes. For each node in a 

DAG, we have three random variables to capture its 

performance features: start time, computation time and 

finish time. The computation time can be gained by our 

study of sequential task. Also, based on probability 

theory, the CDF of start time is the product of CDFs of 

its predecessors. The distribution of finish time is the 

convolution of start time and computation time. As 
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long as the finish time of each subtask is derivable, we 

can get the execution time of the whole parallel 

application. 

 The models separate the influence of failure arrival 

rate, failure repair time, and checkpointing cost.  The 

separation of factor leads a way to fault-aware system 

configuration. For example, given the possibility to be 

used as a replica or for migration, how should we 

utilize a computing node for best performance under 

failure? Based on our model, we may have different 

answers for different environments [4]. Also, suppose 

we have some spare processors for a scheduled DAG, 

based on the model, we can decide the weak node(s) 

and thus issue them replica with the spare processors.   

To verify the correctness of the newly proposed 

models, we have conducted extensive experiments and 

simulations. In our simulation, the mean of failure rate 

on each machine ranges from 71.5 10−× to 74.5 10−×  per 

second and the mean of failure downtime ranges from 

2 hours to 4 hours. These values are set based on the 

observation of the failure rate and repair time collected 

in [10]. The parameters on each machine are randomly 

generated within their corresponding ranges so that the 

failure rate and downtime on each machine are 

different.  

Figure 2 plots the mean and the standard deviation 

of prediction error of fully parallel application 

completion time under failures. The application 

workload on each node ranges from 16 hours to 512 

hours and the system size is 100 nodes. We observe 

that the prediction error is relatively small, less than 

10% for most of the situations. As the application 

workload increases, both mean and variation of the 

prediction error decrease, indicating our prediction 

models work well for large-scale applications. When 

the number of processors, or the system ensemble size, 

increases with problem size, the results are even more 

encouraging. Figure 3 gives the mean and the standard 

deviation of prediction error with different system size 

where machine number increases from 25 to 800, 

where the application workload increases with the 

system size, maintaining an average of 32-hour 

workload on each node. As we can see, the prediction 

error is all less than 10% for all system sizes. This 

shows the potential of the prediction of performance 

under failure for the upcoming Petaflops systems. In 

our simulation, we examine different failure downtime 

distributions (Lognormal, Exponential and Gamma). 

Similar results are observed. These results demonstrate 

the correctness of the analysis of failure models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our short-term failure predictor focuses on 

dynamical learning and discovering of fault patterns 

from RAS (reliability, availability, and serviceability) 

logs collected during system operation for runtime 

failure forecasting.  Failure prediction is challenging, 

especially in large-scale systems composed of 

hundreds of thousands of components. Due to the 

massive quantities of information collected from a 

large number of components, fault patterns and root 

causes are often buried in mass information like 

needles in a haystack. To address the problem, we have 

designed an ensemble learning based prediction 

mechanism [11, 14]. The basic idea of this mechanism 

is to integrate a number of data mining and statistical 

learning methods to identify a variety of fault patterns 

and correlations from RAS logs and use them for 

failure forecasting (see Figure 4).  The goal is to boost 

prediction accuracy by combining the strengths of 

different predictive methods. 

 

 

 

 

 

 

 

 

Figure 4. Ensemble Leaning Based Predictor 

We have acquired two RAS logs from the Blue 

Gene/L systems at ANL (Argonne National 

Figure 2. Mean and STD of prediction 

error with different workloads 
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Laboratory) and SDSC (San Diego Supercomputing 

Center) for the initial evaluation. At the time of our 

experiments, both systems consisted of 1024 compute 

nodes (2048 processors) with 32-128 I/O nodes. 

Considering the nature of RAS logs, we have 

examined two base prediction methods, namely 

statistical learning method and association rule based 

method.  The statistical learning method emphasizes on 

discovering probabilistic characteristics (e.g., how 

often and with what probability will the occurrence of 

one failure influence subsequent failures) and then 

using the obtained characteristics for failure prediction. 

