
HCompress: Hierarchical Data Compression for
Multi-Tiered Storage Environments

Hariharan Devarajan, Anthony Kougkas, Luke Logan, and Xian-He Sun
Department of Computer Science, Illinois Institute of Technology, Chicago, IL
hdevarajan@hawk.iit.edu, akougkas@iit.edu, llogan@hawk.iit.edu, sun@iit.edu

Abstract—Modern scientific applications read and write
massive amounts of data through simulations, observations, and
analysis. These applications spend the majority of their runtime
in performing I/O. HPC storage solutions include fast node-local
and shared storage resources to elevate applications from this
bottleneck. Moreover, several middleware libraries (e.g., Hermes)
are proposed to move data between these tiers transparently.
Data reduction is another technique that reduces the amount of
data produced and, hence, improve I/O performance. These two
technologies, if used together, can benefit from each other. The
effectiveness of data compression can be enhanced by selecting
different compression algorithms according to the characteristics
of the different tiers, and the multi-tiered hierarchy can benefit
from extra capacity. In this paper, we design and implement
HCompress, a hierarchical data compression library that
can improve the application’s performance by harmoniously
leveraging both multi-tiered storage and data compression.
We have developed a novel compression selection algorithm
that facilitates the optimal matching of compression libraries
to the tiered storage. Our evaluation shows that HCompress
can improve scientific application’s performance by 7x when
compared to other state-of-the-art tiered storage solutions.

Index Terms—hierarchical, multi-tiered, data compression,
data-reduction, dynamic choice, workflow priorities, library

I. INTRODUCTION

Modern scientific applications, spanning from complex

simulations to high-performance data analytics, generate,

process, and store extremely large amounts of data [1]. The

ability to process this explosion of data is now driving scien-

tific discovery more than ever [2]. These applications, widely

known as data-intensive computing, often spend a significant

amount of time in performing I/O [3]. In High-Performance

Computing (HPC), the underlying data are represented by files

that, typically, are stored in disk-based parallel file systems

(PFS). However, the evolution of processing technology (i.e.,

CPU, RAM) has far exceeded the storage capabilities which

has led to a performance gap between the compute and

storage resources. This phenomenon is known as the I/O
bottleneck [4], and causes performance degradation, complex

deployment models, and limited scalability.

Several middleware software solutions have been introduced

to tackle this I/O bottleneck problem. For instance, data

access optimizations such as data buffering and caching,

data prefetching, and data aggregations hide the gap between

compute and I/O by offloading the I/O cost to an intermediate

temporary space (e.g., main memory, buffers, SSD, etc.,)

so that application can continue the execution while data

is moved asynchronously to a slower remote shared storage

(e.g., PFS). Similarly, some system architectures include

intermediate, specialized resources such as I/O forwarders,

burst buffers, and data staging nodes that are closer to the

compute nodes, and thus, offer lower data access latency and

higher throughput, effectively masking the I/O gap. Finally,

data reduction optimizations such as deduplication [5],

filtering [6], subsampling [7], and compression [8] aim to

reduce the data footprint, and thus, the cost of moving large

amounts of data to/from the slower remote storage system.

The effectiveness of all these solutions is directly proportional

to the amount of available space in an Intermediate Temporary

Storage (ITS) (i.e., scratch space) and its utilization. The

more capacity that the ITS has, the more important the I/O

utilization becomes. As the amount of RAM per core keeps

decreasing [9], it is imperative, more than ever before, to

maximize the resource and capacity utilization of ITS space.

There are two orthogonal approaches to achieve this

goal: one that relies on the addition of new hardware that

increases the available ITS capacity and another that opts to

reduce the amount of data redirected to ITS. First, modern

storage systems have introduced new specialized hardware

technologies such as High-Bandwidth Memory (HBM),

Non-Volatile RAM (NVRAM), and Solid-State Drives (SSD)

by organizing them in a multi-tiered storage hierarchy [10]

(i.e., higher tiers are faster but smaller in capacity). To

overcome the added complexity in the storage stack, several

middleware solutions such as Hermes [10] and Univistor [11]

have been introduced to transparently manage these tiers.

However, the performance of such multi-tiered solutions is

determined by their ability to place more data in the upper

tiers, which offer lower latency and higher bandwidth.

Second, there are several software-based solutions that aim

to reduce the data volume placed on ITS. The most commonly

used is data compression [12], [13], where CPU cycles are

used to apply compression/decompression on the data before

they are stored/retrieved to/from the disks, resulting in shorter

I/O times caused by the smaller data footprint. Thus, there

is a trade-off between the amount of time spent compressing

data and the amount that I/O cost is reduced. This has led to

a plethora of specialized compression libraries that optimizes

data compression based on certain types of data, workloads, or

domains [14]. However, the performance characteristics of dif-

ferent data compression solutions are often determined by their

ability to balance the used resources effectively (CPU cycles -

I/O device target). Thus, choosing the right compression tech-

557

2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPS47924.2020.00064

nique for a given scenario and target environment is nontrivial.

While the above solutions have been proven to be effective

at increasing the available ITS space, they work in isolation

which can lead to resource under-utilization, poor flexibility,

and inelastic configuration of ITS. In this study, we focus on

the intersection of multi-tiered storage and data compression.

In such an environment, we make the following observations:

a) Multi-tiered storage does not utilize data compression.

Existing software places data in the tiers without applying

compression, which leads to under-utilization of expensive

resources (e.g., NVMe). At best, some solutions may naively

apply the same compression across all tiers which leads to a

missed optimization opportunity since each tier may benefit

from different compression algorithms. If data compression

was efficiently utilized, it would increase the overall capacity

of the tiers improving the effectiveness of I/O optimizations

(e.g., more buffered or cached data, more aggregation space,

etc.). b) Data compression is not tailored for multi-tiered
storage. Compression/decompression often benefits from bal-

ancing the time spent in compression with the achieved reduc-

tion in I/O time. However, in multi-tiered environments, this

trade-off can be applied per-tier increasing the optimization

opportunity of this technique. For the same overall time

budget, one could apply heavier compression on RAM than

on NVMe SSD (as the medium is faster). For a given input,

this creates a matching of the performance characteristics of

different compression choices and the storage tiers.

In this paper, we present HCompress, a new hierarchical

data compression engine for multi-tiered storage environments

that maximizes the available ITS space while minimizing the

overall time spent. It does so by using a multi-dimensional

dynamic programming optimization algorithm to optimally

match the following: a) incoming data attributes (e.g.,

data type, size), b) each tier’s specifications (e.g., capacity,

latency, throughput), and c) compression characteristics (e.g.,

compression/decompression speed and ratio). HCompress uses

a cost-based model, enhanced with reinforcement learning, to

predict the expected performance of each compression library

and storage tier combination. HCompress can attach to existing

multi-tiered software to enable transparent hierarchical data

compression. The main contributions of this work are:

1) Demonstrating how the combination of data compres-

sion and multi-tiered storage can optimize ITS (III).

2) The design of HCompress, a hierarchical compression

library for tiered storage environments (IV).

3) A novel compression selection algorithm which maps

the compression libraries to the tiered storage (IV-F1).

4) Quantifying the benefits of a hierarchical compression

engine for complex scientific workloads (V).

