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Abstract—We present H2DP, a holistic heterogeneity-aware data placement scheme for hybrid parallel /O systems, which consist of
HDD servers and SSD servers. Most of the existing approaches focus on server performance or application I/O pattern heterogeneity
in data placement. H2DP considers three axes of heterogeneity: server performance, server space, and application I/O pattern. More
specifically, H2DP determines the optimized stripe sizes on servers based on server performance, keeps only critical data on all hybrid
servers and the rest data on HDD servers, and dynamically migrates data among different types of servers at run-time. This holistic
heterogeneity-awareness enables H2DP to achieve high performance by alleviating server load imbalance, efficiently utilizing SSD
space, and accommodating application pattern variation. We have implemented a prototype of H2DP under MPICH2 atop OrangeFS.
Extensive experimental results demonstrate that H2DP significantly improve 1/O system performance compared to existing data

placement schemes.

Index Terms—Parallel I/O system, parallel file system, hybrid parallel file system, data placement, solid state drive

1 INTRODUCTION

DURING the past three decades, I/O performance has been
a key bottleneck of high-performance computing (HPC)
applications [1], [2], [3]. To alleviate the I/O bottleneck issue,
many supercomputers deploy parallel file systems (PFSs),
such as PVFS [4], OrangeFS [5], and Lustre [6] to provide I/O
services. Unfortunately, although PFSs helps system perfor-
mance, the various I/O access patterns and the ever-increasing
data amounts of applications have driven alternative storage
technologies to redesign I/ O systems [7].

Flash-based solid state drives (S5Ds), bring a new oppor-
tunity for I/O system evolution. Compared to hard disk
drives (HDDs), SSDs have higher I/O bandwidth and lower
latency [8], [9], [10]. However, SSDs often require high
acquisition costs, making it impractical to completely
replace HDDs in large-scale systems. Therefore, hybrid
PFSs that consist of both HDD servers (HServers) and SSD
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servers (SServers) have attracted much attention in building
cost-efficient I/O systems [11], [12], [13]. In a hybrid PFS,
SServers can be used as a cache tier of HServers [7] or as a
regular storage medium [11], [13], as discussed in Section 6.
In this work, we focus on the latter case where HServers
and SServers are combined into a single-level architecture.

PFS performance is heavily related to file data placement
scheme, which determines how file data are distributed on
multiple servers. For the simplicity of implementation, tra-
ditional schemes often place file data across servers with a
fixed-size stripe in a round-robin fashion [4]. To maximize
I/0 system performance, other advanced approaches place
file data considering application access characteristics [14],
[15], [16]. However, most of these efforts focus on homoge-
neous PFSs with same HServers. When applied to hybrid
PFSs, existing schemes are confronted with the following
non-trivial challenges.

First, the performance heterogeneity between HServers and
SServers may compromise I/O system performance. With the
fixed-size striping (or other existing) approach, each server
may be assigned with the same amount of data to process.
However, as SServers have higher 1/O performance than
HServers, they will usually finish their 1/O requests more
quickly than HServers. As a result, severe load imbalance
among heterogeneous servers occurs, wasting the potential of
high-performance SServers. We will illustrate this in Section 2.

Second, the space heterogeneity between HServers and
SServers can offset I/O system efficiency. Due to the high
acquisition costs, SServers usually have relatively small
space over HServers and thus may quickly run of their lim-
ited storage space. Consequently, some application data
must be placed only on HServers. As all HServers and SSer-
vers (henceforth hybrid servers) working together may pro-
vide superior I/O performance than HServers alone [17],
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Fig. 1. Traditional fixed-size striping approach. The figure shows how a
parallel file is placed on all servers with a fixed-size stripe (str) in a
round-robin fashion.

the high I/O system performance may not last long once
SServer space is exhausted.

Third, the application I/O pattern heterogeneity may lead to
degraded system performance. Due to the specific interest of
the application [18], [19], an application may access its data
with nonuniform I/O patterns [14], [15], [16]: some data (hot
data) are frequently accessed while others (cold data) are
not. If the hot data are not properly placed on the high-
performance servers, the overall system performance will be
sub-optimal. Moreover, an application’s access patterns may
change at run-time [19], [20], [21]. Therefore, a static place-
ment scheme will be inefficient as it is only efficient for spe-
cific access patterns but not for all of them.

Recent researches have made significant efforts to opti-
mize file data placement for a heterogeneous PFS, such as
adjusting file stripe sizes on servers [22], optimizing the
number of servers (server group size) to place a file’s
data [13], and their combinations [17], [23], [24]. However,
most of these studies focused on the single axis of heteroge-
neity of a hybrid FPS, and little work is devoted to exploring
multiple axes of heterogeneity together, such as server per-
formance, server space, and 1/0O patterns. Since each axis of
heterogeneity can significantly impact the I/O system per-
formance, existing schemes can’t fully utilize the potential
of the hybrid parallel I/O system.

To address above challenges, this paper proposes a holis-
tic heterogeneity-aware data placement scheme (H2DP) for
hybrid parallel I/O systems. The basic idea of H2DP is to
place data on different servers considering three axes of het-
erogeneity: server performance, server space, and applica-
tion I/O pattern. With this holistic heterogeneity-awareness,
H2DP can achieve high system performance by alleviating
load imbalance among servers, efficiently utilizing SSD
space, and accommodating changing I/O patterns of appli-
cations. Specifically, we make the following contributions.

e We present a varied-size striping approach, which
determines file stripe sizes on hybrid servers based
on server performance, to alleviates load imbalance
among servers.

e We propose a selective data placement policy, which
only keeps performance-critical data on hybrid serv-
ers and the rest data on HServers, to efficiently uti-
lize the limited SServer space.
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Fig. 2. IOR bandwidths with various 1/O patterns. The performance is
measured on an HDD, an SSD, and a Hybrid platform respectively,
which denotes four HServers, four SServers, and eight hybrid servers.

e We devise a dynamic data migration scheme, which
redistributes file data on different types of servers to
accommodate changing I/O patterns.

e We implement H2DP under MPICH2 [25] atop
OrangeFS. Experimental results with representative
benchmarks show that H2DP can significantly improve
I/0 system performance compared to existing state-
of-the-art data placement schemes.

