
HFetch: Hierarchical Data Prefetching for Scientific
Workflows in Multi-Tiered Storage Environments

Hariharan Devarajan
Department of Computer Science

Illinois Institute of Technology
hdevarajan@hawk.iit.edu

Anthony Kougkas
Department of Computer Science

Illinois Institute of Technology
akougkas@iit.edu

Xian-He Sun
Department of Computer Science

Illinois Institute of Technology
sun@iit.edu

Abstract—In the era of data-intensive computing, accessing
data with a high-throughput and low-latency is more imperative
than ever. Data prefetching is a well-known technique for
hiding read latency. However, existing solutions do not consider
the new deep memory and storage hierarchy and also suffer
from under-utilization of prefetching resources and unnecessary
evictions. Additionally, existing approaches implement a client-
pull model where understanding the application’s I/O behavior
drives prefetching decisions. Moving towards exascale, where
machines run multiple applications concurrently by accessing
files in a workflow, a more data-centric approach can resolve
challenges such as cache pollution and redundancy. In this
study, we present HFetch, a truly hierarchical data prefetcher
that adopts a server-push approach to data prefetching. We
demonstrate the benefits of such an approach. Results show 10-
35% performance gains over existing prefetchers and over 50%
when compared to systems with no prefetching.

Index Terms—hierarchical, multi-tiered, prefetching, middle-
ware, server-push, data-centric

I. INTRODUCTION

Data-intensive computing offers unprecedented opportuni-

ties for scientific discovery, high-fidelity insights, and data-

driven decision making with timely data access being a driving

factor of the overall execution time [1]. The computational

efficiency of modern applications is closely related to the

ability of the storage systems to push data to the compute units

as the performance of the latter has progressed significantly

faster than disk capabilities [2], [3]. Modern applications spend

significant amounts of time in reading data; in some cases up

to 80% of the overall execution time [4]. As we move towards

exascale, this trend is expected to exacerbate further the I/O

bottleneck (i.e., I/O wall problem [5], [6]). While modern

storage systems are adapting quickly to the challenges of

today’s fast-paced computation environment, they still struggle

to address the demand for low-latency data access.

To address the gap between the data consumption from

the compute and data supply from the storage system,

recent research has proposed solutions broadly categorized

in two relatively orthogonal directions: a) new hardware

devices that offer lower access latency and higher throughput,

and, b) middle-ware software that sits between applications

and storage and is responsible to mask the access latency.

Many of the leadership computing facilities have already

deployed fast node-local NVMe devices and/or shared

specialized buffering nodes [7] (i.e., burst buffers) creating

a new multi-tiered storage environment, called deep memory

and storage hierarchy (DMSH) [8]. Many supercomputing

facilities have widely deployed specialized buffering solutions

such as Cray’s Datawarp [9] and DDN’s IME [10]. However,

traditional file systems are not equipped to handle this

new hierarchy and users are left to manually manage the

layers of the hierarchy [11]. To handle data movement

through the hierarchy, some software platforms such as Data

Elevator [12], Univistor [13], and Hermes [8] have been

developed. All the above systems are designed to optimize

only write-heavy workloads via data buffering. Therefore, the

read operation optimizations, that leverage the DMSH and

elevate the caching effect, have to be further explored.

Typically, all read operations are going through a caching

layer the operating system implements [14]. Read-caches are

limited in capacity and suffer from cache pollution, cache re-

dundancy, and unnecessary evictions of cached data in a multi-

process environment. Further, a read-cache lifetime is coupled

with the scope of the application. To optimize the caching

layer effectiveness, data locality (both spatial and temporal)

needs to improve. There are several software techniques that

aim to optimize read caching, each with their advantages and

disadvantages. Data concurrency, via replication [15], boosts

the availability of data for reads (i.e., spatial data locality in

cache), with more copies to read from, at the cost of additional

data movements and loss of storage capacity. Data locality, via

careful data partitioning [16], can boost read performance by

reducing interference at the cost of data transformations and

recompilation. I/O reordering [17] techniques re-arrange I/O

calls to be executed earlier in the code, but require source code

access and compilation which may not always be possible.

Data staging [18] is another technique that pre-loads data in

a set of staging resources before the application starts at the

cost of additional dedicated hardware (i.e., allocated staging

memory or special staging nodes). Lastly, data prefetching [19]

reads data ahead of a read operation to hide the gap between

I/O and compute. The effectiveness of data prefetching de-

pends upon the ability to recognize data access patterns and to

timely identify the data which should be prefetched. Therefore,

both timeliness and accuracy are critical in the perceived

performance of a data prefetcher. The latter three optimizations

aim to boost the temporal data locality in the read-cache.

In this study, several significant challenges came to light

62

2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPS47924.2020.00017

when optimizing read operations by using the existing meth-

ods. Firstly, a truly hierarchical data prefetching in a multi-

tiered storage environment is either partially or not supported

by existing solutions. Prefetching algorithms aim to reduce

cache misses [20] by correctly predicting the next access and

proactively fetching the appropriate data. Hence, all prefetch-

ing solutions have to answer two main questions [21]: a) when

to prefetch data, and b) what data to prefetch. Prefetching

the wrong data or the right data at a wrong time not only

does not help but actually hurts the overall performance [22].

Additionally, the presence of multiple tiers of the storage hier-

archy raises a third question: where to prefetch data? Modern

architectures, in extreme scale computing, suggest a decrease

in the amount of RAM per core. To avoid overwhelming

the precious main memory, data staging and prefetching, that

are memory-based, need to evolve and include all available

layers of the deep memory and storage hierarchy. Secondly,

existing prefetching solutions rely on identifying application’s

data access patterns (e.g., via tracing, source code analysis,

prediction models, or machine learning) which poses several

issues: a) runtime changes of access patterns due to dynamic

inputs or linked libraries, b) unwanted data evictions and

prefetching cache pollution when one application’s prefetched

data collide with another’s, c) prefetching cache redundancy

when different applications prefetch the same data, and, d)

resource contention when multiple applications prefetch data

in an uncoordinated fashion. To alleviate these issues, an

application-agnostic approach should be employed. Thirdly,

prefetching data in a smaller granularity than the entire

file is unavailable or, at best, limited. Finer granularity can

lead to better prefetching resource utilization and, therefore,

higher performance. Lastly, several existing solutions require

increased user involvement by passing hints, which is

undesirable since it assumes that users know the behavior of

their application. As the complexity of computation workflows

increases, identifying data access patterns becomes infeasible.

To address the above challenges, we present HFetch, a new

hierarchical data prefetcher that supports multi-tiered storage

environments. HFetch is primarily a data-centric prefetching

decision engine that utilizes system-generated events, while

leveraging the presence of multiple tiers of storage, to perform

timely hierarchical data placement. HFetch can obtain a global

system-wide view of how data is accessed, regardless of which

application or process is performing the access, by monitoring

the file system and collecting statistics for each data segment.