II. BACKGROUND AND RELATED WORK

Scientific computing deals with overwhelming amounts

of data [15] which increases the performance gap between

computing speed and traditional storage systems [16]. To

tackle this I/O bottleneck problem, several middleware soft-

ware solutions have been introduced to improve data access

to/from storage resources. Data buffering [17] boosts the

write-performance of an application by storing data into a fast

intermediate device (e.g., RAM) and, then, asynchronously

flushing it to the underlying storage. Data aggregation [18]

gathers data from various sources into a temporary space (e.g.,

RAM) and collectively writes it to the underlying storage

system in an efficient manner. Data caching [19] boosts an

application’s I/O performance by keeping frequently accessed

data in a cache so that, when the same data is needed next time,

it could be quickly retrieved. Data Prefetching [20] reads data

into a temporary prefetching cache ahead of a read operation to

mask the disk access latency. Data staging [21] pre-loads data

in a set of specialized staging resources before the application

starts to optimize data access. All these I/O optimizations

critically depend on the availability of the ITS space to

maximize their performance benefits. The community has

proposed two promising, but highly orthogonal, approaches

to improve the capacity and utilization of the ITS.

A. Multi-Tiered storage hierarchy
Latest supercomputer designs include new hardware tech-

nologies in an effort to mask the I/O gap between compute

nodes and the remote shared PFS. To handle the high data pro-

duction rate, compute nodes are now equipped with fast node-

local devices such as Non-Volatile Memories (NVM) [22]

including Solid State Drives (SSDs), Phase-change Mem-

ory (PCM) [23], Resistive-RAM (ReRAM) [24], and High-

Bandwidth Memory (HBM) [25]. In addition, some system

designs include a flash-only shared burst buffer tier [26].

For example, National Energy Research Scientific Computing

Center (NERSC) Cori machine [27] uses CRAYs Datawarp

technology [28]. Trinity [29] supercomputer, at the Los

Alamos National Laboratory, uses a burst buffer installation

of 3.7 PB capacity and 3.3 TB/s bandwidth. Such burst buffer

deployments can offer higher throughput and lower latency

due to their proximity to compute nodes and the more capable

storage hardware [30]. However, traditional file systems are

designed to manage a single tier of homogeneous storage

devices [31], and, thus are not ready to handle the added

complexity in the storage stack. Each of the added tiers of

the memory and storage hierarchy are independent systems

which increases the complexity for the end users [32]. To over-

come this, several middleware solutions such as Hermes [10],

Univistor [11] and Proactive Data Containers [33] have been

introduced to transparently manage these layers. However, the

capacity of the added tiers is orders of magnitude smaller than

the PFS and none of the above multi-tiered software utilizes

any data reduction techniques that could significantly increase

the tier utilization. Data reduction optimizations are largely

unexplored in these multi-tiered environments.

B. Data Compression Techniques
Complex scientific workflows frequently exchange critical

data between its various components [34]. Some common

data interactions include inter-process communication [35],

archival storage [36], data aggregation [37], etc. To optimize

these interactions, applications often use data compression [38]

558

to reduce the amount of data transmitted between these com-

ponents or to external storage. For instance, applications such

as AstroPortal [39], Community Earth System Model [40], and

Particle Physics simulations [41] utilize compression to reduce

the cost of data movement within the application. Similarly,

many HPC applications [38], [42] perform data compression

to reduce the amount of intermediate data produced in the

staging servers. All these applications showcase the different

compression needs of these workflows. Common compression

algorithms leverage the nature of data to encode them more

efficiently. For instance, Snappy [43] was built to work best

on textual data, whereas quickLZ [44] works best for integer

data. Authors of [45] have shown that this approach could lead

to sub-optimal performance. In our previous work [14], we

explored the benefit of optimizing compression based on the

desired application priorities. Additionally, data compression

could be further optimized since most of these HPC facilities

are now equipped with multi-tiered storage. For instance,

based on which tier of hierarchy the data is transmitted to, a

suitable compression algorithm could be chosen to match the

performance characteristics of that tier. This further motivates

us towards a hierarchical data compression engine that can

boost the overall performance of scientific applications.

III. MOTIVATION AND PROBLEM STATEMENT

To motivate our approach of introducing data compression

to a multi-tiered storage environment, we investigated Vector

Particle-In-Cell (VPIC) [46], a general-purpose simulation

code for modeling kinetic plasmas in spatial multi-dimensions.

In this application, each process produces data of simulated

particles and writes them, at the end of each time-step, to

storage. To visualize the problems we identified, we run VPIC

with the following configuration: 2560 processes execute

VPIC in 16 timesteps, each process produces 1GB of data

for an overall data size of 8 TB organized in an HDF5 file.

We run this test on Ares cluster at the Illinois Institute of

Technology [47]. As Ares cluster has a multi-tiered storage

system, we use Hermes [10] library to perform hierarchical

buffering. We configure Hermes to use 16 GB of main

memory, 32 GB of NVMe, and 2 TB of Burst Buffers,

and lastly a 24-node OrangeFS for PFS. Figure 1 shows the

results with X-axis showing the different configurations tested,

Y-axis time elapsed in seconds, and the secondary Y2-axis

the achieved compression ratio when applied. As a baseline,

we run VPIC on top of the PFS with no compression.

Results show that without multi-tiered buffering and

compression, VPIC takes 4270 seconds to complete. When

VPIC runs with multi-tiered buffering enabled (i.e., on top

Hermes), the application’s runtime is optimized by 2.5x over

the baseline PFS. When compression is enabled, significant

application performance variability can be observed.

Specifically, when light compression is applied (Brotli),

an 1.93x reduction in the execution time is achieved by

the smaller data size (i.e., 2x compression ratio in only

90 sec compression time). On the other hand, when heavy

compression is applied (Zlib), the benefit of compression

0
1
2
3
4
5
6
7
8

0
500

1000
1500
2000
2500
3000
3500
4000
4500

None None Brotli Zlib Bzip Brotli Zlib Bzip Multi
Comp

Single
Tier

(PFS)

Multi
Tiered

(Hermes)

Single
Tier

(PFS)

Multi
Tiered

(Hermes)

Multi
Tiered

CO
M

PR
ES

SI
ON

 R
AT

IO

TI
M

E
(S

EC
ON

DS
)

SCENARIOS

Compression Time Compressed I/O Time I/O Time Compression Ratio

Fig. 1. VPIC running with data compression

is offset by the prolonged compression time (i.e., 5x

compression ratio but in 3431 sec compression time). Finally,

when unsuitable compression is applied, we observe that the

data size might not decrease. In some cases, compressed

data size might even be bigger than the uncompressed

data [48]. For instance, VPIC data is not compressible by

Bzip’s algorithm, hence, the longer I/O time observed. This

performance variability can be caused by the ability of each

compression library to apply meaningful compression [14].

It is clear that, both optimizations (i.e., multi-tiered buffer-

ing and data compression) should be combined for a greater

overall benefit since, if compression is applied, more data can

fit in the upper tiers of the storage hierarchy. For example, as

it can be seen in the figure, VPIC runs roughly 2x faster, when

both multi-tiered buffering and Brotli compression are

enabled at the same time, compared to applying multi-tiered

buffering or data compression individually. However, applying

the same compression to all tiers of the hierarchy can lead to

missed potential. Carefully choosing the appropriate compres-

sion algorithm for each tier can lead to the best performance.

However, combining data compression and multi-tiered buffer-

ing is non-trivial. Matching compression metrics to the per-

formance characteristics of each tier (i.e., a faster, but smaller

in capacity, tier should perform more data compression than a

slower, but larger in capacity, tier) is extremely challenging but

rather rewarding, as it can be seen in the figure. This dynamic

matching would both increase the resource utilization of the

storage hierarchy and enable more effective data compression.