The remainder of this paper is organized as follows.
Section 2 presents the background and motivation. Section 3
and Section 4 illustrate the design and implementation of
H2DP. Section 5 presents the performance evaluation with
extensive experiments. Section 6 introduces the related
work. Finally, Section 7 concludes this paper.

2 BACKGROUND AND MOTIVATION

2.1 Existing Parallel File Data Placement Schemes

To meet the I/O demands of parallel applications, HPC com-
puters rely on PFSs to store data. PFS often places a parallel
file across multiple servers with a fixed-size stripe in a round-
robin fashion, as shown in Fig. 1. By providing concurrent
data accesses on multiple servers, this kind of methods can
achieve even space utilization on servers and decent aggre-
gated I/O bandwidth in many situations. These striping
approaches are widely used in modern PFSs, such as
OrangeFS, PVFS2, and Lustre. For example, they are the
default placement policy called simple striping in OrangeFS
and PVFS2. The default stripe size in OrangeFS is 64 KB, which
can be configured by users via specific file system interfaces.

2.2 Heterogeneous Performance Impacts I/O
Efficiency

Due to the differences of their inherit natures, HServers and
SServers have heterogeneous storage performance. With
this performance heterogeneity, the fixed-size striping
approach may lead to sub-optimal I/O performance. To
illustrate this issue, we run IOR [26] to access a 16 GB file on
three platforms: four HServers (HDD), four SServers (SSD),
and four HServers plus four SServers (Hybrid). The file is
distributed on servers with the default data placement
scheme at the stripe size of 64 KB. We limit the process
number to 16, the request size to 512 KB, and the access pat-
tern to sequential /random read /write requests.

Fig. 2 shows the 1/O bandwidths of IOR under various
access patterns. With the fixed-size striping strategy, the file
system performance on eight hybrid servers (Hybrid) is
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slightly better than that on four homogeneous HServers. It
is even worse than that on four homogeneous SServers.
These results indicate that the hardware resources in a
hybrid PFS are severely underutilized. By analyzing the I/
O activities on servers, we find it is caused by the load
imbalance among HServers and SServers. This result moti-
vates us to devise varied-size striping methods based on
server performance to enhance I/O system performance.

2.3 Heterogeneous Space Offsets I/0 Performance
Besides performance disparity, SServers usually have a rela-
tively smaller capacity than HServers, mainly because of
their higher acquisition costs. With fixed-size striping meth-
ods, one concern is that SServers will quickly run out of
their limited space. Even with the varied-size approach pro-
posed in (Section 2.2), the situation is worse because SSer-
vers are tended to be assigned with a larger stripe size than
HServers for load balance. As a result, some data of the
application are placed on all hybrid servers and other data
may be stored on HServers when the space of SServers is
exhausted. Because hybrid servers can provide higher 1/O
performance than HServers due to more nodes contributing
to I/O accesses [13], the system performance may degrade
if the storage space of high-performance hybrid servers is
not properly utilized.

Fortunately, several applications access data with non-
uniform I/O patterns [14], [15], [18], which can be leveraged
to optimize the data placement in a hybrid 1/O system. For
such applications, some data are frequently accessed while
others are not. For example, in the Vector Particle-In-Cell
(VPIC) simulation of magnetic re-connection phenome-
non [27], applications are often more interested in the data
that match a given property, such as “the energy of the par-
ticles > 1.1” [18]. Similar behaviors have been observed in
adaptive mesh refinement (AMR) applications in 3D model-
ing [19]. Such access skewness means that only partial data of
applications are critical to the system performance. This moti-
vates the second design principle of H2DP: selectively plac-
ing critical data on high-performance hybrid servers while
other data on HServers to efficiently utilize the limited SSer-
ver space.

2.4 Changing I/O Pattern Matters

Generally a given data placement policy may be suitable for
a specific I/O access pattern but not for all of them [16].
However, applications may change their I/O access pat-
terns at run-time [19], [20], [21]. For example, some data of
the application can be frequently accessed at this time point,
but they are not at other times. Therefore, a static data place-
ment scheme is inefficient for applications with changing I/
O patterns. An ideal scheme should adjust the data place-
ment policy on servers over time according to the changes
of I/O accesses. Although there are several previous studies
can achieve this goal by creating multiple data replicas,
each with a different data placement [13], [16], [18], [28],
such approaches require additional storage space. In this
study, we leverage dynamic data migration mechanism that
occasionally redistributes file data on the proper types of
servers to accommodate the changing I/O patterns of
applications.
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Fig. 3. H2DP data placement scheme. The figure shows how a file is
placed on heterogeneous servers. A file is divided into multiple regions: crit-
ical region 0 and 2 are placed on hybrid servers and other regions are
placed on HServers. The varied-size stripes on hybrid servers are deter-
mined by server performance. The data placement will also be tuned with
dynamic data migration for changing I/O patterns (not shown in the figure).

3 DEsIGN oF H2DP

We propose H2DP, a holistic heterogeneity-aware data
placement scheme for hybrid PFSs. In this section, we first
present the basic idea and system overview of H2DP
(Section 3.1). We then elaborate the design details of its indi-
vidual techniques (Section 3.2-Section 3.7) used to improve
I/0 system performance.

3.1 Idea of H2DP

The basic idea of H2DP is to place data on servers consider-
ing three axes of heterogeneity: server performance, server
space, and application patterns. To achieve high perfor-
mance, H2DP includes three critical techniques in data
placement. First, to deal with the heterogeneous server per-
formance, H2DP uses a varied-size striping (VSS) approach to
place critical data on hybrid servers. The stripe sizes are
determined based on server performance, so that all servers
can complete their I/O requests almost simultaneously. Sec-
ond, H2DP proposes a selective data placement (SDP) policy
to distribute data on different types of servers. It groups file
data into critical data and non-critical data, keeping only criti-
cal data on hybrid servers and the non-critical data on HSer-
vers, so that the limited SServer space can be efficiently
utilized. Third, H2DP devises a dynamic data migration
(DDM) strategy to redistribute file data on the proper types
of servers over time, thus improving system performance
for changing I/O patterns.

