
A Protocol Design of Communication State Transfer
for Distributed Computing *

Kasidit Chanchio Xian-He Sun
Department of Computer Science
Illinois Institute of Technology

Chicago, IL 60616
fkasidit, sung@cs.iit.edu

Abstract

This paper presents the design of a communication state
transfer protocol to support process migration in a dynamic,
distributed computing environment. In our design, pro-
cesses in distributed computation communicate one another
via message passing and are migration-enabled. Due to mo-
bility, mechanisms to maintain reliability and correctness of
data communication are needed. Following an event-based
approach, such mechanisms are derived to handle various
communication situations when a process migrates. These
mechanisms collectively preserve the semantics of the com-
municationand support efficient communicationstate trans-
fer.

1 Introduction

Process migration is a basic function of dynamic pro-
gramming. It moves a running process from one com-
puter to another. Motivations of process migration include
load balancing, fault tolerance, data access locality, resource
sharing, reconfigurable computing, and system administra-
tion, etc [1]. Recent research shows process migration is
necessary for achieving high performance via utilizing un-
used network resources. Process migration is a fundamental
technique needed for the next generation of internet compu-
tation [2]. However, despite these advantages, process mi-
gration has not been adopted in engineering practice due to
its design and implementation complexities, especially in a
large distributed environment.

Snow [3] is a distributed environment supporting user-
level process migration. Snow provides solutions for three
problem domains for transferring computation state, mem-

*This work was supported in part by National Science Foundation un-
der NSF grant ASC-9720215, CCR-9972251, and by IIT under the ERIF
award.

ory state, and communication state of a process. Methods
to transfer the execution and memory state have been devel-
oped [3]. This paper presents a solution to transfer the com-
munication state.

Activities in a large-scale distributedenvironment are dy-
namic in nature. Adding process migration functionality
makes data communication even more challenging. A num-
ber of fundamental problems have to be addressed. First,
processes should be able to communicate one another from
anywhere and at anytime. Process migration could occur
during a communication. Mechanisms need to be developed
to guarantee correct message arrivals. Second, the problem
of updating location information of a migrating process has
to be solved. After a process migrates, other processes have
to know its new location for future communications. The
updating technique should be scalable enough to apply to a
large network environment. Finally, if a sequence of mes-
sages are sent to a migrating process, correct message order-
ing must be maintained.

We have developed data communication and process mi-
gration protocols working cooperatively to solve the afore-
mentioned problems. This paper focuses on basic ideas be-
hind our protocol design and discusses how the protocols
work under various communication situations. Our protocol
design is based on the concept of point-to-pointconnection-
oriented communication. It aims to provide a robust and
general solution for communication state transfer. Mecha-
nisms to handle process state transfer are implanted into a
number of communication operations which could occur at
data communication end points. These operations include
send and receive operations in the data communication pro-
tocol and migration operation in the process migration pro-
tocol. They coordinate one another during the migration to
guarantee correct message passing. The protocols are natu-
rally suitable for large-scale distributed environment due to
their inherited properties. First, they are scalable. During a
migration, the protocols coordinate only those processes di-



rectly connected to a migrating process. The migrationoper-
ations are performed mostly at the migrating process, while
communication peer processes are only interrupted shortly
for the coordination. In our design, residual dependency
disappears as soon as the coordination finishes and all ex-
isting communication connections on a migrating process
are closed down. Second, the process migration protocol
is non-blocking i.e., it allows other processes to send mes-
sages to the migrating process during the migration. These
two properties are quite beneficial for large environments
where the number of participating processes is high. Third,
the protocols do not create deadlock. They prevent circular
wait, while coordinating a migrating process and its peers
for migration. Finally, the protocols are simple in imple-
mentation and are practical for wide-area, networking en-
vironments. They can be implemented on top of existing
connection-oriented communication protocols such as PVM
(direct communication mode) and TCP.

2 Related Work

Mechanisms to support correct data communication can
be classified into two different approaches. The first ap-
proach is using existing fault-tolerant, consistent check-
pointing techniques. To migrate a process, users can “crash”
a process intentionally and restart the process from its last
checkpoint on a new machine. Since global consistency is
provided by the checkpointing protocol, safe data commu-
nication is guaranteed. Projects such as CoCheck [1] follow
this approach.

On the other hand, mechanisms to maintain safe data
communication can be implemented directly into data com-
munication and process migration protocols. When a pro-
cess migrates, process migration operations coordinate with
data communication operations on other processes for re-
liability. Unlike the previous approach, the protocols only
need to maintain communication consistency between the
migrating process and its peers. Therefore, their designs
are more scalable and less costly. Snow, Charlotte [1], and
MPVM [4] are in this direction. These projects are message-
based and rely on the concept of communication channel.
Although sharing certain similarity, they have different de-
signs. Charlotte implements reliable communication mech-
anisms in kernel and supports nonblocking communication.
Although allowing to write highly concurrent programs, the
communication mechanisms in Charlotte is complex. On
the other hand, Snow and MPVM implement message pass-
ing mechanisms at user-level and support blocking point-to-
point communication. Both protocols are implemented on
top of PVM. The major differences between our work and
MPVM are in the issues of process identification and com-
munication re-establishment. From our experience, Snow’s
protocols demonstrate simple, yet efficient implementations

on top of existing communication software. Further com-
parisons can be found in [5].

