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1 EXTENDED ABSTRACT
Data-intensive computing offers unprecedented opportunities for
scientific discovery, high-fidelity insights, and data-driven decision
making with timely data access being a driving factor of the overall
execution time [1]. The computational efficiency of modern appli-
cations is closely related to the ability of the storage systems to
push data to the compute units as the performance of the latter has
progressed significantly faster than disk capabilities [8]. Modern
applications spend significant amounts of time in reading data; in
some cases up to 80% of the overall execution time [5]. As we move
towards exascale, this trend is expected to exacerbate further the
I/O bottleneck (e.g., I/O wall problem [7]). While modern storage
systems are adapting quickly to the challenges of today’s fast-paced
computation environment, they still struggle to address the demand
for low data access latency.

To address the gap between the data consumption from the
compute and data supply from the storage system, recent research
has proposed solutions broadly categorized in two disconnected
directions: innovative software (that sits between applications and
the storage) which is responsible to mask the access latency and
new hardware devices (that offer lower access latency and higher
throughput). There are several software techniques to optimize
read-intensive workloads such as data concurrency, data locality,
I/O reordering, and data prefetching. On the hardware end, many
of the leadership computing facilities have already deployed fast
node-local NVMe SSDs and/or shared specialized buffering nodes
(i.e., burst buffers) creating a new multi-tiered storage environment,
called deep memory and storage hierarchy. Many supercomput-
ing facilities have widely deployed specialized buffering solutions
such as Cray’s Datawarp [2] and DDN’s IME [3]. However, tradi-
tional file systems are not equipped to handle this new hierarchy
and users are left to manually manage the layers of the hierarchy.
To handle data movement through the hierarchy, some software
platforms such as Data Elevator [4], Univistor [9], and Hermes [6]
have been developed. All the above systems are designed to only
optimize write-heavy workloads via data buffering. Therefore, the
read operation optimizations, that leverage the new multi-tiered
storage environment, have to be further explored.

In this study, we focus on data prefetching optimization in multi-
tiere storage environments. We observe several significant chal-
lenges came to light, when optimizing read operations by using the
existing methods. Firstly, a truly hierarchical data prefetching in a
multi-tiered storage environment is not supported by any of the ex-
isting solutions. All prefetching solutions have to answer two main
questions: a) when to prefetch data, and b) what data to prefetch.
Additionally, the presence of multiple tiers of the storage hierarchy
gives rise to a third question: where to prefetch data? Modern ar-
chitectures, in extreme scale computing, suggest a decrease in the
amount of RAM per core. This requires the existing memory-based
data staging and prefetching solutions to evolve and include the
multi-tiered storage. Secondly, existing prefetching solutions rely on
identifying application’s data access patterns which poses several
issues such as erroneous access pattern detection, unwanted data
evictions, cache pollution, cache redundancy and resource inter-
ference. To alleviate these issues, an application-agnostic approach
should be employed. Lastly, prefetching data in a smaller granu-
larity than the entire file is unavailable or, at best, limited. Finer
granularity can lead to better prefetching resource utilization and,
therefore, higher performance. As the complexity of computation
workflows increases, solutions relying on identifying data access
patterns become in-feasible.

To address the above challenges, we present HFetch, a new hi-
erarchical data prefetcher that supports multi-tiered storage envi-
ronments. HFetch is primarily a data-centric prefetching decision
engine that utilizes system-generated events, while leveraging the
presence of multiple tiers of storage, to perform hierarchical data
placement at the required time. HFetch can obtain a global system-
wide view of how data is accessed, regardless of which application
or process is performing the access, by monitoring the file system
and collecting statistics for each data segment. Based on a global
scoring function that ranks the importance or urgency of the tar-
geted data, it makes intelligent decisions as to when, what, and
where to prefetch data. In modern scientific workflows, data might
be read multiple times across applications which might create se-
vere issues for prefetching cache management. Cache pollution,
cache redundancy, and unnecessary data evictions leading to in-
creased miss ratios are the norm, and not the exception, especially
in extremely large scale workloads. HFetch addresses these issues
by maintaining global file heatmaps that represent how a file is
accessed across processes or applications. It uses those heatmaps
to express the placement of data in a hierarchical system.
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Figure 1: HFetch overview.

1.1 HFetch Overview
The main idea behind HFetch is to fetch portions of a file to a tier of
the hierarchy based on access frequency, recency, and relationship
between segments (i.e., file segment sequencing). In other words,
instead of guessing what an application will access next, HFetch
collects access statistics of file regions (which we call file segments)
from the file systems themselves and pro-actively loads them in the
hierarchy, based on a segment score, that reflects the urgency to
access the chosen segment. This score incorporates the frequency,
recency and sequencing of the segments thereby creating a file
access heatmap. The file heatmap is then used to naturally match it
to a hierarchical environment. In effect, HFetch answers the three
prefetching questions (what to prefetch, when to prefetch, and
where to place prefetched data) by naturally mapping the spectrum
of segment scores to the appropriate tier.

Figure 1 shows the architecture of HFetch. HFetch follows a
client-server model. Each compute node is equipped with an HFetch
server running on one of the cores. Each application dynamically
links to the HFetch library and a background HFetch thread, we
call Agent, is spawned alongside each application process (depicted
as H ). Upon application initialization, a small fraction of the main
memory is allocated for HFetch internal structures. Our proposed
architecture incorporates system designs with a local NVMe drive,
a shared collection of burst buffer nodes, and a remote PFS. Es-
sentially, the flow of operations in HFetch is as follows. Each tier
independently pushes its I/O events into a queue that resides in
HFetch memory. A hardware monitor collects events and passes
them to the file segment auditor who calculates statistics for each
file segment. An engine periodically devises a data placement plan
in the hierarchy based on each segment’s attributes and pushes it to
the I/O clients to be executed while updating the segment mapping.

1.2 Initial Results
To test our system under real workloads, we compare it with state-
of-the-art prefetching solutions.
Montage is a collection of programs comprising an astronomical
image mosaic engine. It is a use-case of a workflow where multiple
kernels share data for different purposes and access this common
data concurrently. Each phase of building the mosaic takes an input
from the previous phase and outputs intermediate data to the next
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Figure 2: Montage (weak scaling).

one. Figure 2 shows the results for Montage. During this test, each
process does 10 MB of I/O operations in 16 time steps for a total
of 400 GB for the largest scale. We weak scaled the execution of
Montage by increasing the number of processes from 320 to 2560.
Required data are initially staged in the burst buffer nodes. The
system is overall configured with prefetching cache organized in
1.5 GB RAM space, 2 GB in local NVMe drives and 400 GB burst
buffers. As can be seen, the best read performance is achieved by
KnowAc, a history-based prefetcher, since the prefetcher knows
exactly what to load next. However, such approach suffers from
prolonged profiling costs. Stacker avoids pre-processing steps and
build its models as it goes, but demonstrated a lower hit ratio due
to some cache conflicts and unwanted data evictions. HFetch was
able to utilize all available tiers and performed the best, offering
from 5% to 25% better end-to-end performance when compared to
Stacker and 10% to 30% better than KnowAc.

We have introduced, HFetch, a truly hierarchical data prefetcher
that implements a data-centric design. Results show a promising
solution to a growing problem of extreme scale data access. We
showcase the benefits of such approach by evaluating its scalability,
effectiveness, and overall performance where it achieves 10-35%
higher read throughput than prefetching solutions tested.
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