Fig. 3 illustrates the idea of the H2DP scheme. In this
example, a file is divided into four fine-grained regions,
each with a different data access frequency (hotness).
Among all regions, region 0 and 2 have higher access hot-
ness than others; thus they are more critical to the overall I/
O system performance. Since the high-performance hybrid
servers can only accommodate two regions, region 0 and 2
are placed on all hybrid servers while region 1 and 3 are on
HServers. For region 0 and 2, their data are placed on HSer-
vers and SServers with the stripe pairs < h0,s0 > and
< hl,s1 > respectively, which are determined by server
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Fig. 4. The process of the H2DP scheme.

performance. Because SServers are usually faster than HSer-
vers, they are assigned with a large stripe size than HSer-
vers, ie., h0 < s0 and hl < sl. Furthermore, H2DP
periodically tunes the region placements on servers to adapt
to varying I/O workloads.

The proposed H2DP scheme requires prior knowledge of
application’s I/O access patterns. Fortunately, many HPC
applications access their data with predictable behav-
iors [29], [30], [31], [32]. Taking the BTIO application [33] as
an example, once its parameters, such as the size of the
array, the number of the processes, etc., are given, the I/O
accesses can be deduced. This is because the data access pat-
terns of HPC applications mostly depend on their inherited
numerical methods, not input data. As HPC applications
often run multiple times to deal with various datasets, this
feature facilitates us to enable H2DP through I/O trace anal-
ysis. Similar approaches have been widely used to optimize
I/0 system performance [29], [30], [31], [34].

Fig. 4 shows the procedure of the H2DP scheme, which
includes four phases. In the tracing phase, file access statistics
are collected into trace files in the MPI-IO layer during the
application’s first execution. In the analysis phase, the tra-
ces are divided into sub-traces in the order of time window
(henceforth window), and the file is divided into fine-
grained regions to identify critical data. Then for each
window, the optimized stripe sizes for each region are deter-
mined based on the cost model and the accesses within that
window. Such optimized stripe sizes are stored into a global
region mapping table (RMT) indexed by the number of the
window. In the placing phase, during the application’s next
run, each region is placed on the underlying servers with the
optimized stripe sizes in RMT[0]. Finally, in the migration
phase, the regions will be periodically redistributed on the
proper servers with the stripe sizes in RMT indexed by
1,2,..., until the application ends. For the above four
phases, the analysis phase is performed offline and the
others are carried out online. In the following sections, we
will elaborate the critical components of H2DP.

3.2 Trace Collection

Although several tools exist, we use IOSIG [35] to collect
data access information due to its low overhead. IOSIG is
designed as a pluggable library at the MPI-IO layer in the
parallel I/O stack. It uses the Profiling MPI interface to
record all file access activities in trace files. During execu-
tion, each process of the application linked to the trace col-
lection library generates one trace file. Other than the
linking step, there is no need for programmer intervention.

Each record in the trace file includes process ID, MPI rank,
file descriptor, type of operation (read/write), offset,
request size, and time stamp information. In addition to the
MPI-IO interface, IOSIG supports standard POSIX IO inter-
faces for portable deployment.

3.3 Trace and Region Division

The original traces are collected for the entire application
duration. To enable timely data migration during the subse-
quent run of the application, H2DP first divides the original
traces into sub-traces in the order of time window, then it
analyzes the I/O accesses in each window, and finally
determines the optimized stripe sizes on servers for all win-
dows one by one.

A critical concern is how to determine the window size
for the data migration. One can use coarse-grained inter-
vals, such as the order of hours or days. But, as applications’
I/0 workloads may change most of the time [19], [36], this
coarse-grained method may lead to sub-optimal perfor-
mance. An alternative solution is to use short intervals, such
as the order of minutes or hours, such that file data layout
can quickly adapt to workload changes. Inspired by the
methods adopted by previous work [20], [37], we empiri-
cally set the window size to 10 minutes, which ensures the
following migration overhead does not overwhelm its per-
formance benefit.

To enable the selective data placement on hybrid servers,
SDP divides a file into fine-grained regions. One possible
approach is to divide the entire file with varied-size chunks.
This method relies on I/O workload analysis and is rela-
tively complex. For simplicity and without loss of efficiency,
SDP chooses the second approach: it divides a file with a
fixed-size chunk/region, e.g., 64 MB or 128 MB, similar to
previous work [14], [21]. The smaller the region size, the
more efficient will be the data placement scheme. However,
the region-level data placement incurs meta-data overhead,
such as region mapping information and other statistics.
This overhead is inversely proportional to the region size.
In our current implementation, we empirically choose a
region size of 64 MB, which brings decent system perfor-
mance with a moderate overhead (Section 5.4).

3.4 Data Access Cost Model

To determine the proper stripe sizes on servers and to find
the critical regions, we devise a cost model to evaluate the
request time in a hybrid PFS. The related parameters are
listed in Table 1. This model is inspired by the previous
model in a homogeneous PFS [16], which has been verified in
a practical I/O system. However, our model is designed for
a heterogeneous environment, hence it considers the perfor-
mance differences between HServers and SServers. First,
SSDs often have a much shorter startup time and data trans-
fer time than HDDs because they have superior perfor-
mance. Second, reads and writes are treated differently on
SSDs because writes usually involve slow garbage collection
operations while reads do not.