3 Protocol Designs

We consider a distributed computation as a set of collab-
orative processes executing under a virtual machine envi-
ronment. Processes communicate one another by passing
messages via FIFO communication channels. The virtual
machine environment is a collection of software and hard-
ware to support distributed computations. It has three basic
components. First, a network of workstations is the basic
resource for process execution. Second, a number of dae-
mon processes residing on workstations comprise a virtual
machine providing resource accesses and management. Fi-
nally, a scheduler is built to supervise resource utilization.
Unlike in static distributed environments such as that sup-
ported by PVM and MPI, the scheduler is a necessary com-
ponent of a dynamic distributed environment such as the
Grid [2]. In our design, a process is identified by a rank
number, a non-negative integer. Since the rank number is lo-
cation transparent, location information must be maintained
internally by every process and the scheduler. When a pro-
cess migrates, the location information must be updated ac-
cordingly.

Based on connection-oriented communication, we define
the communication state of a process to include all commu-
nication connections and messages in transit. To migrate the
communication state, one has to capture the state informa-
tion, transfer it to a destination computer, and successfully
restore it there.

Migrating a communication state is non-trivial since var-
ious communication situations can occur during the migra-
tion. For better understanding, we define a process to gen-
erate a sequence of events [6]. An event is defined as an en-
capsulation of operations to perform certain function. We
are interested in the computation, send, receive, and migra-
tion events. Supposed that a MP is a location in the space-
time diagram where a processor migrates, Figure 1 gives ex-
ample communication situations during a migration of P2.
There are four concurrent processes in the example. Based
on the connection-oriented concept, a connection is estab-
lished between P1 and P2 when m1 is sent. As a result,
the same communication channel is used to transmitm2 and
m3. When the migration occurs at MP, there are three com-
munication situations to be considered.

1. We need mechanisms to handle messages in transit dur-
ing process migration. From the figure, this is the case
for the transmissions ofm2 andm3.

2. Mechanisms to handle message transmissions from un-
connected processes during the migration must be con-
sidered. This is the case ofm4.

2



3. Finally, we need mechanisms to handle message trans-
missions after process migration completes. This situ-
ation covers the transmissions ofm5 andm6.

m1 m2 m3

m4

m5

m6

P1

P2

P3

P4

MP

Figure 1. Communication situations.

Capturing and transferring messages in transit

In the first case, to capture messages in transit, processes on
both ends of a communication channel have to coordinate
each other to receive the messages until none is left. Then,
the processes can close the empty channel. Note that a pro-
cess is free to migrate only after all of its existing channels
are closed down. We present the following schemes for the
coordination:

A1. After receiving a migration instruction from the
scheduler, the migrating process coordinates its connected
peers by sending marker messages. The marker is also the
last message. Since the channel is FIFO, the reception of
the marker on the peers implies other messages sent prior
to the marker have already been received. Upon receiving
the markers, the peers send back acknowledgements which
also indicate the last messages from the peers. After send-
ing the markers, the migrating process reads messages out
of the channel until the acknowledgement is received. Then,
the channel is free for closure. From the example, P2would
initiate such coordination withP1. This coordinationmech-
anism is based on the work of Chandy and Lamport [6].

A2. For efficiency, messages have to be drained from the
channel as soon as possible and must be stored somewhere
for future uses. A memory storage, namely the received-
message-list, in user space of every process is needed for
such purpose. From the examples, m2 and m3 are kept in
the received-message-list of P1 and P2, respectively.

A3. Because messages may be stored in the receive-
message-list before needed, the receive operation has to
search for a wanted message from the list before taking a
new message from a communication channel. Also, the new
messages would be appended to the list until the wanted
message is found.

After the coordination, messages in transit are captured
and existing communication connections are closed down.

m3

m4

P2

M

comm state
P2

(Initialized Process)

(Migrating Process)
New

m5

m6

Figure 2. Activities in the migration event M .

One may consider the messages stored in the received-
message-list of the migrating process as a part of the pro-
cess’s communication state which has to be transferred to
the destination computer. Based on the previous example,
Figure 2 illustrates a possible situation where a migration
eventM is operated at the migration location MP. In order to
capture the transmitting messages, P2 coordinates P1 and
receives m3 into the received-message-list which would be
forwarded (as “comm state”) to the process New P2 on a
destination computer. Note that New P2 is an executable
copy of P2 which is loaded on the destination of process
migration to wait for process state transfer from the original
P2. The loading is supervised by the scheduler and must be
performed before the migration starts. Therefore, at the mo-
ment of migration, the scheduler knows exactly whereP2 is
going to be. Once the state transfer completes, the location
information of P2 in the scheduler and P2 itself would be
updated to the new one.