Problem Formulation: HCompress aims to improve the uti-

lization of ITS by intelligently combining multi-tiered systems

with data compression. Consider an application consisting of

n I/O tasks with C compression libraries in a hierarchical

environment with L storage tiers. We can formulate the

optimization problem as shown in Table I. The objective

function tries to minimize the overall time by compressing

more data on higher tiers. Higher tiers have a smaller index. A

global minima will occur when most of the data fits in higher

tiers. This depends on the workload priorities as well as tier

characteristics such as the tier’s available capacity, access

latency, and bandwidth. Furthermore, the objective function

also considers the possibility of no compression since under

certain system configurations, data compression might hurt the

overall performance of the application. In the table, constraints

1-3 ensure a small number of sub-problems ensuring the low

cost of the dynamic programming algorithm. Additionally,

559

TABLE I
PROBLEM FORMULATION

Given i, an I/O task defined as
”Applying Compression + Performing I/O”

C, a set of compression algorithms with each element c
tc, compression time for algorithm c
td, decompression time for algorithm c
rc, compression ratio for algorithm c
L, a set of tiers with each element l

Define P , indivisible sub-tasks of task i
Size(p), size of piece p
Concurrency(L), sum of hardware lanes in all tiers
Length(x), length of vector x
Duration(p, c, l), the time taken to execute p sub-task

with c compression on l tier.

Minimize
∑P

p=0 Duration(p, c, l)
Subject to Size(p) mod 4096 = 0
(constraints) Length(P) ≤ Concurrency(T)

Length(P) ≤ Length(L)
rc ≥ 1
Size(p) ≤ Size(l)

sub-problems are highly reusable which further reduces the

complexity of the algorithm. Constraint 4 ensures the selected

compression will actually result in data reduction. Finally,

constraint 5 guarantees that a sub-task can fit in a target tier.

IV. HCOMPRESS: HIERARCHICAL DATA COMPRESSION

HCompress is a data compression engine that leverages

the existence of multiple tiers of the storage hierarchy to

holistically optimize I/O operations and boost application

performance. The main idea behind HCompress is to optimally

match an I/O request with an appropriate compression

algorithm and a suitable multi-tiered data placement. In other

words, HCompress employs an intelligent, hierarchy-aware

compression and data placement (HCDP) algorithm. To

achieve this, HCompress uses an input data analyzer, a

compression manager that has access to a corpus of compres-

sion libraries, a system monitor, a compression performance

predictor, and an HCDP selection engine. Each I/O request is

transformed into a task as a data buffer, operation tuple (e.g.,

compress and write or read and decompress). HCompress

analyzes the task data to identify data attributes such as data

type and format. HCompress also analyzes the system to

identify the performance characteristics of each available tier.

The selection engine then combines this knowledge to produce

a compression and data placement schema which is finally

passed to the compression manager for execution. HCompress

is designed with the following principles in mind: 1)

Hierarchy-aware: HCompress should apply the appropriate

compression algorithm per tier by leveraging the different tier

performance characteristics. This increases the effectiveness

of compression by introducing different compression libraries

on different tiers, thereby increasing the utilization of the

hierarchy. 2) Dynamic: HCompress should be able to dynam-

ically choose the required compression library with negligible

cost and reconfigure itself for various requirements of the

application transparently. 3) Flexible: HCompress should be

able to unify all interfaces of the compression libraries by

defining a common platform to interact with. This would

allow the end-users to easily add new libraries to HCompress.

Fig. 2. HCompress design

A. Design and Architecture
Figure 2 shows the design of the HCompress ecosystem1,

the main library, and an external profiling tool. Applications

can be compiled with the library (libhcompress.so) and use its

native API (e.g., compress()/decompress()). To increase user-

productivity and support legacy code, the HCompress library

can also be dynamically linked using LD PRELOAD. This

way, HCompress can transparently intercept I/O calls and redi-

rect them to its internal API. Our proposed design incorporates

modern extreme scale system designs with compute node-local

NVMe drives, a shared tier of burst buffers, and a remote

PFS. The information about the tiers (e.g., bandwidth, device

location, interface, etc.,) is provided by the user. However, the

design of HCompress is generic and works with n-tiers of stor-

age hierarchy. The flow of HCompress operations is as follows.

In the case of compression (red arrows in the figure),

the application uses the HCompress library API and then

the associated data is passed for analysis to the Input

Analyzer (IA) which identifies the data attributes, namely

data-type, distribution of data, and represented format. The

Compression Cost Predictor (CCP) maintains a table of

expected compression costs for each combination of the

above data attributes. Furthermore, a System Monitor (SM)

maintains the current system status, namely available tiers

and their respective remaining capacity. The HCDP engine

uses these attributes, the predicted compression cost, and

the current system status to produce an optimal compression

and placement schema. A schema consists of P sub-tasks,

where each sub-task p contains the target tier along with

the ideal compression library given by the optimization. The

Compression Manager (CM) executes the schema by applying

the indicated compression for each sub-task and encodes

the compressed data with the appropriate metadata which is

later used for decompression. Finally, the Storage Hardware

Interface (SHI) is invoked to perform I/O on the multi-tiered

storage. In the case of decompression (green arrows in the fig-

ure), the API will invoke the SHI to read the compressed data

from the storage source. The CM will decode the metadata

to identify which compression library was applied. It then

decompresses the data and delivers it back to the application.

1https://bitbucket.org/scs-io/hcompress

560

Furthermore, HCompress utilizes an external profiling tool,

HCompress Profiler (HP). The major objective of HP is to

provide assistance on improving the accuracy of the predictive

models used by the main library. It provides an initial seed,

in the form of a JSON file, that all models use to bootstrap.

This seed acts as a knowledge repository for HCompress

to choose the correct compression for a given input. HP

runs before the application starts to generate the seed by

evaluating the performance of each compression library

with a variety of input data (predefined or user-provided).

Additionally, HP performs a discovery and benchmarking

of the available hardware to produce a system signature

which reflects the performance characteristics of the storage

hierarchy. Lastly, in addition to the optimization constraints

mentioned in section III, HCompress builds a light-weight

dynamic mechanism to switch the compression libraries at

run-time. Our prototype implementation of HCompress builds

on top of our previous work, Hermes [10] and Ares [14].

B. Application Programming Interface
HCompress’s Application Programming Interface (API) has

two responsibilities: a) define the hierarchical compression

interface, and b) to transparently intercept application I/O

calls. To achieve the former, HCompress defines a simple

Compress(task) and Decompress(task) API which

performs the compression and decompression operations

respectively. For the latter, all I/O calls such as POSIX and

HDF5 (e.g., fopen, H5Dwrite, etc.,) are intercepted using

dynamic linking, which internally calls the native API.

Additionally, the API is responsible to intercept application’s

initialization (MPI Init()) and finalization (MPI Finalize())

calls which allows the main library to initialize its components

(e.g., metadata, engine repository, establish connections to the

external I/O clients, load compressors, etc.). On application

finalization, HCompress frees all in-memory structures and

stores the updated JSON back to storage for future reference.

C. Input Analyzer
The Input Analyzer (IA) is responsible for deducing the

input data characteristics such as type, distribution, and format.

For data-type and format inference, HCompress uses state-of-

the-art techniques such as sub-sampling, binary decoding, and

introspection [14]. The IA also examines the content distribu-

tion (as certain distributions are more compressible [49]) of

the data and classifies each input buffer as Normal, Gamma,

Exponential or Uniform. Distribution detection is performed

statically using techniques such as sub-sampling and random

partitioning [50]. Lastly, several data attributes can be easily

obtained using metadata parsing of self-described portable data

representations (e.g., HDF5, NetCDF, Avro, RDD, Parquet,

etc.,) used in most scientific and cloud applications. Hence,

in most practical cases, the IA is extremely fast and accurate.