Based on a global scoring function that ranks the importance or

urgency of the targeted data, it makes intelligent decisions as

to when, what, and where to prefetch data. We build upon the

observation that scientific workloads demonstrate a WORM

data access model (i.e., write-once-read-many) [4], which is

also true for BigData applications [23]. We also target modern

scientific workflows that span across multiple applications

in a pipeline of data processing. In a multi-process, multi-

application workflow, data might be read multiple times by

many processes (or across applications) which might create

issues for prefetching cache management. Cache pollution,

cache redundancy, and unnecessary data evictions leading to

increased miss ratios are the norm, and not the exception, es-

pecially in extremely large scale workloads. HFetch addresses

these issues by maintaining global file heatmaps that represent

how a file is accessed across processes or applications. It uses

those heatmaps to express the placement of data in a hier-

archical system. For instance, hotter data are fetched in more

capable tiers (e.g., DRAM) and colder data in lower ones (e.g.,

burst buffers). The contributions of this work are: a) Demon-

strating the importance of incorporating multiple tiers of

storage when performing data prefetching optimizations (Sub-

section III-B). b) Providing evidence that a server-push model

can achieve better data-prefetching performance by leveraging

a global view of how data is accessed across multiple appli-

cations. (Subsection III-C). c) Showcasing that a data-centric

prefetching approach solves several issues caused by a growing

set of application-specific optimizations (Subsection III-D).

II. BACKGROUND AND MOTIVATION

A. Multi-tiered Storage Systems

I/O systems are going through an extensive transformation

by adding multiple levels of memory and storage in a

hierarchy [24]. For example, Cori system at the National

Energy Research Scientific Computing Center (NERSC) uses

CRAYs Datawarp technology [9]. Each tier of the hierarchy,

being an independent system, requires different expertise

to manage [11]. This significantly increases the complexity

of the data movement among the layers. The problem of

dealing with the complexity is left to the users. While some

solutions [9], [10], [25], [12], [13], [8] handle data movement

through multiple tiers for storage, they mostly focus on write

operations. However, the main limitation that these systems

demonstrate is the lack of efficient support for read data access

optimizations such as native hierarchical prefetching [11].

For instance, in DataWarp, reading data relies on a stage-in
function, provided to the users, loading the entire dataset

from the parallel file system (PFS) onto the buffers. This

increases the end-to-end time and assumes that the dataset can

fit into the buffers, an unrealistic assumption in data-intensive

computing. Similarly, in data staging services staged-in

data are assumed to fit in memory (e.g., RAM) of the

staging servers, which is again unrealistic. Recently proposed

work [26], [4] aims to tackle this issue. They rely on bringing

the correct data into the faster layer (e.g., burst buffer or RAM)

by utilizing a prefetching prediction engine. In essence, these

solutions still don’t answer where to prefetch (i.e., various

placements of prefetched data into the DMSH), disregarding

the pipelining opportunities from a lower to a higher layer of

the hierarchy. Therefore, a truly hierarchical data prefetching

solution, that aims to accelerate reading data by utilizing

multiple tiers of the storage hierarchy, is still required.

B. Accelerating Read Access Time

Hardware prefetchers [27], [28], [29] move data through

the main memory into the CPU caches to increase the hit ratio

thereby increasing data locality. The granularity of a hardware

63

prefetcher is a cache-line, and the trigger is executed per-

core. Locality-aware prefetching (i.e., read-ahead approach)

is a common implementation where once a memory page is

accessed, the prefetcher brings the next page into the caches

(temporal and spatial locality). The ability to detect strided

patterns is also present in most modern CPU architectures [30],

[31]. However, if the application demonstrates irregular pat-

terns, then the miss ratio is high, and applications experience

performance degradation due to the contention in memory bus

between the normal memory access and the prefetcher. Lastly,

a memory page is a well defined prefetching unit while the

same cannot be said for I/O where file operations will be

variable-sized. Software-based solutions leverage information

collected from the application to perform data prefetching and

can be broadly categorized into:

1) Offline Data Prefetchers: This category of prefetchers

involve a pre-processing step, where an analysis of the applica-

tion determines the data access patterns, and devise a prefetch-

ing plan. There are several different ways to perform this pre-

execution analysis and several ways to devise a prefetching

plan. In trace-driven [32] prefetching, the application runs once

to collect execution and I/O traces. These are then analyzed to

generate prefetching instructions. This method offers high ac-

curacy in prefetching but requires significant user-involvement

and poses large offline costs. More importantly, a trace-

driven approach suffers from the fact that an application’s I/O

behavior is subject to change at runtime since applications may

include third party libraries resulting in a mismatch between

application’s I/O calls and what the servers experience [33],

[3]. Similar to trace-driven approach, a history-based [22]

prefetcher stores the seen accesses in a previous run of an

application into a database, and, thus, access patterns are

known when the same application executes again in the future.

While this method decreases the level of user involvement

and the cost of trace analysis, it assumes that the appli-

cation’s behavior remains stable between executions which

is unrealistic since applications demonstrate different access

patterns when run with different inputs [34]. Compiler-based

prefetching utilizes the source code structure and modifies it

to add prefetching instructions either by I/O re-ordering [35]

or by hint-generation [21] to provide the information to the

prefetcher about when and what to prefetch. The code is

then re-compiled and executed with the extra prefetching

instructions. This approach avoids the increased offline costs,

since it does not require any execution of the application, but

suffers from miscalculations of placing the prefetching calls,

as code-flows are often dynamic in nature [36]. Lastly, data

staging [18] leads to high hit ratios, but it assumes that the

working set can fit in the staging resources capacity.

2) Online Data Prefetchers: This category of prefetchers

trade accuracy for a ”learn as you go” model. The applica-

tion’s access patterns are learned as the execution proceeds,

avoiding any pre-processing steps. Statistical methods such as

hidden Markov models (HMM) [37] and ARIMA models [38]

require a large number of observations to accomplish model

convergence. Once the model has converged, it can predict the

next access and trigger prefetching. However, they often focus

exclusively on either spatial or temporal I/O behaviors and

need long execution time or several runs to achieve accurate

predictions. A grammar-based model [39], [4] relies on the fact

that I/O behaviors are relatively deterministic (inherent from

the code structure) and predicts when and what future I/O op-

erations will occur. However, this method demands repetitive

workloads and does not work well for irregular access patterns.

Lastly, machine learning approaches [40], [26] have been

recently proposed where a model learns the data access pattern

and uses it to drive the prefetching plan. All online approaches

share the fact that they do not rely on a priori knowledge of the

application’s data access patterns or user inputs and hints. The

problem is that they require a warm-up period at the beginning

of the execution as they build their models, which can result

in added overheads and low performance.

The common theme for all existing approaches is that

they implement a client-pull model. Prefetching is driven

by the applications’ data access patterns. In a multi-tenant

environment, application-specific optimizations will not

perform due to a lack of global coordination. Prefetching

cache space will be limited and shared, leading to cache

pollution, cache redundancy, and unwanted evictions.

Application-bound prefetching resources will be competing

with one another, leading to loss of performance due to

interference. We need to address the challenges of read-

optimizations from a data-centric view. A server-push model

can obtain a global view and apply optimizations on the most

valuable pieces of data. None of the existing data prefetching

solutions fully utilize the hierarchical environment which

can elevate the reduction of RAM per core. The hardware is

there, but we need to design software to drive performance by

masking access latency behind the DMSH. An application-

centric prefetching approach can lead to a loss in performance

and under-utilization of the prefetching resources [41].

III. HIERARCHICAL DATA PREFETCHING

In this work, we propose a system-wide, data-centric,

server-push prefetching solution that aims to identify how files

are accessed, regardless of which process or application does

the data access, and utilize this information to pre-load the

data needed into the deep memory and storage hierarchy. We

designed and implemented a new hierarchical data prefetcher,

called HFetch [42], that optimizes read operations by lever-

aging two main observations: a) the presence of multi-tiered

storage suggests a feasible solution to the shrinking DRAM

size per-core; a prefetching solution that utilizes the storage

hierarchy to fetch data in a pipeline fashion is needed, and,

b) identifying an application’s data access pattern will not

suffice in the age of data-intensive computing; a global view

of how files are accessed across a workflow is needed to place

prefetched data at the right tier of the hierarchy.