The cost is defined as the overall completion time of a file
request, which includes four parts: network establishing
time, network transfer time, storage startup time, and stor-
age read/write time. Since a file request may be served by
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TABLE 1
Parameters in Cost Analysis Model

Symbol Meaning
D Number of client processes
c Number of processes on one client node
m Number of HServers
n Number of SServers
h Stripe size on HServer
S Stripe size on SServer
r Data size of one file request
e Cost of single network connection establishing
t Network transmission cost of one unit of data
ap Startup time on HServer
B, Transfer time per unit data on HServer
[, Read startup time on SServer
Ber Read transfer time per unit data on SServer
Ay Write startup time on SServer
Baw Write transfer time per unit data on SServer

hybrid servers or homogeneous HServers due to the limited
SServer space, we calculate their I/O costs respectively.

For the request served by hybrid servers, we assume it
is distributed on all HServers and SServers, namely
m X h+n x s =r. This assumption can make all servers to
contribute the overall I/O performance. Table 2 lists the
cost of a read request. The write cost will be similar except
the startup and the data transfer time of SServers will
change. For the request served by HServers, we assume it is
distributed on all HServers with a stripe size of r/m. This
assumption leads to good load balance among servers and
thus brings optimized I/O performance. The corresponding
cost is listed in Table 3. More details about constructing the
model can be found in our previous research [22], [38].

Note that the model only considers limited parameters in
characterizing I/O accesses. There are other factors that
affect I/O access performance. However, the given parame-
ters account for a large part of I/O access features. It can
work as a reliable indicator to direct data placement, as
shown in the evaluation section.

3.5 Region Stripe Size Decision

The proposed model shows that the cost of a file request is a
function of the stripe size pair < h,s > on hybrid servers.
An optimized stripe size pair can efficiently reduce the
overall I/O time for all requests in a time window. To obtain
such optimized data placements, we propose an iterative
algorithm (Algorithm 1) to determine the optimized stripe
sizes on servers for all regions one by one.

For each window, the algorithm takes the request infor-
mation in the region from the sub-traces as input and makes
placement decisions by assuming that the region is placed
on all hybrid servers. Beginning with 2 = 0, the second loop

iterates h in ‘step” increments while h < ‘. The extreme

configuration we do consider is where h = 0, meaning that
distributing data only on SServers is allowed as long as doing
so benefits performance [17]. In the third loop, s starts with a
size larger than h because such configuration can alleviate
load imbalance among servers. For each potential stripe pair
< h,s >, the algorithm calculates the region cost by accu-
mulating the costs of all its requests according to the model
in Table 2. Finally, the stripe pair leading to the lowest region
cost is chosen. The ‘step’ value is 4 KB, which can be chosen
by the user. Finer ‘step” values result in more precise i and s,
but with increased calculation overhead.

Algorithm 1. Stripe Size Determination Algorithm

1: procedure StrDM reg[k]

2:  step— 4 KB

3: 1« request size

4: fori=0;i < k;i+ + do > For all regions
5: opt_cost «— oo

6 l; « total request number in regfi]

7 forh — 0;h < —;h < h + step do

8 for s « h + step;s < L35« s+ step do

9: regli].cost < 0
10: forj« 0;j < l;;j«j+1do
11: T/ «— Cost(r, h, s) > Call the model in Table 2
12: regli].cost « regli].cost + T/
13: end for
14: if regli].cost < opt_cost then
15: opt_cost — regli].cost
16: regli].strsizes «— < h,s >
17: end if
18: end for
19: end for
20:  end for

21: end procedure

When the application generates a large number of 1/0O
traces, the computing overhead may be a concern. In this
case, the calculation process can be easily converted into a
parallel process with a simple divide-and-conquer algo-
rithm. For the paper, we avoid to add the parallel processing
part into the pseudo code to keep it simple and easy to read.

The algorithm only shows the procedure to determine the
optimized stripe sizes for a given window. Such procedures
are executed similarly for other windows. Once all these pro-
cedures are finished, the optimized stripe sizes for all win-
dows are obtained and stored into the region mapping table
in the order of window, which will be used to guide the fol-
lowing data selection and actual data placement process.

3.6 Selective Data Placement

The above algorithm determines the optimized stripe sizes
for each region when they are placed on hybrid servers.
However, not all regions can be placed there due to the

TABLE 2
Request Cost on Hybrid Servers

Condition Network cost Tvpr Storage cost T's7o
Establish T Transfer Ty Startup Ts+RD/WR Tr

p<c(m+n) c(m+n)e max{crt, pst} p* max{a, + hpB, xs + B4 }

p > c¢(m+n) pe max{crt, pst} pxmax{a, + hpy,, s + s }
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TABLE 3
Request Cost on Homogeneous HServers

Condition Network cost Tygr Storage cost Tis7o
Establish Ty Transfer Ty Startup Ts+R/W Tr

p<cm cme max{crt, prt/m} pay, + phpy,

p > cm pe max{crt, prt/m} pay, + phpy,

limited space of SServers. To maximize system perfor-
mance, SDP selectively places critical regions that can
largely impact the I/O performance on hybrid servers and
places the other regions on HServers.

To identify the critical regions, SDP calculate the perfor-
mance benefit from placing the region on hybrid servers
instead of HServers. In the previous subsection, we have
obtained the optimized region cost when placing a region
on hybrid servers. When placing the region on HServers,
the stripe size is /m and we can calculate the region cost
using the model in Table 3. Let 7,5 and Ty denote such
two region costs respectively, then the performance benefit
of placing a region on hybrid servers is

B=Ty—Tgss. (1
If B is larger than zero, then it is beneficial to place the
region on hybrid servers. A region with frequent access
requests will lead to high benefit, thus it is more critical to
the overall system performance and should be placed on
hybrid servers with a high priority.

To be cost-effective, SDP ranks all regions in the decent
order of their performance benefits. From the region with
the highest benefit, SDP begins to check whether the system
has enough SServer space to accommodate each region. If
yes, the region is deemed to a critical region and it will be
placed on hybrid servers with the optimized stripe size. The
free SServer space is also updated to check whether the sys-
tem can hold the next region. Otherwise, the region is non-
critical and it will be placed only on HServers with a fixed-
stripe size of 7/m. Once such space-aware decisions for all
regions are made, SDP will update the optimized placement
information in RMT.