D. Compression Cost Predictor
The Compression Cost Predictor (CCP) is mainly respon-

sible to provide the HDCP engine with an Expected Com-

pression Cost (ECC) for a given input. The ECC is defined

as a 3-tuple of compression speed (in MB/s), decompression

speed, and compression ratio (original over compressed size).

The CCP employs a linear regression model, implemented

using the dlib library, which, given a set of inputs, calculates

the expected cost for each compression library. The model

is initialized with the seed, generated by the HCompress

Profiler, and evolves through time. The model input is: data-

type (e.g., integer), data-format (e.g., csv), compression library

(e.g., bzip2), and distribution (e.g., gamma). The model output

is the ECC. Based on the predefined initial seed, our model

demonstrated a good fit with an adjusted R2 value of 94%,

all variable p values less than 0.02, and a high f-statistic score

of 928.13. However, on real datasets, we observed that the

R2 value drops to 83%. This is due to the fact that different

datasets might have a different data distribution even when

they have the same data type which, in turn, may result in

different compression cost. During our implementation, we ob-

served that, when the data distribution changes from uniform

to gamma, the accuracy of our model may vary by ±11%.

To stabilize its accuracy, we incorporated a feedback mech-

anism using reinforcement learning. For every n operations

(n is configurable), the compressors communicate the actual

compression cost back to the CCP (i.e., feedback loop) which

updates its model with the new observations. This mechanism

increases the R2 value to an average of 96% in all scenarios

tested. This makes the model learn and grow as the application

runs. At the end of application, we store the latest model back

to the JSON seed so that it can be reused in future runs.

E. System Monitor
The System Monitor (SM) is responsible for timely pro-

viding the status of the storage hierarchy. The status of the

hierarchy includes availability (boolean), load (queue size) and

remaining capacity (in bytes) per tier. An initial system state

is provided by the HCompress Profiler. Henceforth, the SM

constantly monitors the changes in status of each tier by peri-

odically measuring the above metrics. The SM is implemented

using a background thread that executes a collection of system

tools (i.e., du and iostat found in most Linux distributions).

The status of the hierarchy is required by the HDCP engine to

optimally derive the placement of each new incoming I/O task.

F. Hierarchical Compression and Data Placement Engine
The HCDP Engine (engine from now on) is the brain of

HCompress. This component is responsible for devising the

compression and placement schema for an incoming I/O

task. The engine receives the input data characteristics from

the IA, the expected compression cost from the CCP, and

the current system status from the SM. It runs a recursive

multi-dimensional optimizer (described below) to produce

one or more sub-tasks for each input task. The set of

created sub-tasks comprises of a schema that is passed to

the Compression Manager (CM) for execution. Furthermore,

the engine can dynamically tune its mappings to adaptively

match the application’s compression requirements.

1) Hierarchical Compression and Placement Algorithm
(HCDP): When a task is received, the engine recursively

matches and places data for all combinations of target tier

561

and compression library. During the calculation of the cost of

each sub-problem, the engine pulls the current status of the tier

and estimated compression cost from the SM and CCP respec-

tively. For every combination, if the compressed data can fit in

an upper layer, then it will be added to the optimization space

as a sub-problem. Otherwise, the task will be split in two parts

in multiples of 4096 bytes: one that can fit in the remaining

capacity of the current tier and one holding the rest of the

I/O task. This satisfies constraints 1, 2, and 3 of the problem

statement described in Section III. Our choice of 4096 bytes

is motivated from the page-size of RAM and the block size of

modern storage devices such as NVMe SSDs. This will lead

to aligned I/O. More importantly, however, this choice makes

the memoization highly effective as the sub-problems would

be reusable. One critical point to note is that ”no-compression”

is one of the choices available to the engine. This is because in

certain circumstances, performing compression might hurt the

overall performance [48]. The solution can be expressed as a

recursive dynamic programming optimization. The mathemati-

cal formulation is given in equations 1 and 2. Additionally, the

cost function of this optimization is given by equations 3 and 4.

Match(i, l, c) =
{

P lace(i, l, c) sl ≥ sic
P lace(il, l, c) +Match(aic, l + 1, c) otherwise

(1)

Place(i, l, c) = Min

⎧⎨
⎩

t(i, l),
t(i, l, c),

Match(i, l + 1, c),
Match(i, l, c+ 1)

⎫⎬
⎭ (2)

t(i, l) =
si
bl

(3)

t(i, l, c) = wc∗tc+t(i, l)−wr∗ t(i, l) ∗ (rc − 1)

rc
+wd∗td (4)

Match represents the matching of I/O task i to a tier l with

a compression library c. l is the index of a tier in the set

of all tiers L, where lower values of l represent upper tiers

(e.g., l = 0 represents RAM). c represents the index of the

compression library in the set of all compression libraries C,

with c = 0 representing no compression. Also, wc, wd, and

wr represent weights for tc, td and rc respectively. Place
represents the placement of task i on tier l with compression

library c. Place assumes that the task can fit in the current

tier after applying compression c. sic is the size of task i after

applying compression c given by sic = si
rc

. aic represents

the remaining size of task i given by aic = sic − sl. Finally,

t(i, l, c) and t(i, l) are the cost functions of the time to execute

task i on tier l with and without compression respectively. The

above dynamic programming optimization is almost constant

with time complexity of O(2 ∗ (len(L))2), where len(L) is

very small (in the order of tens). Hence, the time complexity

of HDCP algorithm is practically O(1).
2) Application compression priorities: The engine chooses

the optimal compression-to-tier mapping for a given I/O task

based on the equations 3 and 4. When compression is applied,

the cost function is dependent on three factors: compression

time, decompression time, and reduced I/O time. Additionally,

the cost function has three weighted components attached to

the above metrics. These weights, which are configurable at

runtime, dictate the priority of the application. Examples of

such weight values are shown in Table II. Users can define a

global weighting scheme in the JSON seed. More advanced

users can leverage HCompress API to dynamically change

these weights at runtime.

TABLE II
COMPRESSION PRIORITIZATION EXAMPLES.

Scenario Ratio Compression Speed Decompression Speed
Asynchronous I/O 0 1 0

Archival I/O 1 0 0

Read After Write 0.4 0.3 0.3

G. Compression Manager

The Compression Manager (CM) is responsible for manag-

ing the interface to several compression libraries. It unifies

several compression APIs under a common interface and

decorates compressed data with enriched metadata.

1) Compression library unification: In HCompress, the

unification of the compression libraries is performed by

the Compression Library Pool (CLP). The CLP has three

main parts: 1) Compression Library Interface: defines a set

of virtual functions which encapsulates the functionality

of a compression library along with a universal signature,

2) Compression Library Implementation: implements the

interface we defined for a specific compression library, and

finally, 3) Compression Library Factory: chooses a specific

implementation based on a given input. The Compression

Library Interface uses a template pattern to define a generic

interface which can be easily and efficiently specialized. It

consists of the following compression libraries [14]: bzip2,

zlib, huffman, brotli, bsc, lzma, lz4, lzo, pithy, snappy, and

quicklz. It essentially implements the higher-level functions

defined by the interface into compression-library-specific calls

along with error handling as defined by the interface. Finally,

the Compression Library Factory uses an adapter-plus-factory

design pattern to efficiently switch between libraries. The

choice of the compression library is dependent on the constant

provided by the caller class. The factory is the only place from

which caller can instantiate the implementations. This enables

the CLP to easily call new libraries dynamically without

changing existing code of the caller in O(1) complexity.

