Performance Range Comparison

for

Restructuring Compilation

Xian-He Sun*

Department of Computer Science
Louisiana State University
Baton Rouge, LA 70803-4020
sun@bit.csc.lsu.edu

Abstract

A major difficulty in restructuring compilation is
how to compare parallel performance over a range of
system and problem sizes. This study introduces the
concept of range comparison for data-parallel program-
ming. Unlike conventional execution time comparison
in which performance is compared for a particular sys-
tem and problem size, range comparison compares the
performance of programs over a range of ensemble and
problem sizes via scalability and performance crossing
point analysis. An algorithm is developed to predict the
crossing point automatically. The correctness of the
algorithm is proved and a methodology is developed to
integrate range comparison into restructuring compi-
lations. A preliminary prototype of the methodology is
implemented and tested under Vienna Fortran Compi-
lation System. Experimental results demonstrate that
range comparison is feasible and effective.

1 Introduction

Traditionally, Highly parallel scalable MultiPro-
cessing Systems (HMPs) have been programmed us-
ing message passing where the user is responsible for
explicitly inserting communication statements into a
sequential program. The development of parallel lan-
guages such as Vienna Fortran, Fortran D and High
Performance Fortran (HPF) [1, 2] improved the situ-
ation by providing high-level features for the specifi-
cation of data distributions. However, current tech-
nology of code restructuring systems inherently lacks

* This auther was supported in part by National Science
Foundation under NSF grant ASC-9720215 and by LSU 1998
COR award.

Mario Pantano, Thomas Fahringer

Institute for Software Technology and
Parallel Systems, University of Vienna

Liechtensteinstr. 22 1090 Vienna, Austria

{pantano,tf} @par.univie.ac.at

the power to fully exploit the performance offered by
HMPs. The primary motivation of parallel processing
is high performance. Effectiveness and efficiency of
restructuring compilation are the current barriers for
the success of a simple, high-level programming model
approach.

Restructuring a program can be seen as an iterative
process in which a parallel program is transformed at
each iteration. The performance of the current par-
allel program is analyzed and predicted at each iter-
ation. Then, based on the performance result, the
next restructuring transformation is selected for im-
proving the performance of the current parallel pro-
gram. This iterative process terminates when certain
predefined performance criteria are met or as a result
of explicit user intervention. Integrating performance
analysis with a restructuring system is critical to sup-
port automatic performance tuning in the iterative re-
structuring process. The development of a fully com-
piler integrated performance system for scalable par-
allel machines is especially challenging. In a scalable
environment, the performance of a program may vary
with data distribution, number of processors (system
ensemble size), and problem size. Predicting the per-
formance variations and integrating the performance
indices automatically into a restructuring compiler are
two major challenges facing researchers in the field [3].

A key question of restructuring is how to predict
and compare the scaled relative performances of a
small number of data distributions and transforma-
tions automatically, so that appropriate optimization
decisions can be made. In order to compare relative
performance over a range of problem and ensemble
sizes, scalability prediction is proposed as a solution in
this study. A restructured code with a smaller initial
execution time and a larger scalability will be a clear

winner over the scalable range. Otherwise, the supe-
rior range of the implementation will end at the first
fast/slow crossing point. We introduce a technique
called range comparison, which is concerned with lo-
cating the crossing point. An iterative algorithm is
first derived to predict the scalability and crossing
point on a given parallel platform. Then, the connec-
tion between the iterative algorithm and an existing
static performance estimator, P3T, [4] is discussed.
A preliminary prototype of automatic range compar-
ison is implemented under the Vienna Fortran Com-
pilation System (VFCS). Finally, two applications are
tested with two different data distributions to verify
the correctness and feasibility of the range compari-
son approach. While current experimental results are
primitive, they clearly demonstrate the feasibility and
effectiveness of the range comparison approach for pro-
gram restructuring.

2 VFCS and P3T

Vienna Fortran Compilation System (VFCS) con-
sists of a parallelizing compiler for Vienna For-
tran/HPF and tools for program analysis and trans-
formation. The parallelization techniques of VFCS
are based upon the Single-Program-Multiple-Data
(SPMD) paradigm. Currently two parallelization
techniques, the overlap strategy and the inspector-
executor strategy [5] are implemented. The overlap
strategy is targeted towards regular computations, like
stencil computations, and relies heavily on compile-
time analysis and compile-time optimization. The
second parallelization strategy, a run-time technique
based on the inspector-executor strategy, is targeted
towards irregular computations, which are character-
ized by loops exhibiting irregular access patterns (us-
ing indirection arrays) that are dependent on run-time
data.