A. HFetch Overview

The main idea behind HFetch is to fetch portions of a file

and place them in a tier of the hierarchy based on access

64

frequency, recency, and the relationship between segments

(i.e., file segment sequencing). In other words, instead of

guessing what an application will access next, HFetch collects

access statistics of file regions (which we call file segments)

from the file systems themselves and pro-actively loads them

in the hierarchy based on a segment score that reflects the

urgency to access the chosen segment. This score basically

incorporates the frequency with which the segment is accessed

across processes or applications thereby creating a file access

heatmap. The file heatmap is then used to naturally match

it to a hierarchical environment. Segment movement between

tiers of the hierarchy is also based on how recently a segment

was accessed. In effect, HFetch answers the three prefetching

questions (what to prefetch, when to prefetch, and where to

place prefetched data) indirectly by naturally mapping the

spectrum of segment frequency and recency to the appropriate

tier leveraging the hardware capabilities of each tier. We have

designed HFetch with the following goals in mind:

1) Hierarchy-aware: the prefetcher should be able to fetch

and place data in all available layers of a multi-tiered envi-

ronment. Effectively, this should relieve the pressure of in-

memory prefetching by overflowing data to lower tiers, or

automating data movement between tiers thereby presenting

the hierarchy as one big prefetching cache.

2) Application-agnostic: the prefetcher should be able to fetch

the right data in a server-push model regardless of who needs

the data. In fact, the prefetching flow should be de-coupled

from the running applications and must maintain a global view

of what data need to be accessed next.

HFetch aims to optimize complex scientific workflows

where a collection of data producers (i.e., simulations, static

data sources, etc.) send data down a pipeline and a collec-

tion of consumers (i.e., analytics, visualization) process the

data multiple times. HFetch’s design fits naturally in such

environment with hierarchical data prefetching boosting read

operations across all data consumers.

Figure 1 shows the architecture of HFetch. HFetch follows

a client-server model. Each compute node is equipped with

an HFetch server. Each application dynamically links to the

HFetch library with an Agent (depicted as the H). Upon ap-

plication initialization (e.g., MPI Init()), client connection

to the server core are established. Our proposed architecture

incorporates modern extreme scale system designs with a local

NVMe drive, a shared collection of burst buffer nodes, and

a remote parallel file system. A connection to all available

hardware tiers is also established by the HFetch server (i.e.,

mounting points, prefetching memory allocations, and burst

buffer leases). Essentially, the flow of operations in HFetch is

as follows. Each tier independently pushes its I/O events into

a queue that resides in HFetch Server memory. A hardware

monitor collects events (i.e., consumes the queue) and passes

them to the file segment auditor who calculates statistics

for each file segment. An engine periodically devises a data

placement plan in the hierarchy using each segment’s attributes

and pushes it to the I/O clients to be executed while updating

the segment mapping (i.e., segment-to-tier location) in the

Fig. 1. HFetch overview.

auditor. HFetch server consists of the following components:

1) Hardware Monitor: Its main role is to monitor all

available hardware tiers. During initialization of the HFetch

server, the hardware monitor is tasked to discover all available

tiers of the hierarchy (using a user-defined configuration) and

to keep track of each tier’s events. The events are generated by

the system and are pushed to an in-memory event queue which

is served by a pool of daemon threads. In HFetch context,

events are either file accesses or tier remaining capacity.

All collected events are then passed on to the file segment

auditor. In the face of update events, HFetch invalidates the

previously prefetched data enforcing data consistency.

2) File Segment Auditor: Its main role is to calculate file

segment statistics. Specifically, for each file segment (i.e., a

region of file) the auditor calculates its access frequency, when

was it last accessed, and which segment access preceded it.

Using this information, the auditor can construct a score for

each file segment that reflects how hot the segment is in the

prefetching context. A hot segment is one that is accessed

many times in a recent time window. The sequencing of

segments also provides a logical map of which segments are

connected to one another. Lastly, the auditor maintains the file

segment mappings (i.e., where in the hierarchy each segment

has been prefetched) acting as a type of internal metadata

manager. Segment statistics and mappings are both maintained

in a distributed hashmap we have developed [43]. The details

of this distributed hashmap are out of the scope of this

paper and therefore skipped. This hashmap provides a uniform

and fast O(1) insertion and querying capability, support for

concurrent access, fault tolerance in case of power-downs, and

low latency. HFetch has the ability to maintain a global view of

how each file is accessed, while avoiding a global synchroniza-

tion barrier, by using this distributed hashmap. For example,

based on the starting offset and the length of a read request, the

auditor will atomically update one or more targeted segments’

65

score in the map. This update will be visible across all nodes.

Removing the distributed hashmap from HFetch’s design will

result in increased latencies since for each read request the au-

ditor would need to propagate the update of segment statistics

across the cluster, a prohibitively expensive operation.

3) Hierarchical Data Placement Engine: Its main role is

to devise a file segment placement plan. The prefetching of

file segments and their placement in DMSH are triggered by

the change of segment scores and not by the application’s

accesses, realizing HFetch’s data-centric approach. Effectively,

the engine maps file segments to the layers of the hierarchy

based on their score spectrum. Once a placement plan has

been devised, the engine passes it to the I/O clients to execute

the actual fetching across and between the tiers. Additionally,

the engine utilizes the node-to-node communicator to include

remote tiers in its data placement plan (i.e., tiers can be local

or remote based on the performance of each tier).

4) Agent Manager: Its main role is to initialize the client

connections through a PMPI wrapper. During this con-

nection, the agents link application with HFetch server for

sharing prefetch data. Each application process is attached to

an HFetch agent who talks to the agent manager to acquire

the location of the prefetched file segments for each read

request. Also, the agent manager is responsible to collect from

the agents the beginning and the end of a prefetching epoch

enclosed between a file open and file close calls and pass it

to the auditor who marks the appropriate file segments that

are targeted for prefetching. The Agent is able to intercept

POSIX, MPI-IO, and HDF5 open-close calls.

5) Data Prefetching I/O Clients: For each available hard-

ware tier there is a thread that is responsible to perform the

I/O calls to and from source tier and destination tier. These

I/O clients can also participate in collective I/O operations

across multiple nodes using inter-node MPI communicators

(e.g., MPI Comm join()).
6) Node-to-node Communicator: Its main role is to allow

node-to-node communications regarding both metadata calls

(e.g., segment locations, mappings, etc.,) and data movement

(e.g., fetch data from another node). It leverages the existence

of RDMA or RoCE capabilities of the machine, if present,

to minimize overheads. In our prototype we use Mellanox’s

libibverbs OFED drivers.

B. System Generated Prefetching Events

Existing prefetching solutions rely on the application to

trigger prefetching events which may result in untimely data

prefetching leading to cache pollution and/or redundancy, as

discussed in Section II. Modern complex workflows operate

on a collection of data that are processed by multiple analysis

applications. HFetch leverages this observation and triggers

data prefetching based on system-generated events. A data-

centric system design should be intelligent to understand how

files are accessed and make prefetching decisions triggered

by the system itself. However, this is challenging due to the

increased complexity of the system software itself. In an ideal

system, the kernel would offer the ability to capture file events

(i.e., accesses to a file) and pass the collected information

to other components of the system software, such as the

prefetcher. Alternatively, this functionality could be offloaded

to the file system software which could maintain file access

statistics. However, this implies specificity of the file system

implementation and portability across systems is questionable.