In the actual data placement phase, SDP places all regions
of a file either on hybrid servers or HServers based on the
suggestion of RMT. As current PFSs do not support region-
level data placement, we divide a logical file into multiple
physical PFS files, each representing a region. For each
region, we distribute the data on underlying servers with the
optimized stripe sizes by specifying the file data layout via
existing file system interfaces, as shown in Section 4.

3.7 Dynamic Data Migration

To enable the dynamic data migration at run-time, DDM
makes data migration plans for all windows in the analysis
phase. DDM will perform two types of data migrations. The
first is to move cold regions from hybrid servers to HServers;
these regions are no longer beneficial enough to stay there
and need an “outgoing” migration. As opposed to this, the
second is an “incoming” migration: it migrates regions from
HServers to hybrid servers, which previously were not there
but now have sufficient gains to be migrated. This ensures
the high I/O performance in the future data accesses.

Algorithm 2 shows the process of constructing the plan
for all windows. First, in each window it obtains the opti-
mized data placements in the last window and the current
window, respectively. Then the algorithm goes through
each region handled in the last window, creating an entry in
the outgoing list for each region that currently should be
migrated out from hybrid servers. Similarly, the algorithm
creates an entry in the incoming list for each region that
should be migrated in. Accordingly, the entries in the RMT
table are updated for the migrated regions, such that the fol-
lowing I/O requests can be sent to the proper locations
based on the specifics of the requests.

Algorithm 2. The Migration Plan Algorithm

procedure MigrationPlan (w, k)

outlist[0 :w—1] — 0

inlist[0:w—1] < 0

fori=1;i < w;i+ + do > For all windows

Reg_last[k] — Reg_lookup(RMT,i — 1)
> Obtain the data placement in the last window: i-1

6: Reg_curlk] — Reg-lookup(RMT, 1)
> Obtain the data placement in the current window: i

1:
2
3:
4
5

7 for each reg € Reg_last[k] do > Create the outgoing list
8: loc_cur — Reg_lookup_location(Reg-cur,reg)
9: loc_last < Reg_lookup_location(Reg_last,reg)

10: if loc_last =="H + S"andloc_cur =="H" then

11: outlist[i] | {reg}

12: else > Create the incoming list

13: if loc_last =="H"andloc_cur =="H + 5" then
14: inlist[i] | {reg}

15: end if

16: end if

17: end for

18: end for

19: end procedure

During the later run of the application, DDM performs
the actual migration operations at the end of each window
based on the suggestion of the migration plan. For each
entry in the “outgoing” list, DDM copies data from the
hybrid servers to HServers. At the same time, the corre-
sponding entries in RMT are updated to reflect the new
region locations. For each entry in the “incoming” list, the
regions are copied out based on the incoming list and RMT
is updated accordingly. When a region is migrated to a new
location, the data are placed on underlying servers with the
optimized stripe sizes stored in the RMT table.

4 IMPLEMENTATION

We have implemented the H2DP scheme in the MPICH2
library on top of the OrangeFS (a successor of PVFS2 ) paral-
lel file system.
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4.1 Model Estimation

We use servers in the parallel file system to test the storage-
related parameters, such as o and g for both HServers and
SServers. Note that these parameters can vary for different
I/0 patterns. In addition, we use multiple pairs of nodes
(client nodes and file servers) to estimate network parame-
ters, such as e and t. We repeat the tests at different request
sizes with thousands of times (the number is configurable),
and use the average of multiple iterations for each parame-
ter in the model.

4.2 Additional Data Structure

Existing PFSs do not support region-level data placement. To
enable H2DP, we divide a logical file into multiple physical
PFS files, each representing a file region. We place some
regions on hybrid servers and others on HServers based on
the placement benefit analysis. We use RMT to record region
mapping and stripe size information. We leverage Berkeley
DB [39] to implement this structure. Each record in Berkeley
DB is a key-value pair. The key is the RegionID, which is
encoded with application name, number of processes, origi-
nal file name, and region sequence. The value is the target
region file name and the optimized stripe size pair.

4.3 Optimized Data Placement

Currently OrangeFS can be accessed by two interfaces: the
direct PVFS2 interface and the POSIX interface. For compat-
ibility, H2DP supports both of them with the optimized
stripe sizes. With the PVFS2 interface, we utilize the “pvfs2-
xattr” command to set the data distribution of directories
where the application files are located. In addition, when a
new file is created, we use the “pvfs2-touch” command
with the “-1” option to specify the order of servers, so that
the file stripe size h and s can be configured for the corre-
sponding HServers and SServers accordingly. With the
POSIX interface, we achieve the same goal by setting the
optimized stripe sizes of a file via the “setfattr” command.

4.4 1/0 Redirection in MPI-IO

As H2DP divides a logical file into fine-grained regions, the
original I/O requests will be redirected to the underlying
physical files, each representing a file region. To find the
proper locations of file requests, we modify the MPI library
so that RMT is loaded with MPI_TInit () and unloaded
with MPI_Finalize (). We also utilize an in-memory list
to maintain the frequently accessed entries in RMT to speed
up the lookup operations. Moreover, we revise MPI_Fi-
le_read/write() (and other variants of read /write func-
tions), so that I/O requests can be forwarded to the proper
regions with the optimized placements based on the specif-
ics of the requests.