Migration-aware connection establishment

To handle data communication between unconnected pro-
cesses, the connection establishment mechanisms have to
be able to detect migration activities on the connecting pro-
cesses and automatically resolve the problem. The follow-
ing schemes are employed:

B1. Since our message passing operations only em-
ploy send and receive primitives and do not support explicit
commands for connection establishment, the establishment
mechanisms are installed inside the send and receive opera-
tions hidden from the application process.

B2. To establish connections, we employ the sender-
initiated technique where the sender sends a connection re-
quest to its intended receiver process. Having process mi-
gration into the picture, the establishment mechanisms must
be able to detect the migration (or past occurrence of the mi-
gration) and inform the sender process. In our design, the
migration is detected once the sender receives a denial to its
connection request. The rejection message could come ei-
ther from the virtual machine or the migrating process. The
virtual machine sends a rejection message in case the mi-

3



grating process has already been migrated. On the other
hand, the migrating process rejects connection during mi-
gration operations. The migrating process starts migration
operations when it receives a migration instruction from
the scheduler and finishes the operations when process state
transfer completes. In our migration protocol, the scheduler
first decides a destination. After that, it loads the new pro-
cess there and then instruct a process to migrate. Thus, the
connection request is rejected only after the new process ex-
ists and the migration instruction has been intercepted.

B3. Once the migration is detected, the sender consults
the scheduler to locate the receiver. After gettinga new loca-
tion, the sender updates the receiver’s location, establishes
a connection, and sends messages. Based on this scheme,
in Figure 2, when P3 tries to send m4, the connection es-
tablishment mechanisms would detect the migration of P2,
consult the scheduler, and redirect the establishment attempt
to the process New P2 instead. On the other hand, the con-
nection establishment from P4 detects the past occurrence
of process migration on the sending of m5 before redirect-
ing its connection attempt to New P2. Similar situation oc-
curs in the sending ofm6 (since the connection between P1
and P2 has previously been closed down.)

Observation 1: Because of the process coordination and
migration-aware connection establishment mechanisms, a
sender process is not blocked while sending messages to a
migrating process.

Observation 2: The updating of location of the migrating
process is always performed by a sender process as a part
of connection establishment. Since the establishment is per-
formed “on demand” and does not need global synchroniza-
tion, the updating mechanism is scalable.

Communication state restoration

The scheme for restoring of communication state on a new
process can be addressed in two parts. First, contents of the
receive-message-list forwarded from the migrating process
are inserted to the front of the receive-message-list of the
new process. This scheme restores the messages which are
in transit during the migration. Second, messages sent from
a newly connected process to the new process are appended
to the end of the list. This scheme ensures message ordering.
For Figure 2, the received-message-list of P2 would store
m3 as a result of process coordination and then being for-
warded to New P2 as a part of the comm state. Then, m3

would be inserted to the front of the received-message-list
of New P2. After the coordination, the communication con-
nection between P1 and P2 is closed. m6 is considered as
being sent from an unconnected process and would be ap-
pended to the end of the received-message-list of New P2
accordingly.

4 Summary

We have introduced the design of data communication
and process migration protocols for distributed computa-
tion. The protocols are built on top of a connection-oriented
communication model where a connection is established
prior to message passing. We have discussed mechanisms
to handle various communication situations which can oc-
cur during process migration. First, we present schemes
to capture messages in transit. The message coordination
technique is employed to collect transmitting messages into
receive-message-lists. Second, we discuss techniques to
handle connection establishment during process migration.
The sender-initiate technique where senders request for con-
nections is employed. In case receivers migrate, the sender
processes have to collaborate with the scheduler to find out
the receivers’ current locations. Finally, we discuss mech-
anisms to restore communication state so that message or-
dering is preserved. These mechanisms have been imple-
mented in Snow’s data communication and process migra-
tion protocols. Due to space limitation, full reports includ-
ing implementation and experiments can be found in [5].
Analytical and experimental results confirm our design is
valid and has a true potential in practice.

References

[1] D. S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler,
and S. Zhou, “Process Migration,” tech. rep., Hewlett-
Packard, Dec. 1998.

[2] I. Foster and C. Kesselman, The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann,
1998.

[3] X.-H. Sun, V. K. Niak, and K. Chanchio, “A Coor-
dinated Approach for Process Migration in Heteroge-
neous Environments,” in 1999 SIAM Parallel Process-
ing Conference, Mar. 1999.

[4] J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and
J. Walpole, “Mpvm: A migratable transparent version
of PVM,” Computing Systems, vol. 8, no. 2, pp. 171–
216, 1995.

[5] K. Chanchio and X. H. Sun, “Communication state
transfer for mobility of concurrent heterogeneous com-
puting.” Submitted for publication, 2001.

[6] K. M. Chandy and L. Lamport, “Distributed snapshots:
Determining global states of distributed system,” ACM
Transactions on Computer Systems, pp. 63 – 75, 1987.

4