To overcome this challenge, HFetch utilizes an existing

Linux kernel subsystem, called inotify [44] (i.e., inode

notify), to capture file system events. The inotify tool is

implemented at the VFS layer and, hence, all file system

calls will be intercepted without a need to create file system

specific implementations (e.g., XFS, EXT4, FUSE, etc). To

utilize this subsystem, watches on the interested directories

or files are installed. HFetch monitors the files opened and

closed by only those applications which link to it. Once the

watches are placed, any event on the file such as read or

write is captured by this subsystem. Consistency between

updates from external applications (i.e., not linked to HFetch)

is therefore maintained by invalidating prefetched data once

the write event is created. Moreover, this subsystem collects

a counter of file accesses on installed watched directories

or files. However, this information is not enough to build a

profile of how a file is accessed. Therefore, we implemented a

lightweight library that intercepts the Linux inotify API and

enhances the events generated with extra information about

observed file accesses. The original events created by inotify
include the type of event (e.g., open, read, write, close) and the

filename that the event refers to. We have additionally added

the location of a read operation (i.e., offset), the length of

the read operation (i.e., request size), and lastly a timestamp.

Using the above information HFetch is able to build a file
heatmap which reflects the pattern with which the file is

accessed regardless of who is performing the access. The

hotter the region of a file in the heatmap the more important

that region is for data access optimization. Those file heatmaps

can be stored alongside the raw files (i.e., similar to enriched

metafiles) to facilitate future operations on the same file (i.e.,

maintain historical accesses). Note that this step is optional

and not necessary for HFetch to perform data prefetching in

contrast to history-based prefetchers. In a sense, the precious

commodity within HFetch are the files themselves and the

system aims to derive a prefetching scheme that optimizes

all accesses to the specific file. Our enhanced inotify library

can be dynamically preloaded easily by using an environment

variable that points inotify calls to our implementation.

Figure 2 demonstrates an example of how data-centric

prefetching works in HFetch. As it can seen, there are two

applications issuing read requests for file f1 with different

HFetch agents, one per application, talking to the HFetch

server. We define a prefetching epoch as the time that a

file is open (i.e., between fopen-fclose) for reading. A file

is targeted for prefetching only during an epoch. Upon an

fopen call with the appropriate read flags, the HFetch agent

will send a start epoch() call to the server who will install

an inotify add watch() for access. If an fopen() does not

include read flags, the agent will ignore it. Also, if multiple

66

Fig. 2. An example of data-centric server-push prefetching in HFetch.

fopen from multiple processes or across applications arrive,

only the first will install the watch and the last one will remove

it. Once a watch on the opened file has been installed, the

kernel (with the help of our modified inotify() interceptor)

will start creating events based on file accesses. The events are

pushed into an event queue hosted by the hardware monitor

who is responsible to collect the events and pass them to the

file segment auditor. Segment statistics are then updated and a

segment score is calculated. The hierarchical placement engine

will then use this score to place the prefetched segments in

the tiers of the hierarchy.

C. File Segment Scoring
A file segment is defined as a file region enclosed by start

and end offsets. The segment size is dynamic based on how the

file is being read. A file segment is the prefetching unit within

HFetch, which means all prefetching operations are expressed

by loading one or more segments. Its dynamic nature provides

HFetch a better opportunity to decompose read accesses in

finer granularity and better utilize the available prefetching

cache, especially in a hierarchical environment where the

prefetching cache can span multiple tiers. Each incoming read

request may correspond to one or more segments. For example,

assume the segment size is 1MB and there is an fread()

operation starting at offset 0 with 3MB size, then HFetch will

prefetch segments 1, 2, and 3 to optimize this data access. For

every segment, HFetch maintains its access frequency within a

prefetching epoch, when it was last accessed, as well as which

segment preceded it (i.e., segment sequencing). HFetch scores

each file segment based on these collected access statistics by

the following formula:

Scores =
k∑

i=1

(
1

p
)

1
n∗(t−ti) (1)

where s is the segment being scored, k is the number of

accesses, t is the current time, ti is the time of the ith access,

and n ≥ 1 is the count of references to segment s. An

intuitive meaning of 1
n is that a segment’s score is reduced

to 1
p of the original value after every time step. Finally

p ≥ 2 is a monotonically non-increasing class of functions.

Consistently with the principle of temporal locality, t − ti
gives more weight to more recent references with smaller

backward distances. This score aims to encapsulate three

simple observations about the probability of a segment being

accessed in the future. A segment is likely to be accessed in

the future again if: a) it is accessed frequently, b) it has been

accessed recently, and c) it has multiple references to it.

The file heatmaps are generated by the score of each

segment. To minimize overheads, HFetch’s auditor maintains

segment statistics and file heatmaps in an in-memory map for

the duration of an epoch (i.e., while the file remains opened for

read). Upon closing the file HFetch has the ability to store the

file heatmaps on disk resembling a file access history. When

a file gets re-opened, if there is a stored heatmap, HFetch will

load it in memory and compare observed accesses with the

pre-existing heatmap. New accesses will evolve the heatmap

further. Heatmaps get deleted once the workflow ends. We

envision HFetch to be able to maintain multiple versions of a

file heatmap and select the best fit to the current epoch, but in

our prototype implementation we only keep the latest heatmap.

D. Hierarchical Data Placement

HFetch is a truly hierarchical data prefetcher, and thus,

the prefetching cache spans across multiple tiers of the deep

memory and storage hierarchy. In contrast to existing prefetch-

ing solution, HFetch fetches data into multiple tiers using

the hierarchical data placement engine. Note that HFetch

uses an exclusive cache model where the same data can

only be present in one tier in contrast to the inclusive CPU

caches. Hardware characteristics such as capacity, latency,

and throughput of each tier suggest an environment where a

higher tier will be faster but with limited capacity. The main

decision a hierarchical prefetcher has to make is where to place

the prefetched data? Instead of driving this decision by the

running applications, HFetch chooses the right data for the

right tier based on the segment score. Effectively, it maps the

file heatmap to the tiers with hotter segments ending up in

higher tiers. Note that a tier can be local or remote based

on performance characteristics. Applications can then access

the prefetched segments from the tier they were placed in.

This approach can lead to better resource utilization, masking

access latency behind each tier, and can offer concurrent access

with less interference.

67

Algorithm 1 Data Placement Algorithm

1: procedure CALCULATEPLACEMENT(segment, tier)
2: if segment.score > tier.min score then
3: if segment cannot fit in this tier then
4: tier.min score← segment.score
5: DemoteSegments(segment.score,tier)

6: if segment.score > tier.max score then
7: tier.max score← segment.score

8: place segment in this tier
9: else

10: CalculatePlacement(segment, tier.next)

11: procedure DEMOTESEGMENTS(score,tier)
12: segments← GetSegments(score, tier)
13: for each s ∈ segments do
14: CalculatePlacement(s, tier.next)

The data placement engine operates in the background

and in a decoupled fashion from the applications. Its main

responsibility is to periodically monitor the segment score

changes from the auditor and to decide if and what segments

should be moved up or down the tiers. All updated scores are

pushed by the auditor into a vector which the engine processes.

To avoid excessive data movements among the tiers, HFetch

uses two user-configurable conditions to trigger the engine:

a) a time interval (e.g., every 1 sec), and, b) a number of

score changes (e.g., every 100 updated scores). The engine

maintains a min and max segment score for each available tier.