2) HCDP Algorithm metadata: Since the HDCP engine

can choose different compression libraries for different inputs

of data and for different tiers, HCompress needs to maintain

which compression library was applied, how it was applied

(i.e., offsets of the input buffers), and the original size of the

uncompressed data. This is accomplished by utilizing a small

header (i.e., 16-bytes) attached to each sub-task which holds

this info as a 4-tuple of {start-offset, length, compression
library, resulting size}. This allows the Compression Manager

to easily determine which compression library to use to

later decompress the data. This method is efficient and

highly scalable as each application process can independently

identify the compression library from the data itself.

562

0.76%
0.06%

49.24%49.24%49.24%
1.00%

48.94%

HCDP Engine
Library selection
Compression
Feedback
Write

(a) Write Operation

1.15%11
0.06%0 06%%%0.06%%%
49.10%1149 149.149.149 1

1.19%1.19%19%19%1.191919
48.50%

Library Metadata Parsing
Library selection
Decompression
Feedback
Read

(b) Read Operation

Fig. 3. HCompress anatomy of operations.

V. EVALUATION

A. Methodology and Experimental Setup
1) Configurations: We ran all of our experiments on the

Ares supercomputer at the Illinois Institute of Technology.

The entire cluster runs on a 40 GBit Ethernet with RoCE

capabilities. We configure the buffers, unless specified other-

wise, to fit 20% of data in local RAM, 30% in local NVMe

and rest in burst buffers. Cluster specifications are shown in

Table III and Table IV shows the configurations tested.
TABLE III

TESTBED SPECIFICATIONS.
Node Type CPU RAM Disk
Compute x64 Intel Xeon Silver 4114 @ 2.20GHz DDR4 96GB 512GB NVMe SSD
Burst Buffers x4 AMD Dual Opteron 2384 @ 2.7Ghz DDR3 64GB 2x512GB SSD
Storage x24 AMD Dual Opteron 2384 @ 2.7Ghz DDR3 32GB 2TB HDD

TABLE IV
TEST CONFIGURATIONS.

Test case Abbreviation Hierarchical Compression
Baseline vanilla PFS BASE No No
Single-tier with compression STWC No Yes
Multi-tiered without compression MTNC Yes No
HCompress HC Yes Yes

2) Workloads: To evaluate HCompress, we first use

micro-benchmark workloads to measure the performance of

internal components. The micro-benchmarks are from HDF5

source code [51], where each process creates a shared HDF5

file and reads/writes an independent, but overall contiguous,

block of data. Additionally, we use these workloads to

evaluate the impact of data compression on multi-tiered

storage and vice-versa. Finally, we use I/O workloads from

real scientific applications to compare HCompress against

Hermes [10], a state-of-the-art multi-tiered storage software

solution. The scientific workloads include VPIC-IO [46] and

BD-CATS-IO [52], which are I/O kernels of a large-scale

space weather plasma simulation code and a corresponding

data analysis code. In VPIC-IO, each MPI process writes

data related to eight million particles and each particle has

eight floating point properties with a total size of 32 bytes.

The total size of output data is n ∗ 8 ∗ 220 ∗ 32, where n is

the number of MPI processes. BD-CATS-IO reads properties

from datasets similar to those produced by VPIC for a

parallel clustering algorithm to identify the different groups

of particles. In all cases, we set the workload priority to equal

for compression metrics, unless specified otherwise.
3) Performance metrics: We measured the time required to

open, write, read, and close a file. Additionally, we define

throughput as the rate of requests processed per second.

Finally, all tests were executed five times and we report the

average along with standard deviation.

0

.50B

1.0B

1.50B

2.0B

2.50B

TH
RO

UG
HP

UT
 (T

AS
K/

SE
C)

TASK SIZE

(a) HCDP Algorithm

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

5.0K

10.0K

15.0K

20.0K

25.0K

Normal Gamma Exp Uniform

M
OD

EL
 A

CC
UR

AC
Y

(R
2)

TH
RO

UG
HP

UT
(T

AS
K/

SE
C)

DATA DISTRIBUTION

Throughput Accuracy

(b) Compression Cost Predictor

Fig. 4. HCompress internal components performance.

B. HCompress Internal Component Evaluation
In this section, we first evaluate the anatomy of HCompress

write and read I/O tasks to better understand any associated

overheads of our approach. We then evaluate the performance

of internal components. Finally, we evaluate the impact of data

compression on multi-tiered storage and vice-versa.

1) HCompress Overhead Analysis: Each I/O task in

HCompress solves the problem of where to place data in

the hierarchy and which compression algorithm to use to

compress the data. In this test, we perform 1K tasks of 1MB

and present the overall time breakdown into its components in

Figure 3 (write 3(a) and read 3(b)). We observe that, 98% of

the time, both read and write operations are spent in I/O and

compression/decompression. A fraction of the overall time is

spent by the HCDP engine, library selection, and feedback

combined. This shows that the cost of the mapping and

library selection is low and remained on average below 2%.

Specifically, the mapping engine is 0.76%, the library selection

takes 0.06%, and feedback takes 1% of the overall time. A

similar trend is shown in the read operation, where library

metadata parsing only takes 1.15%, the library selection takes

0.06%, and feedback takes 1.19% of the overall time.

2) Performance of the HCDP Engine: The performance

of the algorithm that the engine runs is very critical for the

write path within HCompress. Hence, the algorithm should

demonstrate high throughput of mapping various I/O tasks

to their corresponding tiers and compression libraries. To

evaluate this, we perform 8K writes of various task sizes

and calculate the throughput of the engine. The throughput

of the algorithm is shown in Figure 4(a). In this figure, the

x-axis represents various task sizes and the y-axis shows the

overall throughput (tasks/second). We can observe that until

4MB task size, the throughput of HCDP algorithm is almost

constant at about 2.44 billion tasks per second. As the I/O

size increases, the throughput drops by 2-3%. This is due to

the fact that for bigger tasks, the HCDP algorithm has to split

the task into several pieces (so that it can fit it into limited

capacity tiers) which make it span across multiple tiers.

Overall, this evaluation highlights that the HCDP algorithm

is very light-weight and has high, constant throughput.

3) Performance of the Compression Cost Predictor: The

CCP’s model accuracy is critical for the optimality of the en-

gine. As discussed in the section IV-D, we use a linear regres-

sion model with reinforcement learning to predict and learn the

variables of the cost function. To evaluate the performance of

563

0

200

400

600

800

1000

1200

TI
M

E
(S

EC
ON

DS
)

time

0
200
400
600
800
1000
1200

0
50

100
150
200
250
300
350
400
450

No
ne

br
ot

li

zl
ib

hu
ffm

an lz
4

bz
ip

qu
ic
kl
z

lz
o

lz
m
a

sn
ap

py bs
c

pi
th
y

HC
om

pr
es

s

Hermes

OV
ER

AL
L

TI
M

E
(S

EC
)

DA
TA

 F
OO

TP
RI

NT
 (G

B)

SCENARIOS TESTED

RAM NVMe BB time

Fig. 5. Impact of Data Compression on Multi-tiered Storage

this component, we perform 8K write tasks of 1MB size using

four different data distributions: uniform, normal, exponential,

and gamma. Since different distributions will result in different

compression ratios, compression times, and decompression

times, this test will show the ability of the feedback mecha-

nisms to learn new patterns and predict the cost accurately. In

figure 4(b), the x-axis shows the various data distributions, the

y-axis represents the throughput of the feedback engine, and

the y2-axis shows the accuracy achieved. We can observe that,

for all distributions, the model accurately predicts the compres-

sion cost (i.e., performance metrics). Specifically, it achieves

an accuracy of 95.54%. Additionally, the feedback mechanism

achieves a constant throughput at around 20K events per

second. This is due to the fact that linear regression is not

computationally intensive and can produce predictions quickly.