The association rule method builds association rules to 

capture causal correlations between non-fatal events 

occurring before each fatal event and then use them for 

failure prediction. Rules are in the form of 

{x1,x2,…,xk}=>y, meaning that if an occurrence of {x1, 

x2,…,xk} is found then there is a good chance of finding 

y.  Our ensemble learning mechanism adaptively 

combines these methods as follows:   

“Observe the events within a fixed time 

window before the occurrence of a failure: (1) 

if there exist nonfatal events, apply the rule 

based method for the discovery of fault 

patterns and produce a warning in case of 

matching rules; (2) if no nonfatal event is 

observed, examine the occurrence of fatal 

events and apply the statistical based method 

for failure prediction; (3) if both fatal and 

non-fatal events are presented, use the base 

method that produces a prediction with higher 

confidence.” 

Our preliminary results obtained by applying the 

ensemble learning mechanism on both RAS logs have 

indicated that the proposed predictor can boost 

prediction accuracy with both Precision and Recall 

higher than 65%, which represents up to three times 

improvement over using either of the base methods.  

Here, Precision is defined as Tp / (Tp + Fp), and Recall 

is defined as Tp / (Tp + Fn).  Tp is the number of correct 

predictions (i.e. true positives), and Fp is the number of 

false alarms (i.e. false positives), and Fn is the number 

of incorrect non-failure predictions (i.e. false 

negatives).  

3.2 Adaptive Fault Management      
   Based on long-term fault prediction, system can be 

configured and tasks can be scheduled in such a way to 

avoid and reduce the possibility of failure. We have 

developed a set of schedule algorithms, including both 

optimal and heuristic algorithms, for this purpose.  

In response to short-term prediction, adaptive fault 

management is invoked (named FT-Pro).  FT-Pro aims 

to enable parallel applications to avoid anticipated 

failures via preemptive migration, and in the case of 

unforeseeable failures, to tolerate them in such a way 

that their impact is kept to a minimum through 

selective checkpointing [12]. Three runtime actions are 

currently considered in our runtime adaptation: • SKIP, where a possible checkpoint is skipped. • CHECKPOINT, where the application takes a 

checkpoint.  • MIGRATION, where the processes on unsafe 

failure-prone resource are transferred to 

healthy resource to avoid an upcoming failure. 

   The major challenge facing the design of runtime 

adaptation is how to select a best-fit action at runtime. 

Toward this end, we have designed an adaptation 

manager. It performs runtime selection based on 

quantitative performance modeling of applications.  

More specifically, it estimates the expected application 

execution time Enext during the next interval and selects 

the action that minimizes Enext:  
(1)        MIGRATION:
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Where I is the adaptation interval, Cckp is the 

checkpointing overhead, Cpm is the migration overhead, 

Cr is the mean recovery cost, fappl  denotes the failure 

probability of the application during the next interval, 

lcurrent and llast are the index of the current or the last 

checkpoint location, 
f

W
N and 

h

S
N represent the number 

of failed computation nodes and healthy spare nodes 

allocated to the application.     

We have implemented FT-Pro in the open-source 

checkpointing package MPICH-VCL 0.76 [15]. Note 

that FT-Pro is independent of the underlying 

checkpointing tool, and can be easily implemented 

with other checkpointing tools.  

We have evaluated FT-Pro with real applications 

(cosmology application ENZO, molecule dynamics 

application GROMACS, and the parallel benchmark 

NPB) under a wide range of settings. Preliminary study 

has indicated that it outperforms periodic 

checkpointing in terms of reducing application 

completion times and improving resource utilization, 
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by up to 43% (see Figure 5). It does better than 

periodic checkpointing, even when failure prediction 

has a 70% false positive and false negative rate. 

Additionally, the overhead caused by runtime 

adaptation is less than 3%.  