If an updated segment score violates its current tier placement,

then it gets promoted or demoted accordingly. For example,

let us assume the minimum segment score placed in RAM is

2.0 and a new segment updated score is 2.2, then the new

segment will be brought in RAM, the min tier score will

be updated to 2.2, and the previous segment with score 2.0

will be placed to a lower appropriate tier (in NVMe in our

example). This approach handles both data placement during

prefetching but also automatic evictions since each segment

has its natural position in the hierarchy based on its score.

Note, if segments have exactly the same score, the default

policy in HFetch is to randomly place them in the tiers.

HFetch’s data placement engine iterates through the vector of

update scores. Algorithm 1 has a time complexity of O(m∗n)
where m is the number of segments updated on that node

and n is the number of layers. Note, n << m and m is the

number of segments updated on a node between an interval

t. This t should be ideally configured close to the average

computation time of all the applications in the workflow,

to avoid excessive computations. Lastly, it is noteworthy to

highlight the globality of the segment scoring system since

scores are calculated across all observed accesses and not

specifically for a single application’s access patterns or a

given file. Therefore, its correct placement in the tiers of the

hierarchy will optimize accesses across multiple applications

and files in a workflow. This also avoids scenarios where a

prefetcher of one application conflicts with another application

leading to cache pollution and unwanted evictions.

IV. EVALUATION

We evaluate HFetch using synthetic benchmarks that

simulate various read patterns. We also perform scaling tests

using real scientific workloads that span over a wide range of

scientific simulations and data analysis kernels. During each

test we collocate the HFetch server with the application cores,

as data-centric approach induce almost negligible overheads

on the application. All tests were executed five times and we

report the average along with the variance. Our evaluation

results demonstrate both end-to-end execution time reduction

expressed in seconds and miss ratio expressed in %. As our

baseline, we use a No Prefetching solution based purely on

reading from the parallel file system, and we also compare

HFetch with state-of-the-art prefetchers Stacker and KnowAc.

Testbed: All experiments were conducted on the Ares

supercomputer at the Illinois Institute of Technology. Each

compute node has a dual Intel(R) Xeon Scalable Silver 4114

@ 2.20GHz (i.e., 40 cores per node), 96 GB RAM, 40Gbit

Ethernet, and a local 512GB NVMe SSD. Each storage

node has a dual AMD Opteron 2384 @ 2.7Ghz, 32GB

RAM, 40GBit Ethernet with RoCE, and is also equipped

with 2x512GB SSD in RAID, and 2TB HDD. The total

experimental cluster consists of 2560 client MPI ranks (i.e.,

64 nodes), 4 burst buffer nodes, and 24 storage nodes running

an installation of OrangeFS 2.9.8. We use CentOS 7.1 as the

operating system, and the MPI version is Mpich 3.2.

A. HFetch Performance Analysis

1) HFetch Internal Components: The amount of events

produced by the file system impacts the performance of a data-

centric approach such as HFetch. To better understand this

impact, we evaluate the event consumption ability of HFetch’s

hardware monitor and file segment auditor by scaling the num-

ber of generated events while measuring the consumption rate,

reported in events per second. The HFetch server, which has

a multi-threaded design, is deployed on a dedicated core with

the ability to scale the number of the threads that hardware

monitor daemons and the hierarchical data placement engine

use. Figure 3(a) demonstrates the results. During this test, each

client process issues 100K events and the HFetch server uses

8 threads in total. We scale the number of client cores and we

tested three configurations of the server, namely 2 daemon - 6

engine threads, 4 daemon - 4 engine threads, and 6 daemon -

2 engine threads. The intuition behind these configurations is

to match the production rate. More available daemons means

more throughput on the event queue consumption. The results

verify that 6 daemon - 2 engine threads performs better as

the number of produced events increases offering more than

200K events per second consumption rate. This implies a

granularity of one HFetch server to 32 client cores and can be

used as a deployment guideline. A hierarchical data prefetcher

has to also decide in which tier of an available hierarchy

should it bring data in. This process involves a typical trade-

off between the cost of finding the optimal placement of data

in the hierarchy and the resulting reading I/O time. Deriving

an optimal placement is often more expensive but can lead

68

0

50K

100K

150K

200K

250K

4 8 16 32 64 128

EV
EN

TS
 P

ER
 S

EC
O

N
D

OF CLIENT CORES

2::6 4::4 6::2Daemon::Engine Ratio

(a) HFecth server-to-client ratio

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

0.5

1

1.5

2

2.5

3

3.5

w1 w2 w3 w1 w2 w3 w1 w2 w3

High Medium Low

H
IT

 R
A

TI
O

TI
M

E
(S

EC
)

ENGINE TRIGGER SENSITIVITY

Latency Read Time Hit Ratio

(b) Placement engine reactiveness

Fig. 3. HFetch server evaluation.

to better read throughput. On the other hand, a sub-optimal

placement, typically random or round robin placements, is

quicker to calculate but might result in lower read bandwidths.

With this observation in mind, we designed HFetch’s data

placement engine to be tunable by the user and to be able

to adapt to commonly running workloads. In HFetch, the

engine is responding to the change of segment scores. It does

so either by a time window or by the number of updated

scores. Therefore, HFetch can be configured to be extremely

sensitive (i.e., triggering the engine per score update) or to

be relatively slower to react to score changes. We define this

sensitivity to score changes as engine reactiveness. Figure 3(b)

demonstrates three configurations of engine reactiveness and

three workloads that consist of alternating computations and

I/O bursts. In this test, the engine is triggered as follows:

a) high, at every segment score update, b) medium, every

100 score updates, and c) low, every 1024 score updates.

Each I/O burst reads 1GB of data in 1MB requests and

w1, w2, w3 are a data-intensive, a balanced, and a compute-

intensive workload respectively. The amount of computation

between the I/O bursts gives the prefetcher a better chance

to complete the data loading. This can be seen by the results

where w3 demonstrates the best overall performance across

all engine configurations. On the other hand, a highly sensitive

engine achieves the best hit ratio of around 88%, but at the cost

of increased latency penalties which stem from increased data

movement among the tiers, and thus, interference with the read

operations. In contrast, low sensitivity of the engine results in

low hit ratios but significantly improves the latency observed.

Note that lower hit ratios impact the performance more com-

pared to the interference slowdown. The medium sensitivity

(the default in HFetch) resulted in the best performance for

w2 and w3, balancing latency penalties and read bandwidth.

2) Hierarchy-aware prefetching: Architectural trends indi-

cate that the amount of available memory per core is decreas-

ing [45]. One possible solution is to extend the prefetching

cache into more tiers of the hierarchy. There are two ways to

utilize a hierarchy: a) reduce the DRAM footprint by extending

the cache to more tiers, b) increase the total available cache

size by expanding it to more tiers. To better understand the im-

pact of the size and physical location of the prefetching cache,

we compare a traditional single-tier prefetcher with a hierar-

chical one and measure the end-to-end time. Figure 4(a) shows

the results of the first configuration. In this test, we deployed

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

Parallel HFetch Serial None

TI
M

E
(S

EC
)

PREFETCHING SOLUTION

(a) Reducing RAM footprint

0

10

20

30

40

320 640 1280 2560

TI
M

E
(S

EC
)

CLIENT PROCESSES

In-Memory Optimal
HFetch
In-Memory Naïve
None

(b) Extending prefetching cache

Fig. 4. Effect of hierarchical prefetching.