4) Impact of Data Compression on Multi-tiered Storage: To

quantify the benefits of enabling adaptive data compression in

multi-tiered storage, we run the following workload: 2560 MPI

ranks in 64 nodes issue 128 write tasks, of 1MB per process,

for a total size of 320GB. The hardware hierarchy is configured

as follows: 64GB RAM, 192GB NVMe, and 2TB BB. Figure 5

shows the results. In x-axis, we compare HCompress against

our baseline of Hermes’s data placement without compression

(depicted as None). Further, we compare against Hermes’s data

placement with compression enabled using several different

libraries. Note that, in this test configuration, Hermes will first

solve the data placement based on the uncompressed size of

incoming I/O and then apply the selected compression. The y-

axis shows the compressed data footprint in GB, depicted per

tier, and the y2-axis shows the elapsed time in seconds. As it

can be seen, applying compression reduces the amount of data

written in each tier, decreasing the overall execution time. For

instance, Hermes with brottli compressed the data down

to 203GB and wrote it in 634 seconds. On the other hand,

Hermes with zlib reduced even more the data footprint

(i.e., 70GB) thus achieving the overall execution time of 218

seconds. The key observation we make for Hermes is that the

tiers of the hierarchy will be under-utilized (e.g., Hermes with

lz4 only uses 17GB out of the 64GB available in RAM).

This is due to the fact that Hermes solves the data placement

before it applies compression. Contrary to this, HCompress

places the data in the tiers of the hierarchy considering their

compressed footprint which leads to significant performance

gains by up to 8x compared to no compression and at least

by 1.72x compared to other compression libraries.

0

10K

20K

30K

40K

50K

60K

RA
M

NV
M

e
Bu

rs
t B

uf
fe

r
M

ul
ti-

Ti
er

ed
RA

M
NV

M
e

Bu
rs

t B
uf

fe
r

M
ul

ti-
Ti

er
ed

RA
M

NV
M

e
Bu

rs
t B

uf
fe

r
M

ul
ti-

Ti
er

ed
RA

M
NV

M
e

Bu
rs

t B
uf

fe
r

M
ul

ti-
Ti

er
ed

RA
M

NV
M

e
Bu

rs
t B

uf
fe

r
M

ul
ti-

Ti
er

ed
RA

M
NV

M
e

Bu
rs

t B
uf

fe
r

M
ul

ti-
Ti

er
ed

RA
M

NV
M

e
Bu

rs
t B

uf
fe

r
M

ul
ti-

Ti
er

ed
RA

M
NV

M
e

Bu
rs

t B
uf

fe
r

M
ul

ti-
Ti

er
ed

Hc
om

pr
es

s

bsc pithy snappy lz4 huffman lzo brotli zlib

TA
SK

S
PE

R
SE

CO
ND

SCENARIOS TESTED

136947 136165 93995 104587 119716

Fig. 6. Impact of Multi-tiered Storage on Data Compression

5) Impact of Multi-tiered Storage on Data Compression:
The benefits of data compression rise from balancing com-

pression time with the reduction of I/O. Thus, this trade-off is

very critical to the overall task duration. To better understand

the impact of multiple tiers on the compression/decompression

rate, we run the following workload: 2560 MPI ranks in

64 nodes, each rank issues 512 tasks, each task consists of

compressing and writing 512KB and reading and decompress-

ing it back. The total amount of data written and read is

600GB. For a single tier, the whole dataset can fit in each tier

respectively. For multi-tier storage, the hierarchy is configured

as follows: 32GB RAM, 96GB NVMe, and 1TB BB. Figure 6

shows the results. In x-axis, we compare HCompress against

a collection of compression libraries applied per single-tier

and for all available tiers (depicted as multi-tiered). The y-

axis shows the throughput expressed in tasks per second.

As it can be seen, there is significant throughput variability

across tiers and across libraries. For instance, bsc, brottli,

and zlib demonstrate a stable rate across tiers since their

task completion time is determined by the compression and

decompression time (i.e., they apply heavy compression). On

the other hand, the throughput of pithy, snappy, lz4,

huffman, and lzo is very sensitive to the change of tier since

their task completion time is dominated by the I/O time (i.e.,

different tiers have different bandwidth resulting to different

I/O rate). Once we move to a multi-tiered scenario, we can

see that the achieved throughput gets balanced since the rate

variability across libraries and tiers is averaged out. However,

since a single compression library is applied on all tiers of

the hierarchy, we identify the missed potential for further

performance by mapping different libraries to different tiers.

HCompress capitalizes on this observation and uses the best li-

brary for each tier leading to a higher throughput. Specifically,

in this test, HCompress uses pithy on RAM, snappy on

NVMe, and brottli on the burst buffers since these libraries

achieved the best rate for the respective tier. In summary,

HCompress achieved 1.4-3x higher throughput compared to

other compression libraries applied on multi-tiered storage.

C. HCompress with Scientific Applications
1) VPIC-IO: Scientific simulations, such as VPIC [46],

typically progress in time steps. After one or more time steps

of computations, all processes concurrently checkpoint data to

the storage system. We use the VPIC-IO kernel to evaluate

how an application will benefit by HCompress. In VPIC-

IO, each process writes eight variables with a total size of

564

0

1,
17

5

1,
86

5

4,
41

9

8,
96

7

77
8 1,
31

4 2,
97

2

6,
01

0

44
1

65
1 1,

68
7

4,
61

2

81 11
1

30
6 71

8

0

2000

4000

6000

8000

10000

320 640 1280 2560

TI
M

E
(S

EC
ON

DS
)

PROCESSES

BASE STWC MTNC HCompress

Fig. 7. VPIC-IO

256MB in each time step. We run VPIC for 10 time steps.

The hierarchical hardware is configured with 12.5 GB RAM

and 25GB NVMe space which is insufficient for buffering data

for more than 5 time steps. Thus, the remaining data has to be

spilled to the next storage layer (e.g., burst buffers). To emulate

the computation behavior, we manually add a CPU-intensive

kernel of simple random matrix multiplications at an interval

of 60 seconds between checkpoints. Additionally, as VPIC-IO

is a write-only workload, we configure HCompress to prior-

itize compression time and compression ratio. The I/O time

for our baseline (labeled as BASE) represents only the time

required to write to the PFS for all the time steps. We compare

HCompress under the configurations shown in Table IV. This

test demonstrates the effect of applying an I/O optimization

independently (i.e., enabling compression OR enabling multi-

tiered buffering) and in combination (i.e., HCompress).

Figure 7 shows the results. We scale the number of

processes from 320 processes to 2560 processes to test the

scalability of each solution. The accumulated data of this test

does not fit entirely in the DRAM and NVMe, and therefore

will have to spill more than 60% of the data to the burst

buffers. As it can be seen, applying compression before we

write data to the PFS boosts the performance by 1.5x for the

largest scale since the data footprint is reduced significantly

before VPIC performs the write. Similarly, when enabling

multi-tiered buffering (Hermes but without compression), the

execution time reduced by 2x. Both optimizations work as

expected, but they work in isolation. In contrast, HCompress

compresses and places data in the hierarchy in an optimal way

and is able to fit more data in the upper tiers, which boosts the

performance even more. Results show a 12x improvement over

the baseline and 7x on average over the other optimizations.

2) BD-CATS analytics: Scientific applications often involve

workflows where data producers and consumers share data.