4.5 Data Migration

Data migration operations may affect the activities of the
normal I/Os. To alleviate this issue, we create a lightweight
daemon program running in the background. It monitors a
queue that contains all the regions that need to be migrated
based on the migration plan. During the application’s later
run, when the last request finishes at the end of each win-
dow, the program will read regions from the original files

and write them into the targeted files with the optimized
data placements. To avoid serious interference with the
foreground I/O activities of the application, the migration
is performed asynchronously.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup

We conducted the experiments on a 49-node SUN Fire
Linux cluster, where there are 48 computing nodes and one
head node. The head node is responsible for system man-
agement. Each computing node has two AMD Opteron(tm)
processors, 8 GB memory, and a 250 GB HDD. Eight nodes
are equipped with additional 100 GB SSD. All nodes are
equipped with Gigabit Ethernet interconnection. The oper-
ating system is Ubuntu 14.04, the parallel file system is
OrangeFS 2.9.6, and the MPI library is MPICH2-1.4.1 [25].
By default, we use 32 nodes as computing nodes running I/
O clients, 12 nodes as HServers, four nodes as SServers. To
mimic the scenarios where SServers run out of their space,
we assume that SServers can accommodate 1/6 data of the
tested files at most. Before running each test, we clean the
operating system cache to ensure all data are read from stor-
age devices. We also periodically flush the dirty data from
the memory buffer to the storage devices, so that the write
bandwidth is correctly measured. For each test, we measure
the I/O bandwidth in the subsequent run of the application.
We repeat each test five times and report the average band-
width as the result. The I/O patterns of all five runs are the
same. For each run, the execution time equals the total
amount of data divided by the I/O bandwidth.

We compare H2DP with three other schemes: DEF,
PADP [22], and PSA [40]. DEF is the default approach that
simply places file data on servers with a fixed-sized stripe
of 64 KB. PADP only considers performance heterogeneity:
it uses varied-size striping to distribute data on hybrid
servers, but the placement on hybrid servers are randomly
chosen. PSA considers both performance and space hetero-
geneity: it assigns a smaller stripe size to SServers and a
large size to HServers, so that the load imbalance can be
alleviated and more requests can be placed on hybrid serv-
ers. However, PSA ignores application heterogeneity: it ran-
domly chooses the data placed on hybrid servers and keeps
a static data layout even for changing I/O patterns. More-
over, the stripe size decision policy may compromise the
performance of requests on hybrid servers. As opposed to
the three counterparts, H2DP is a holistic scheme which
fully considers performance, space, and application hetero-
geneity. A We use two popular micro-benchmarks (IOR
and HPIO) and one macro-benchmark(BTIO) to evaluate
the I/O system performance.

e JORis a parallel file system benchmark developed by
Lawrence Livermore National Laboratory [26]. It
provides three APIs: MPI-IO, POSIX, and HDF5. In
the experiments, we only use the MPI-IO interface.

e HPIO is a popular I/O testing program developed
by Northwestern University and Sandia National
Laboratories [41]. This benchmark can generate vari-
ous data access patterns by changing three parame-
ters: region count, region spacing, and region size.
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Fig. 5. IOR bandwidths with various request sizes.

e BTIOis from the NAS Parallel Benchmark (NPB3.3.1)
suite [33]. It is a typical scientific application with
interleaved computation and I/O phases. It uses a
Block-Tridiagonal (BT) partitioning pattern to solve
the three-dimensional compressible Navier-Stokes
equations.

The two micro-benchmarks can generate various 1/0
access patterns. The macro-benchmark represents the data
access behavior of an application. We use their combination
to test I/O system performance. This evaluation mechanism
is also widely used in many other studies.

5.2 Major Results
5.2.1 The IOR Benchmark

The original IOR can generate uniformly random work-
loads. To generate non-uniform I/O access patterns, we
modified IOR to generate I/O requests following Zipf ran-
dom distribution (« = 0.8 where « is the Zipfian parameter).
IOR issues I/O requests to various parts of a file with differ-
ent frequencies. Moreover, the access frequencies change at
run-time. Unless otherwise specified, IOR runs with 32 pro-
cesses, each with individual I/Os to access a 128 GB shared
file, and the request size is 512 KB.

Various Request Sizes. Fig. 5 plots the I/O bandwidths of
IOR with different request sizes of 64 KB, 256 KB, 1 MB, and
4 MB. As shown in the figure, H2DP achieves the best per-
formance among the four schemes. Compared to DEF,
PADP, and PSA, the read improvement is up to 219, 103,
and 49 percent, respectively, and the write improvement is
up to 253, 115, and 56 percent. As expected, DEF has the
worst performance because it ignores the heterogeneity of
server performance, server space, and 1/O access pattern.
Accordingly, its fixed stripe size for all servers will lead to
severe load imbalance and its random data placement on
hybrid servers will lead to low utilization of the scarce SSer-
ver space. In contrast, the other three schemes can alleviate
these issues by leveraging the varied-size striping and the
selective data placement.
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Fig. 6. I/O times on different servers.

To give a detailed explanation for the performance
behaviors of various schemes, Fig. 6 plots the I/O time of all
servers during the IOR execution with the request size of
256 KB. For each scheme, the figure shows two bars
grouped together. In each group, the left bar shows all 12
HServers’ average 1/0O time, the right one shows all four
SServers’ average I/O time. Each bar has an interval on top
to show the range of all I/O times represented in that bar.
Also, each group’s two bars are normalized to the average
I/0 time of all SServers with the H2DP scheme. As shown
in Fig. 6, the I/O workloads on HServers and SServers are
severely skewed under the DEF scheme. In contrast, PADP,
PSA, and H2DP achieve more even load distribution among
heterogeneous servers by assigning the strip sizes to differ-
ent types of servers based on server performance. We also
note that the I/O times of the SServers in PADP and PSA
are lower than the one in H2DP. This is because in H2DP
more I/O requests are served by the hybrid servers due to
its selective data placement.

Another observation from Fig. 5 is that PSA is faster
than PADP. This is because PSA takes space heterogene-
ity into account while PADP does not. However, PSA is
still worse than H2DP due to following three reasons.
First, H2DP only keeps frequently accessed data on
hybrid servers while PSA randomly chooses the data on
them, thus H2DP can increase the requests served by
high-performance hybrid servers than PSA. Second,
reverse to PSA, H2DP assigns large stripes to SServers
and small stripes to HServers, which can increase the
performance of requests on hybrid servers. Third, PSA is
a static approach which can’t tune its data placement for
changing 1/O patterns while H2DP can do this through
dynamic data migration.