2560 MPI processes, each performing sequential reads, for a

total of 40 GB in 10 time steps. We evaluate HFetch against

a serial prefetcher, a parallel prefetcher, and a no-prefetching
approach. Both HFetch and the parallel prefetcher use four

threads. The prefetching cache size is 40 GB. In the case of

HFetch, this cache spans across three tiers: 5 GB in RAM, 15

GB in NVMe, and 20 GB in burst buffers. The data initially re-

side in a PFS installation of 24 storage servers. As shown in the

figure, the parallel prefetcher is able to overlap reading with

the prefetching operations almost perfectly resulting in a 89%

hit ratio and the smallest execution time. In contrast, the serial

prefetcher can only bring one data piece at a time and its miss

ratio is higher since reading from RAM is faster than fetching

data from PFS. By utilizing more tiers, HFetch is able to

reduce the RAM footprint by 8x while being only 17% slower

than the parallel since it directs read operations to slower

tiers. It is 44% faster than the serial one. HFetch achieves

this performance by pipelining fetching operations from tier to

tier while allowing the application cores to read from multiple

tiers at the same time increasing access concurrency. It does of

course expose increased latencies since lower tiers are slower

than RAM. However, trading minor performance losses for

a significant RAM footprint reduction is crucial to a lot of

modern workloads such as BigData and ML analytics.

In Figure 4(b), we show results when expanding the

prefetching cache with more tiers. In this test, we weak scale

the I/O operations by scaling the number of client processes.

Each process sequentially reads 16MB in 4 time steps which

results in 40 GB of total I/O. We compare HFetch with these

prefetchers: a) in-memory optimal, where each process brings

data into its own cache, and b) in-memory naive, where

each process competes for access to the prefetching cache.

The prefetching cache size for both in-memory prefetchers

is configured at 5 GB RAM space whereas for HFetch we

supplement it with 15 GB NVMe and 20 GB burst buffer

space. As can be seen, increasing the cache size, even if

it is in lower, less capable tiers, helps reduce miss ratio

penalty and ultimately leads to higher read performance.

For smaller scale, all solutions can fit all data in RAM and

therefore all achieve the same performance. As the scale

grows, prefetched data cannot fit in the prefetching cache

and therefore applications are forced to go to the PFS. This

is obvious for the in-memory naive prefetcher’s performance

where the prefetcher threads and the application threads both

69

0%

20%

40%

60%

80%

100%

120%

0

10

20

30

40

50

60

Sequential Strided Repetitive Irregular

H
IT

 R
AT

IO
 (%

)

TI
M

E
(S

EC
)

WORKLOAD TYPE

Application-centric Data-centric No prefetching App-HitRatio Data-HitRatio

Fig. 5. Application-centric vs. data-centric prefetching.

compete for access to PFS (i.e., observed interference), and

thus, enabling prefetching actually hurts the performance

when compared to the native PFS performance. In summary,

HFetch can expand the cache size by utilizing the additional

tiers available and therefore decrease the miss ratio and boost

performance by 35% over the optimal in-memory prefetcher

and 50% over the no-prefetching baseline.

3) Data-centric prefetching: A system-wide prefetching

approach has the advantage of observing how files are accessed

across multiple processes or even applications. HFetch’s

design implements a data-centric logic where access statistics

are collected and prefetching decisions are made based on how

important a file block or region (i.e., segment in HFetch) is.

In contrast, an application-centric prefetcher’s main objective

is to identify how each application accesses its data and make

prefetching decisions accordingly. As discussed in Section II,

this approach might create scenarios where the cache can get

polluted, or data are fetched twice, or unnecessary evictions

of prefetched data occur. To better understand the differences

between an application-centric and data-centric prefetching

approach and identify which workloads work best in each, we

tested HFetch under the following scenario. We have 2560

processes in total organized in four different communicator

groups representing different applications resembling a data

analysis and visualization pipeline. Each process issues read

requests on the same dataset. We tested four commonly-used

patterns [45]: sequential, strided, repetitive, and irregular

access patterns. The prefetching cache size is configured

to fit the total data size of two out of the four applications

which means applications compete for access to this cache.

For HFetch the prefetching cache is configured to fit one

application’s load in RAM and one in NVMe. Figure 5

demonstrates the evaluation results. As can be seen, for

sequential, strided, and repetitive patterns, HFetch achieves

26% higher performance when compared to an application-

centric approach. HFetch is able to capture how data are

accessed across applications or files and understand which

segments are important to fetch from a global perspective. This

results in zero cache evictions and no cache pollution. Both,

application-centric and HFetch suffers from irregular patterns,

but application-centric suffers more as data-centric would be

see the globality of accesses and optimize accordingly.

B. Real Scientific Workflows with HFetch

To evaluate the effectiveness of HFetch’s hierarchical-

aware and data-centric prefetching approach, we performed

scaling tests using two complex multi-application scientific

workflows: namely Montage [46] and WRF [47]. Both these

real-world workflows showcase the need for a data-centric

approach so that multiple applications running together can

effectively have data prefetched globally. We compare HFetch

with Stacker with KnowAc, one online and one offline

prefetcher. Both of those solutions are configured to fetch

data from burst buffers to the application’s memory.

1) Montage: This workflow is a collection of MPI pro-

grams comprising an astronomical image mosaic engine. Each

phase of building the mosaic takes an input from the previous

phase and outputs intermediate data to the next one. Specifi-

cally, FITS images are initially read by multiple processes in a

sequentially order. Then, a subset of them are re-projected into

different images. During this stage multiple processes read the

same images multiple times but in different time-frames. Once

projected images are produced, another multi-processed pro-

gram runs a diff between all the projected images and cal-

culates the least square distance. This phase is executed until

the model converges resulting in a random but repetitive read

pattern. Finally, a correction is applied on the overlaid images

and the final image is created. Hence, Montage’s workflow is

highly read-intensive and iterative [48] making it an ideal case

to perform prefetching effectively [49]. Figure 6(a) shows the

results for Montage. During this test, each process does 10 MB

of I/O operations in 16 time steps for a total of 400 GB for the

largest scale. We weak scaled the execution of Montage by in-

creasing the number of processes from 320 to 2560. Required

data are initially staged in the burst buffer nodes. The system

is overall configured with prefetching cache organized in 1.5

GB RAM space, 2 GB in local NVMe drives and 400 GB burst

buffer allocation. As can be seen, the best read performance

is achieved by KnowAc, a history-based prefetcher, since the

prefetcher knows exactly what to load next. However, such

an approach suffers from prolonged profiling costs. Stacker

avoids pre-processing steps and build its models as it goes,

but demonstrated a lower hit ratio due to some cache conflicts

and unwanted data evictions. HFetch was able to utilize all

available tiers and performed the best, offering from 5% to

25% better end-to-end performance when compared to Stacker

and 10% to 30% better than KnowAc (i.e., profile-cost plus

run time). Note that all solutions scale nicely.

2) WRF: This workflow is a multi-application mesoscale

numerical weather prediction system designed for both

atmospheric research and operational forecasting needs. It is

an iterative workflow where components of the simulation

analyze observed and simulated data many times until the

model converges. As the model is simulated, an analysis

application produces a visualization of this model. There

are three distinct phases: pre-processing, main model, post-

processing and visualization. More details on how WRF

works can be found in [50]. Figure 6(b) shows the results for

70

0

1K

2K

3K

320 640 1280 2560

TI
M

E
(S

EC
)

CLIENT CORES

Stacker KNOWAC HFetch No Prefetching
Profile-Cost

(a) Montage (weak scaling)

0

100

200

300

400

500

600

700

320 640 1280 2560

TI
M

E
(S

EC
)

CLIENT CORES

Stacker KNOWAC HFetch No Prefetching
Profile-Cost

(b) WRF (strong scaling)

Fig. 6. End-to-end performance of scientific workflows.