To evaluate HCompress’s support for scientific workflows,

we use BD-CATS-IO to read data produced by VPIC-IO. We

configure both programs to run with 10 time steps. Similar

to the experiment in V-C, data produced in 10 time steps

does not fit entirely in the DRAM + NVMe layers and has

to spill over to the burst buffers. We evaluate HCompress’s

acceleration of I/O by comparing it with compression on

single tier (STWC) and multi-tiered I/O buffering without

compression (MTNC). Our baseline remains the vanilla PFS

without any optimization applied. The execution is sequenced

by BD-CATS-IO starting after VPIC-IO finishes. Additionally,

as this workflow involves both write and read, we configure

HCompress to prioritize all the three compression metrics

0

2K

4K

6K

8K

10K

12K

14K

16K

BASE STWC MTNC HC BASE STWC MTNC HC BASE STWC MTNC HC BASE STWC MTNC HC

320 640 1280 2560

TI
M

E
(S

EC
O

N
DS

)

PROCESSES

VPIC-IO BD-CATS-IO

Fig. 8. VPIC-IO plus BD-CATS-IO workflow with 10 timesteps.

equally. We show in Figure 8 the results of this test. As it can

be seen, introducing single tier compression/decompression

in the workflow boosts performance by approximately 1.5x

over the baseline. Similarly, enabling multi-tiered buffering

increases performance by 2.5x on average compared to the

baseline since it utilizes upper (faster) tiers to buffer the data.

On the other hand, HCompress is 7x faster than both STWC

and MTNC due to its optimal data reduction and placement.

The benefit of combining both compression and hierarchical

buffering is compounding and significantly outperforms each

optimization individually. In summary, workflows that consist

of read after write patterns like VPIC and BD-CATS are

expected to benefit greatly from HCompress.

VI. CONCLUSION

Modern scientific applications operate on massive amounts

of data. The involved I/O is often the bottleneck in these

applications. To alleviate this problem, data access optimiza-

tions have been proposed, namely multi-tiered I/O buffering

and data compression. These two optimizations assume the

presence of intermediate temporary scratch space and their

effectiveness highly depends on its space availability. To

increase the space in ITS, multi-tiered storage has added

extra tiers to the storage hierarchy while compression aims

to minimize the data footprint. However, these approaches are

orthogonal and do not co-exist, which comes at a detriment

to both. In this paper, we present HCompress, a hierarchical

data compression engine for multi-tiered storage environments.

HCompress optimally combines the above optimizations under

the same runtime. We introduce a dynamic hierarchical data

compression and placement algorithm which maps the spec-

trum of compression libraries to the spectrum of tiers of the hi-

erarchy. Our performance evaluation demonstrates the impact

of multiple tiers on the data compression, the impact of apply-

ing compression to the hierarchical storage, and the impact of

doing both. HCompress can improve I/O performance signif-

icantly for scientific applications and workflows as shown in

this study. Specifically, HCompress performs 12x faster over a

baseline of vanilla I/O on top of a PFS, and up to 7x faster than

other competing solutions. As a future step, we plan to test our

system on larger-scale supercomputers with more applications.

We also plan to incorporate this technology into the Hermes

ecosystem and offer it as a readily available solution to users.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grant no. OCI-1835764 and CSR-

1814872.

565

REFERENCES

[1] A. Katal, M. Wazid, and R. Goudar, “Big data: issues, challenges,
tools and good practices,” in 2013 Sixth international conference on
contemporary computing (IC3). IEEE, 2013, pp. 404–409.

[2] R. Kitchin, “Big Data, new epistemologies and paradigm shifts,” Big
data & society, vol. 1, no. 1, p. 2053951714528481, 2014.

[3] A. Kumar, M. Boehm, and J. Yang, “Data management in machine
learning: Challenges, techniques, and systems,” in Proceedings of the
2017 ACM International Conference on Management of Data. ACM,
2017, pp. 1717–1722.

[4] D. A. Reed and J. Dongarra, “Exascale computing and big data,”
Communications of the ACM, vol. 58, no. 7, pp. 56–68, 2015.

[5] D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn, and J. Kunkel,
“A study on data deduplication in hpc storage systems,” in Proceedings
of the International Conference on High Performance Computing, Net-
working, Storage and Analysis. IEEE Computer Society, 2012, p. 7.

[6] Y. J. Stephanedes and A. P. Chassiakos, “Application of filtering tech-
niques for incident detection,” Journal of transportation engineering,
vol. 119, no. 1, pp. 13–26, 1993.

[7] L. Petersen, P. Minkkinen, and K. H. Esbensen, “Representative sam-
pling for reliable data analysis: theory of sampling,” Chemometrics and
intelligent laboratory systems, vol. 77, no. 1-2, pp. 261–277, 2005.

[8] H. K. Reghbati, “Special feature an overview of data compression
techniques,” Computer, no. 4, pp. 71–75, 1981.

[9] T. Jin, F. Zhang, Q. Sun, H. Bui, M. Romanus, N. Podhorszki, S. Klasky,
H. Kolla, J. Chen, R. Hager et al., “Exploring data staging across deep
memory hierarchies for coupled data intensive simulation workflows,”
in 2015 IEEE International Parallel and Distributed Processing Sympo-
sium. IEEE, 2015, pp. 1033–1042.

[10] A. Kougkas, H. Devarajan, and X.-H. Sun, “Hermes: a heterogeneous-
aware multi-tiered distributed I/O buffering system,” in Proceedings of
the 27th International Symposium on High-Performance Parallel and
Distributed Computing. USA: ACM, 2018, pp. 219–230.

[11] T. Wang, S. Byna, B. Dong, and H. Tang, “UniviStor: Integrated
Hierarchical and Distributed Storage for HPC,” in IEEE International
Conference on Cluster Computing. IEEE, 2018, pp. 134–144.

[12] D. Salomon, Data compression: the complete reference. Springer
Science & Business Media, 2004.

[13] K. Sayood, Introduction to data compression. Morgan Kaufmann, 2017.
[14] H. Devarajan, A. Kougkas, and X.-H. Sun, “An Intelligent, Adaptive,

and Flexible Data Compression Framework,” in Proceedings of the
IEEE/ACM International Symposium in Cluster, Cloud, and Grid Com-
puting (CCGrid’19). Larnaca, Cyprus: IEEE, 2019.

[15] P. Valduriez, M. Mattoso, R. Akbarinia, H. Borges, J. Camata,
A. Coutinho, D. Gaspar, N. Lemus, J. Liu, H. Lustosa et al., “Scientific
Data Analysis Using Data-Intensive Scalable Computing: the SciDISC
Project,” in LADaS: Latin America Data Science Workshop, no. 2170.
CEUR-WS. org, 2018.

[16] Y. Ma, H. Wu, L. Wang, B. Huang, R. Ranjan, A. Zomaya, and W. Jie,
“Remote sensing big data computing: Challenges and opportunities,”
Future Generation Computer Systems, vol. 51, pp. 47–60, 2015.

[17] J. C. Brustoloni and P. Steenkiste, “Effects of Buffering Semantics on
I/O Performance,” in In Proceedings of the Second USENIX Symposium
on Operating Systems Design and Implementation, 1996, pp. 277–291.

[18] W.-k. Liao and A. Choudhary, “Dynamically adapting file domain
partitioning methods for collective I/O based on underlying parallel
file system locking protocols,” in Proceedings of the 2008 ACM/IEEE
conference on Supercomputing. IEEE Press, 2008, p. 3.

[19] S. Dar, M. J. Franklin, M. Jonsson et al., “Semantic data caching and
replacement,” in VLDB, vol. 96, 1996, pp. 330–341.

[20] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp, “Parallel I/O
prefetching using MPI file caching and I/O signatures,” in Proceedings
of IEEE conference on Supercomputing. IEEE Press, 2008, p. 44.