Various Numbers of Processes. Fig. 7 shows the IOR band-
widths with various number of processes. The request size
is set as 512 KB. Similar to the previous tests, H2DP achieves
the best I/O performance among the four schemes. Com-
pared to DEF, H2DP obtains up to 188 percent performance
improvement for reads and up to 204 percent improvement
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Fig. 7. I/0 bandwidths with various numbers of processes.

for writes. In contrast to PADP, the read performance is
increased by up to 82 percent and the write performance is
increased by up to 75 percent. When compared to PSA,
H2DP obtains up to 49 and 51 percent improvements for
reads and writes, respectively. These improvements again
show the necessity of the heterogeneity-awareness in terms
of server performance, server space, and application pat-
terns in the data placement of a hybrid parallel I/O system.
We also note that with the increasing of process number, all
the schemes lead to degraded system performance because
of the enhanced I/0 interference on servers. However, the
gap of H2DP is less pronounced than other schemes because
it can more efficiently utilize the performance and space fea-
tures of SServers. This result shows that H2DP has good
scalability in terms of various numbers of processes.

Various Server Ratios. Fig. 8 shows the IOR bandwidths
with various server ratios. The label “z H y S” means the I/
O system consists of « HServers and y SServers. As can be
seen from the results, H2DP can improve I/O throughputs
for both read and write requests. With the ratio of 12H4S,
H2DP outperforms DEF, PADP, and PSA by 143, 71, and 34
percent for reads, and 173, 74, and 38 percent for writes.
When the ratio is 4H12S, the improvements become up to
197,62, and 40 percent, respectively. This result indicates
that H2DP has performance advantages over existing place-
ment schemes. Moreover, we find that the system perfor-
mance increases with the increase of the number of
SServers. This is because more SServers contribute to the
overall system performance and H2DP can make full utili-
zation of them.

5.2.2 The HPIO Benchmark

In our experiments, we set the number of process to 16, the
region count to 40960, the region spacing to 0, and vary the
region size from 64 KB to 512 KB. The file system is built on
12 HServers and four SServers. We run the benchmark to
measure the throughput of the storage system for relatively
uniform and contiguous data accesses.
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Fig. 8. IOR bandwidths with various server ratios.

As shown in Fig. 9, H2DP has superior I/O performance
over existing schemes. It outperforms DEF by 192, 136, and
111 percent for reads at the region size of 64 KB, 256 KB,
and 1 MB, respectively. For writes, the improvements are
166, 156, and 113 percent. In contrast to PADP, H2DP
obtains read improvements of 91, 72, and 62 percent, respec-
tively, and write improvements of 71, 70, and 67 percent.
Compared to PSA, H2DP can increase the I/O bandwidth
by up to 41, 21, and 17 percent at different region sizes.
These results mean that H2DP is effective for the HPIO
benchmark. However, such performance improvements
over PSA in HPIO are not as significant as those in IOR
because the workload exhibits weaker locality than IOR.
Similar to the previous tests, H2DP provides higher 1/O
performance for large region sizes (request sizes) because
large requests benefit more for both HServers and SServers.
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Fig. 9. HPIO bandwidths with various region sizes.
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5.2.3 The BTIO Benchmark

BTIO partitions a three-dimensional array across a square
number of processes, each process processing multiple Car-
tesian subsets. All processes write their data into a shared
file and then read back into their memory. We consider the
Class D and simple subtype BTIO workload in the experi-
ments. In other words, BTIO writes and reads a total size of
135.8 GB data with non-collective I/O operations. We use 4,
16, and 64 processes as BTIO requires a square number of
processes. We run this benchmark to measure the system
performance with relatively uniform and non-contiguous I/
O requests. The output file is stored in an OrangeFS file
striped across 12 HServers and four SServers.

Fig. 10 plots the results of BTIO. As shown in the
figure, H2DP achieves better throughput than DEEF,
PADP, and PSA. In contrast to DEF, H2DP obtains the
improvements by 137, 105, and 92 percent for 4, 16, and
64 processes, respectively. Compared to PADP, the impro-
vements are 48, 28, and 25 percent, respectively. In com-
parison with PSA, H2DP gets the improvement by up to
19 percent. Similar to the HPIO benchmark, the perfor-
mance improvements obtained by H2DP are not as signifi-
cant as those of IOR. This is because the workload of BTIO
exhibits weaker skewness than IOR so that the selective
and dynamic data placement brings less performance ben-
efits. We also note that the performance of all schemes
decreases as the number of processes increases. This is
due to two reasons. First, the I/O contention in each file
server becomes more serious because each file server
needs to concurrently serves more processes. Second, the
I/0 requests size decreases, which leads to lower 1/0 effi-
ciency on disks.

5.3 Effectiveness of Dynamic Data Migration

The dynamic data migration can reduce the number of
requests on HServers by moving the frequently accessed
(hot) regions to hybrid servers, therefore improving the
overall system performance. We study the impact of the
dynamic data migration on the effectiveness of H2DP in
this section. We run IOR with the same experimental setup
as the “various request sizes” test in Section 5.2.1. IOR
issues random I/0O requests following Zipf random distri-
bution, the request size is varied from 64 KB, 256 KB, 1 MB,
to 4 MB. The number of processes is fixed to 32. The file sys-
tem is across 12 HServers and four SServers.

Fig. 11 shows the IOR bandwidths without and with the
DDM module. In the figure, the “W/DDM” approach
(H2DP) means the initial placement+SDP+VSS+DDM and
the “W/O” approach=Initial placement+SDP+VSS. We can
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Fig. 11. IOR bandwidths without and with dynamic data migration with
various request sizes.

see that DDM can improve system performance for both
reads and writes at various request sizes. When the request
size is smaller than 1IMB, DDM can offer significant perfor-
mance improvements. For instance, the read improvement
reaches 26 percent at the size of 64 KB. In this case, DDM
can migrate 17 percent of the total data and increase the
number of requests to hybrid servers by 32 percent. How-
ever, when the request size is increased to 4 MB, the
improvement is 5 percent for reads. The enhancement
reduces because SSDs exhibit much better performance
over HDDs for small requests, thus migrating critical data
to hybrid servers offers less pronounced performance bene-
fits for large requests.