WRF. During this test, each process reads 8MB of data in 4

time steps for a total of 80GB across all scales (i.e., strong

scale). Input data are assumed to be initially present in the

burst buffer nodes. The system is configured with prefetching

cache organized in 1.25 GB RAM space, 2 GB in local

NVMe drives and 80 GB burst buffer allocation. Results

confirm our previous observations with KnowAc having the

best read time but additional profiling costs and Stacker

demonstrating better end-to-end time over KnowAc. HFetch

is able to utilize all tiers and scaled better than all solutions.

V. RELATED WORK

The related work has already been presented in Section II.

However, we highlight here the main differences of HFetch

from the existing work in the following key areas:

a) HFetch implements an exclusive cache design where

prefetched data reside in only one tier. Hardware prefetchers

in CPU designs have inclusive cache designs.

b) HFetch does not require any pre-processing steps or offline

analyses. Offline prefetchers only work after extensive tracing

or pre-execution of the application.

c) HFetch relies on dynamic prefetching granularity to lever-

age the placement of data in the DMSH by using adaptive

segment sizes. Existing solutions opt for a static prefetching

unit (i.e., either an entire file or small data variables).

d) HFetch leverages the DMSH transparently whereas most

existing prefetchers cannot handle the presence of multiple

tiers opting either to bypass them or partially use them as

overflowing data buffers.

e) HFetch differentiates itself by proposing a server-push (i.e.,

data-centric) prefetching approach whereas prefetching has

traditionally been triggered by applications and their accesses.

In addition to that relevant research, we identify the fol-

lowing relevant work. Diskseen [19], tracks the locations

and access times of disk blocks. Based on analysis of their

temporal and spatial relationships, it seeks to improve the

sequentiality of disk accesses and overall prefetching per-

formance. However, disk blocks do not carry file semantics

and relationships between segments. During HFetch design

and development, we drew partial motivation from a cache

replacement algorithm presented in [51] where frequency and

recency of a memory page can both influence the eviction of

the page. HFetch’s segment scoring resembles in a sense a

similar approach where we target segment with score based

on access frequency and recency.

VI. CONCLUSIONS AND FUTURE WORK

While data prefetching solutions is an effective data

access optimization that masks the latency by pre-loading

data before they are needed, they are designed from an

application-centric point of view and fail to recognize

global patterns. Additionally, they were designed to operate

with prefetching caches in DRAM space which will be an

unrealistic approach as we move forward to extreme scale

computing environments where each core has access to less

and less memory capacity. To overcome these challenges,

we designed and presented, HFetch, a hierarchical data

prefetcher that implements a data-centric design in this paper.

We showcase the benefits of such an approach by evaluating

its scalability, effectiveness, and overall performance. Results

show, HFetch is a promising solution to a growing problem

of extreme scale data access. HFetch achieves 10-35% higher

read throughput than prefetching solutions tested, and, over

50% improvement over native storage performance without

prefetching. As future steps, we plan to extend the evaluation

with more applications, deploy HFetch to larger scales, and

enhance its scoring models with machine learning.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant no. OCI-1835764 and CSR-
1814872.

REFERENCES

[1] P. Carns, K. Harms, W. Allcock et al., “Understanding and improving
computational science storage access through continuous characteriza-
tion,” ACM Transactions on Storage (TOS), vol. 7, no. 3, p. 8, 2011.

[2] X.-H. Sun, Y. Chen, and M. Wu, “Scalability of heterogeneous
computing,” in 2005 International Conference on Parallel Processing
(ICPP’05). USA: IEEE, 2005, pp. 557–564.

[3] J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci et al., “Combining in-situ
and in-transit processing to enable extreme-scale scientific analysis,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE Computer Society
Press, 2012, p. 49.

[4] B. Dong, T. Wang, H. Tang, Q. Koziol et al., “ARCHIE: Data Analysis
Acceleration with Array Caching in Hierarchical Storage,” in 2018 IEEE
International Conference on Big Data (Big Data), USA, pp. 211–220.

[5] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technology
challenges,” in International Conference on High Performance Comput-
ing for Computational Science. USA: Springer, 2010, pp. 1–25.

[6] D. A. Reed and J. Dongarra, “Exascale computing and big data,”
Communications of the ACM, vol. 58, no. 7, pp. 56–68, 2015.

[7] A. Kougkas, M. Dorier, R. Latham, R. Ross, and X.-H. Sun, “Leveraging
burst buffer coordination to prevent I/O interference,” in 2016 IEEE 12th
International Conference on e-Science (e-Science). USA: IEEE, 2016.

[8] A. Kougkas, H. Devarajan, and X.-H. Sun, “Hermes: a heterogeneous-
aware multi-tiered distributed I/O buffering system,” in Proceedings of
the 27th International Symposium on High-Performance Parallel and
Distributed Computing. USA: ACM, 2018, pp. 219–230.

[9] Cray, “Datawarp documentation,” 2016. [Online]. Available: https:
//pubs.cray.com/browse/datawarp/software

[10] DDN, “IME burst buffers documentation,” 2018. [Online]. Available:
https://www.ddn.com/products/ime-flash-native-data-cache/

[11] G. K. Lockwood, D. Hazen, Q. Koziol et al., “Storage 2020: A Vision
for the Future of HPC Storage,” NERSC, Tech. Rep., 2017.

71

[12] B. Dong, S. Byna, K. Wu, H. Johansen et al., “Data elevator: Low-
contention data movement in hierarchical storage system,” in 2016 IEEE
23rd International Conference on High Performance Computing (HiPC).
Hyderabad, India: IEEE, 2016.

[13] T. Wang, S. Byna, B. Dong, and H. Tang, “UniviStor: Integrated Hier-
archical and Distributed Storage for HPC,” in 2018 IEEE International
Conference on Cluster Computing (CLUSTER). USA: IEEE, 2018.

[14] I. Stefanovici, E. Thereska, G. O’Shea et al., “Software-defined caching:
Managing caches in multi-tenant data centers,” in Proceedings of the
Sixth ACM Symposium on Cloud Computing. USA: ACM, 2015, pp.
174–181.

[15] I. Gorton and J. Klein, “Distribution, data, deployment: Software archi-
tecture convergence in big data,” IEEE Software, vol. 32, 2015.

[16] K. J. Brown, H. Lee, T. Romp et al., “Have abstraction and eat
performance, too: Optimized heterogeneous computing with parallel
patterns,” in 2016 IEEE International Symposium on Code Generation
and Optimization (CGO), pp. 194–205.

[17] S. Yang, T. Harter, N. Agrawal et al., “Split-level I/O scheduling,” in
Proceedings of the 25th Symposium on Operating Systems Principles.
USA: ACM, 2015.

[18] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng,
“Datastager: scalable data staging services for petascale applications,”
Cluster Computing, vol. 13, no. 3, pp. 277–290, 2010.

[19] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang, “DiskSeen:
Exploiting Disk Layout and Access History to Enhance I/O Prefetch,”
in 2007 USENIX Annual Technical Conference on Proceedings of the
USENIX Annual Technical Conference. Santa Clara, CA: USENIX
Association, 2007, pp. 20:1–20:14.