[21] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng,
“Datastager: scalable data staging services for petascale applications,”
Cluster Computing, vol. 13, no. 3, pp. 277–290, 2010.

[22] F. Pellizzer, A. Pirovano, F. Ottogalli, M. Magistretti, M. Scaravaggi,
P. Zuliani, M. Tosi, A. Benvenuti, P. Besana, S. Cadeo et al., “Novel/spl
mu/trench phase-change memory cell for embedded and stand-alone
non-volatile memory applications,” in Digest of Technical Papers. 2004
Symposium on VLSI Technology, 2004. IEEE, 2004, pp. 18–19.

[23] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Ra-
jendran, M. Asheghi, and K. E. Goodson, “Phase change memory,”
Proceedings of the IEEE, vol. 98, no. 12, pp. 2201–2227, 2010.

[24] I. Baek, M. Lee, S. Seo, M. Lee, D. Seo, D.-S. Suh, J. Park, S. Park,
H. Kim, I. Yoo et al., “Highly scalable nonvolatile resistive memory
using simple binary oxide driven by asymmetric unipolar voltage
pulses,” in IEDM Technical Digest. IEEE International Electron Devices
Meeting, 2004. IEEE, 2004, pp. 587–590.

[25] G. H. Loh, “3d-stacked memory architectures for multi-core processors,”
in ACM SIGARCH computer architecture news, vol. 36, no. 3. IEEE
Computer Society, 2008, pp. 453–464.

[26] A. Kougkas, H. Devarajan, X.-H. Sun, and J. Lofstead, “Harmonia: An
interference-aware dynamic i/o scheduler for shared non-volatile burst
buffers,” in 2018 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 2018, pp. 290–301.

[27] NERSC, “Technical Specifications,” 2017. [Online]. Available:
https://www.nersc.gov/users/computational-systems/cori/configuration/

[28] Cray, “Datawarp documentation,” 2016. [Online]. Available:
https://pubs.cray.com/browse/datawarp/software

[29] J. Lujan, “Technical Specifications,” 2015. [Online]. Available:
https://www.lanl.gov/projects/trinity/specifications.php

[30] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn, “On the role of burst buffers in leadership-class storage
systems,” in 012 ieee 28th symposium on mass storage systems and
technologies (msst). IEEE, 2012, pp. 1–11.

[31] F. Schmuck and R. Haskin, “A shared-disk file system for large
computing clusters. Proceedings of the 1st USENIX Conference on File
and Storage Technologies,” USENIX Association, p. 19, 2002.

[32] G. K. Lockwood, D. Hazen, Q. Koziol, R. Canon, K. Antypas,
J. Balewski, N. Balthaser, W. Bhimji, J. Botts, J. Broughton et al.,
“Storage 2020: A vision for the future of hpc storage,” 2017.

[33] H. Tang, S. Byna, F. Tessier, T. Wang, B. Dong, and
et Al, “Toward Scalable and Asynchronous Object-centric Data
Management for HPC,” in Proceedings of the 18th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing,
ser. CCGrid ’18. IEEE, 2018, pp. 113–122. [Online]. Available:
https://doi.org/10.1109/CCGRID.2018.00026

[34] A. Ovsyannikov, M. Romanus, B. Van Straalen, G. H. Weber, and
D. Trebotich, “Scientific workflows at datawarp-speed: accelerated data-
intensive science using NERSC’s burst buffer,” in 2016 1st Joint
International Workshop on Parallel Data Storage and data Intensive
Scalable Computing Systems (PDSW-DISCS). IEEE, 2016, pp. 1–6.

[35] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick et al., “A case
for core-assisted bottleneck acceleration in gpus: enabling flexible data
compression with assist warps,” ACM SIGARCH Computer Architecture
News, vol. 43, no. 3, pp. 41–53, 2016.

[36] H. Yeo and C. H. Crawford, “Big data: Cloud computing in genomics
applications,” in 2015 IEEE International Conference on Big Data (Big
Data). IEEE, 2015, pp. 2904–2906.

[37] F. Pan, Y. Yue, J. Xiong, and D. Hao, “I/o characterization of big
data workloads in data centers,” in Workshop on Big Data Benchmarks,
Performance Optimization, and Emerging Hardware, 2014, pp. 85–97.

[38] H. Bui, H. Finkel, V. Vishwanath, S. Habib, K. Heitmann, J. Leigh,
M. Papka, and K. Harms, “Scalable parallel i/o on a blue gene/q
supercomputer using compression, topology-aware data aggregation, and
subfiling,” in 22nd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, 2014, pp. 107–111.

[39] D. Zhao, J. Yin, K. Qiao, and I. Raicu, “Virtual chunks: On supporting
random accesses to scientific data in compressible storage systems,” in
2014 IEEE International Conference on Big Data, 2014, pp. 231–240.

[40] A. H. Baker, H. Xu, J. M. Dennis, M. N. Levy, D. Nychka,
S. A. Mickelson, J. Edwards, M. Vertenstein, and A. Wegener, “A
Methodology for Evaluating the Impact of Data Compression on
Climate Simulation Data,” in Proceedings of the 23rd International
Symposium on High-performance Parallel and Distributed Computing,
ser. HPDC ’14. New York, NY, USA: ACM, 2014, pp. 203–214.
[Online]. Available: http://doi.acm.org/10.1145/2600212.2600217

[41] D. Laney, S. Langer, C. Weber, P. Lindstrom, and A. Wegener, “As-
sessing the effects of data compression in simulations using physically
motivated metrics,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, 2013.

[42] K. Masui, M. Amiri, L. Connor, M. Deng, M. Fandino, C. Hfer,
M. Halpern et al., “A compression scheme for radio data in high
performance computing,” Astronomy and Computing, vol. 12, pp. 181 –
190, 2015.

[43] Google, “Snappy — a fast compressor/decompressor,” 2019. [Online].
Available: http://google.github.io/snappy/

[44] Austin Seipp, “Fast compression library for C, C and Java,” 2019.
[Online]. Available: http://www.quicklz.com/

[45] M. McDaniel and M. H. Heydari, “Content based file type detection
algorithms,” in 36th Annual Hawaii International Conference on System
Sciences, 2003. Proceedings of the. IEEE, 2003, pp. 10–pp.

[46] S. Byna, J. Chou, O. Rubel, H. Karimabadi, W. S. Daughter et al.,
“Parallel I/O, analysis, and visualization of a trillion particle simulation,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE, 2012, pp. 1–12.

[47] Scalable Computing Lab, Illinois Tech, “Ares Supercomputer @ IIT,”
2019. [Online]. Available: http://www.cs.iit.edu/ scs/resources.html

[48] M. A. Roth and S. J. Van Horn, “Database compression,” ACM Sigmod
Record, vol. 22, no. 3, pp. 31–39, 1993.

[49] R. Gribonval, V. Cevher, and M. E. Davies, “Compressible distributions
for high-dimensional statistics,” IEEE Transactions on Information The-
ory, vol. 58, no. 8, pp. 5016–5034, 2012.

[50] J. Caballero and Z. Lin, “Type inference on executables,” ACM Comput.
Surv., vol. 48, no. 4, pp. 65:1–65:35, May 2016. [Online]. Available:
http://doi.acm.org/10.1145/2896499

[51] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
overview of the HDF5 technology suite and its applications,” in Proceed-
ings of the EDBT/ICDT 2011 Workshop on Array Databases. ACM,
2011, pp. 36–47.

[52] M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. Lukić,
V. Roytershteyn, M. J. Anderson, Y. Yao, P. Dubey et al., “BD-CATS:
big data clustering at trillion particle scale,” in SC’15: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2015, pp. 1–12.

566