 

 
 

Figure 5. Reduction on application completion time 

achieved by FT-Pro against periodic checkpointing 
 

Runtime adaptation also includes the triggering of 

fault-aware rescheduling and re-leaning of fault 

patterns. Unlike FT-Pro which emphasizes on 

improving application performance, our fault-aware 

rescheduling aims at improving system productivity 

(i.e., performance and reliability) in response to failure 

prediction.  Given the existence of failure correlations 

in large-scale systems, simultaneous failures on 

multiple nodes are possible. In case spare nodes are not 

sufficient to accommodate migration requests 

originated from different jobs, how to select jobs for 

rescheduling is critical.  

We have designed a fault-aware rescheduling 

(FARS) algorithm to coordinate job rescheduling [14].  

It first analyzes failure impact on each affected user job. 

The impact is analyzed from four aspects: (1) workloss 

workloss
C , the amount of volatile work lost due to the 

failure; (2) restart cost 
restart

C ,  the time required to 

restart the job during recovery; (3) failure downtime 

downtime
C , the time used to repair the failed node; and (4) 

requeue cost 
queue

C ,  the queue waiting time of the job 

due to the failure. It then estimates the expected 

performance gain by rescheduling the job. Based on 

the above performance analysis, it allocates the 

available spare nodes to those affected jobs whose 

rescheduling can greatly improve the overall system 

productivity. In our current design, we have used a 

combination of five metrics to measure system 

productivity: three performance metrics (i.e., average 

response time, system utilization rate, and throughput) 

and two reliability metrics (i.e., service unit loss and 

job failure rate).  

We have designed a discrete event-based simulator 

which integrates the proposed fault-aware rescheduling 

with a widely used batch scheduler, i.e., FCFS/EASY 

Backfilling scheduler. Figure 6 show the relative 

performance improvement of FARS against 

FCFS/EASY, where three different recovery options 

are included (RESUBMIT, RESUME, and RETRY). 

As we can see, the relative improvement in terms of 

response time is  8%, 14.7% and 41% under three 

failure recovery policies respectively by using FARS.  

 

 
Figure 6. Relative improvement by using fault-aware 

rescheduling (FARS) against FCFS 

 

3.3 System Support  
Our runtime system development is pursued from 

two directions: (1) build fault-aware computing 

environment and (2) support fault management. Our 

effort along the first direction includes building the 

MPI-Mitten middleware for live migration [16], the 

dynamic virtual machine environment for dynamic VM 

configuration and deployment [17], and fast fault 

recovery support. Each of these systems is individually 

valuable and could be used with other fault or non-fault 

related computing systems.  Along the second direction, 

we have developed libraries and runtime systems to 

trigger and support of dynamic checkpointing and job 

rescheduling, as well as a monitoring system. The job 

rescheduling is two fold: reschedule the jobs in the job 

queue and reevaluate the fault possibility for better 

scheduling. Towards this end, we have developed a set 

of rescheduling strategies to coordinate jobs and 

computing resources by evaluating performance impact 

of potential failures on user jobs.    

Most of the system development along the second 

direction is based on our previous experience on the 

GHS system, a performance prediction and test 

scheduling system for high performance computing 

[18]. Many of the subsystems, such as the trigging 

system, monitoring system, rescheduling system, have 
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already been developed under GHS and only need 

minor modification and extension to be used under 

FENCE.  

    Currently these runtime systems are only used 

individually for component testing. It is still a long 

way to go to integrate them into one system. 

 

4. Conclusions 
This position paper presents the design and 

development of the FENCE (Fault awareness ENabled 

Computing Environment) system. While FENCE is an 

ongoing project, its major components have been 

developed and tested. We have conducted initial 

evaluation of FENCE under a wide range of computing 

settings. Experimental results show that the FENCE 

approach is promising and has a true potential. 

We are using FENCE as a framework to develop and 

test advance fault tolerant mechanisms. Our on-going 

efforts include the investigation of advanced failure 

diagnosis and prognosis techniques, the development 

of better integration and coordination support, and 

extensive evaluation with real applications on 

production systems. The ultimate goal of this project is 

to provide an end-to-end fault management system for 

high performance computing. 
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