[20] P. Cao, E. W. Felten, A. R. Karlin, and K. Li, “A study of integrated
prefetching and caching strategies,” ACM SIGMETRICS Performance
Evaluation Review, vol. 23, no. 1, pp. 188–197, 1995.

[21] F. Chang and G. A. Gibson, “Automatic I/O Hint Generation Through
Speculative Execution,” in Proceedings of the Third Symposium
on Operating Systems Design and Implementation, ser. OSDI ’99.
Berkeley, CA, USA: USENIX Association, 1999, pp. 1–14. [Online].
Available: http://dl.acm.org/citation.cfm?id=296806.296807

[22] J. He, X.-H. Sun, and R. Thakur, “Knowac: I/O prefetch via accumu-
lated knowledge,” in 2012 IEEE International Conference on Cluster
Computing. USA: IEEE, 2012, pp. 429–437.

[23] B. Saraladevi, N. Pazhaniraja, P. V. Paul, M. S. Basha, and P. Dhavachel-
van, “Big Data and Hadoop-A study in security perspective,” Procedia
computer science, vol. 50, pp. 596–601, 2015.

[24] J. Bent, G. Grider, B. Kettering, A. Manzanares, M. McClelland,
A. Torres, and A. Torrez, “Storage challenges at Los Alamos National
Lab,” in 2012 IEEE 28th Symposium on Mass Storage Systems and
Technologies (MSST). Pacific Grove, CA: IEEE, 2012, pp. 1–5.

[25] E. Barton, “DAOS an architecture for extreme scale storage,” 2015.
[Online]. Available: http://tinyurl.com/y2jqoevt

[26] P. Subedi, P. Davis, S. Duan et al., “Stacker: an autonomic data move-
ment engine for extreme-scale data staging-based in-situ workflows,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis. USA: IEEE Press,
2018, p. 73.

[27] D. J., “memory access. White paper, Intel Research Website,” 2006.
[Online]. Available: https://tinyurl.com/yydpfkt2

[28] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead execution:
An alternative to very large instruction windows for out-of-order pro-
cessors,” in The Ninth International Symposium on High-Performance
Computer Architecture, 2003. HPCA-9 2003. Proceedings. USA: IEEE,
2003, pp. 129–140.

[29] M. Y. Qadri, N. N. Qadri, M. Fleury, and K. D. McDonald-Maier,
“Energy-efficient data prefetch buffering for low-end embedded proces-
sors,” Microelectronics Journal, vol. 62, pp. 57–64, 2017.

[30] Intel, “Intel 64 and IA-32 Architectures Optimization Reference
Manual,” 2019. [Online]. Available: https://tinyurl.com/lxxw7sn

[31] X.-H. Sun, S. Byna, and Y. Chen, “Server-based data push architecture
for multi-processor environments,” Journal of Computer Science and
Technology, vol. 22, no. 5, pp. 641–652, 2007.

[32] G. Cherubini, Y. Kim, M. Lantz, and V. Venkatesan, “Data Prefetching
for Large Tiered Storage Systems,” in 2017 IEEE International Confer-
ence on Data Mining (ICDM). New Orleans, USA: IEEE, 2017.

[33] M. C. Wiedemann, J. M. Kunkel, M. Zimmer, T. Ludwig, M. Resch,
T. Bönisch, X. Wang, A. Chut, A. Aguilera, W. E. Nagel et al., “Towards

i/o analysis of hpc systems and a generic architecture to collect access
patterns,” Computer Science-Research and Development, pp. 1–11.

[34] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The
cost of doing science on the cloud: the montage example,” in SC’08:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing.
Ieee, 2008, pp. 1–12.

[35] Y. Joo, S. Park, and H. Bahn, “Exploiting i/o reordering and i/o inter-
leaving to improve application launch performance,” ACM Transactions
on Storage (TOS), vol. 13, no. 1, p. 8, 2017.

[36] H. Devarajan, A. Kougkas, P. Challa, and X.-H. Sun, “Vidya: Performing
Code-Block I/O Characterization for Data Access Optimization,” in 2018
IEEE 25th International Conference on High Performance Computing
(HiPC), Dec 2018, pp. 255–264.

[37] V. Thilaganga, M. Karthika, and M. M. Lakshmi, “A Prefetching
Technique Using HMM Forward and Backward Chaining for the DFS
in Cloud,” Asian Journal of Computer Science and Technology, vol. 6,
no. 2, pp. 23–26, 2017.

[38] N. Tran and D. A. Reed, “Automatic ARIMA time series modeling for
adaptive I/O prefetching,” IEEE Transactions on parallel and distributed
systems, vol. 15, no. 4, pp. 362–377, 2004.

[39] M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross, “Omnisc’IO: a
grammar-based approach to spatial and temporal I/O patterns predic-
tion,” in SC’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. USA:
IEEE, 2014.

[40] G. Daniel, G. Sunyé, and J. Cabot, “PrefetchML: A Framework for
Prefetching and Caching Models,” in Proceedings of the ACM/IEEE 19th
International Conference on Model Driven Engineering Languages and
Systems. New York, NY, USA: ACM, 2016, pp. 318–328.

[41] H. Devarajan, A. Kougkas, P. Challa, and X.-H. Sun, “Data Prefetching
using System-generated Events: Application-centric vs Data-centric?
,” 2019. [Online]. Available: http://www.cs.iit.edu/∼scs/assets/files/
devarajan2019HFetch tr.pdf

[42] H. Devarajan, “Hierarchical Data Prefetching software,” 2019. [Online].
Available: https://bitbucket.org/scs-io/hfetch

[43] H. Devarajan and C. Hogan, “HCL: Hermes Container Library,” 2019.
[Online]. Available: https://github.com/HDFGroup/hcl

[44] I. Shields, “Monitor Linux file system events with inotify,” 2010.
[Online]. Available: https://developer.ibm.com/tutorials/l-inotify/

[45] T. Jin, F. Zhang, Q. Sun, H. Bui, M. Romanus et al., “Exploring data
staging across deep memory hierarchies for coupled data intensive sim-
ulation workflows,” in 2015 IEEE International Parallel and Distributed
Processing Symposium. USA: IEEE, 2015, pp. 1033–1042.

[46] G. Berriman, J. Good, A. Laity, and M. Kong, “The Montage image
mosaic service: custom image mosaics on-demand,” Astronomical Data
Analysis Software and Systems ASP, vol. 394, no. 2, 2008.

[47] M. Laboratory, “WRF, Weather Research and Forecasting
Model,” 2017. [Online]. Available: https://www.mmm.ucar.edu/
weather-research-and-forecasting-model

[48] S. Bharathi, A. Chervenak, E. Deelman et al., “Characterization of
scientific workflows,” in 2008 third workshop on workflows in support
of large-scale science. IEEE, 2008, pp. 1–10.

[49] S. Iacobovici, L. Spracklen, S. Kadambi, Y. Chou, and S. G. Abra-
ham, “Effective stream-based and execution-based data prefetching,” in
Proceedings of the 18th annual international conference on Supercom-
puting. ACM, 2004, pp. 1–11.

[50] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker,
W. Wang, and J. G. Powers, “A description of the advanced research
wrf version 3. ncar technical note-475+ str,” 2008.

[51] D. Lee, J. Choi, J.-H. Kim, S. H. Noh et al., “LRFU: A spectrum of
policies that subsumes the least recently used and least frequently used
policies,” IEEE transactions on Computers, vol. 12, pp. 1352–1361,
2001.

72