When DDM is enabled, it uses data access features to
determine the hot critical regions and then replaces the non-
critical regions on hybrid servers with the critical ones. The
data migration operation does incur performance overhead.
However, by empirically setting the proper migration period
and using the asynchronous migration policy, such overhead
is well amortized by the benefits of reducing I/O operations
to the slow HServers. As a result, the DDM scheme can effec-
tively improve the I/O system performance.

5.4 Overhead Analysis
H2DP incurs some overheads on system resource utiliza-
tion. We discuss them as follows.

Meta-Data Space Overhead. In H2DP, the region mapping
table is maintained to track the region location and region
stripe configuration information on underlying servers.
These two tables bring additional space overheads. In our
implementation, we use a fixed region size of 64 MB, hence
for a 100 GB file, there are up to 1600 regions. We use 128
bytes for each entry in RMT, hence the total size of RMT
will be 0.4 MB, which is less than 0.001 percent and negligi-
ble in terms of the original file space.

Performance Ouverhead. H2DP incurs performance over-
head due to additional activities, such as I/O access
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collection, determine the optimized stripe sizes, and con-
structing the migration plan.

We use IOSIG [31] to collect the traces during the first
execution of the application. It runs online. Previous work
has shown that the run-time overhead of IOSIG is very low
(below 6 percent) [35], which also applies to this study.

For the stripe size determination, the calculation of Algo-
rithm 1 only involves simple arithmetic operations. Its time
complexity is O(N), N = Zf;ol I;, where N is the number of
I/0 requests, k is the number of regions, and /; is the num-
ber of requests in region ¢. For a relatively small number of
I/0 requests, the time and space overheads to obtain the
optimized stripe sizes are not a concern. When there are a
large number of 1/O traces to handle, namely N is very
large, we can easily convert Algorithm 1 into a parallel pro-
cess to reduce the calculation overhead.

Constructing a migration plan also incurs additional over-
head. For Algorithm 2, the time complexity is O(wk), where
w and k are the number of time windows and the number of
regions. These two parameters are usually limited for a given
application. Furthermore, the migration plan is constructed
once and offline. Thus, the overhead is acceptable and it does
not affect the execution of the application.

6 RELATED WORK

Data Placement in Homogeneous File Systems. Existing parallel
file systems provide several data placement policies [16],
such as simple striping, two-dimensional striping, to dis-
tribute data on servers for relatively regular data access pat-
terns. For non-uniform I/O requests, researchers have
proposed file stripe resizing approaches [14], [15]. Facing
more complex access patterns, there are other data place-
ment techniques, such as data partition [34], data replica-
tion [28], [31], data reorganization [42] to optimize file
system performance. All these studies are designed for
homogeneous I/O systems where same HDD servers (HSer-
vers) are deployed; thus server heterogeneity is not a con-
cern. Our work differs from them in that we focus on
hybrid I/O systems where both HServers and SServers are
deployed.

Data Placement in Heterogeneous File Systems. Owing to the
outstanding performance, SSD servers (SServers) have been
integrated into parallel file systems. One approach is to use
SServers as a cache of HServers [7], [43]. This approach has
an assumption that the aggregated I/O bandwidth of SSer-
vers is far higher than that of HServers. However, this is not
always true for all access patterns and system configura-
tions. For example, when the request size is very large and
the system has a much large number of HServers than SSer-
vers. In this case, an alternative approach is to use SServers
as a storage layer, such as CARL [12], [37], PADP [22],
HAS [13], [23], and HARL [17], [44]. All these schemes
mostly focus on performance heterogeneity among servers,
but they ignore the space and application heterogeneity in
the data placement.

A highly related work is PSA [38], [40], which resizes file
stripes considering both performance and space features of
heterogeneous file servers. PSA assigns SServers with a
small stripe size and HServers with a large size. This policy
may compromise the request performance on hybrid

servers. As opposed to this, H2DP assigns SServers with a
large stripe size and HServers with a small size to overcome
this issue. Furthermore, PSA does not consider application
pattern characteristics: it randomly places critical data on
hybrid servers and applies a static data placement policy
even for changing I/O patterns. In contrast, this study com-
prehensively considers performance, space, and application
heterogeneity in the data placement of hybrid PFSs.

Data Placement in SSD-Based Single-Node System. SSDs are
also widely used in a single-node or local storage system.
Some studies use an SSD as a cache of a traditional
HDD [1], [45], [46], [47]. Other approaches integrate an SSD
and an HDD into a unified block device [9], [48], [49], [50].
Most of them place the critical data on an SSD in a single
node with a fixed-size block. Different from the prior efforts,
H2DP focuses on a parallel 1/O system with multiple hetero-
geneous devices, namely HDDs and SSDs. At the same
time, the critical data can be simultaneously placed on all
devices rather than SSDs alone, based on the specifics of
data access patterns and system configurations. Therefore,
the potential of all devices can be utilized. However, deter-
mining what data should be placed on heterogeneous devi-
ces and how to place them are challenging. This study
addresses these issues.

7 CONCLUSION

Hybrid parallel file systems have attracted much attention
in building large-scale I/O systems due to the high cost-
effectiveness. In this study, we propose a holistic heteroge-
neity-aware data placement scheme, which distributes data
across HDD and SSD servers based on server performance,
server space, and application patterns. We have imple-
mented H2DP within MPICH2 on top of OrangeFS. Experi-
mental results show that H2DP is effective to improve the
hybrid I/O system performance compared to existing data
placement approaches. In the future, we plan to evaluate
H2DP in a large-scale HPC cluster that is not currently
available to us. We also intend to extend H2DP in practical
environments.
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