P3T [4] is a static, interactive performance estima-
tor that assists users in performance tuning of regular
programs. P3T is based on a single profile run to
obtain characteristic data for branching probabilities,
statement and loop execution counts. The shortcom-
ing of P3T is the lack of information on the influence
of data distribution, especially for scalable computing.
Communication overhead is an important metric in
choosing an appropriate data distribution. It consists
of two parts: number of data transfers and amount
of data transferred. For the sake of brevity, only is-
sues of static estimation of communication overhead
are discussed in this section. Interested readers may

refer to [4] for more information regarding the other
performance parameters of P3T.

2.1 Number of Data Transfers

The number of data transfers is a critical param-
eter which reflects the high message startup costs on
most distributed memory architectures. Commonly
the overhead for communication is decreasing if it can
be hoisted outside of a nested loop. Moreover, commu-
nication inside of a specific loop body in many cases
implies that the loop is sequentialized due to synchro-
nization between the processors involved in the com-
munication. P3T carefully models the loop nesting
level at which a communication is placed, array access
patterns, data dependences and distribution, control
flow, and compiler communication optimizations (e.g.,
communication vectorization and fusion) in order to
determine the number of data transfers with high ac-
curacy.

For communication that can be hoisted outside a
loop nest we assume the loosely synchronous com-
munication model [6] which implies that all involved
processors communicate simultaneously. For such a
communication statement the number of data trans-
fers is determined by the maximum number of data
transfers across all involved processors. For communi-
cation that cannot be hoisted outside a loop nest due
to a data dependence we assume that it sequentializes
the loop at which the communication is placed as well
as all data transfers implied by the communication.
The number of data transfers for such a communica-
tion is given by the sum of data transfers across all
processors involved in the communication.

2.2 Amount of Data Transferred

The current generation of distributed memory ar-
chitectures reduces the impact of the message length
on the communication overhead. For applications that
transmit small data volumes, the startup cost is the
predominate communication cost factor. However,
for increasing data volumes transmitted, the message
transfer time per byte and in turn the amount of data
transferred becomes the first order performance effect.
In order to provide a highly accurate estimate for the
amount of data transferred (given in bytes) as induced
by a parallel program, P3T estimates the number of
non-local data elements accessed and incorporates ma-
chine specific data type sizes. For this purpose, P3T
examines the loop nesting level at which a communica-
tion is placed, array access patterns, data dependences

and distributions, control flow, and compiler commu-
nication optimizations.

As the compiler specifies the communication pat-
tern at the source code level, the target architecture
can be for the most part — except for data type sizes
— ignored. Consequently, this parameter ports easily
to a large class of distributed memory architectures.

3 Performance Range Comparison

While execution time is an important performance
metric for restructuring compilations, its comparison
bonds to a specific pair of system and problem size.
Execution time alone is not sufficient for performance
comparison over a range of system and problem sizes.
Scalability has been recognized as an important prop-
erty of parallel algorithms and machines in recent
years. Several scalability metrics have been proposed
[7, 8, 9]. However, scalability has been traditionally
studied separately as an independent property. Only
very recently has the relation of scalability and ex-
ecution time been studied [10]. Based on these rela-
tions, the concepts of crossing point analysis and range
comparison are introduced [11]. To fully understand
the concept of range comparison, some background
for scalability and crossing point analysis needs to be
introduced.

3.1 Isospeed Scalability

In this paper, problem size refers to the work to be
performed. The following definition was given in [7].

Definition 1 (Isospeed Scalability) An algorithm-
machine combination is scalable if the achieved aver-
age speed of the algorithm on the given machine can
remain constant with the increasing number of proces-
sors, provided the problem size can be increased with
the system size.

For a large class of Algorithm-Machine Combina-
tions (AMCs), the average speed can be maintained
by increasing the problem size. The necessary prob-
lem size increase varies with algorithm-machine com-
binations. This variation provides a quantitative mea-
surement for scalability. Let W be the amount of work
of an algorithm when p processors are employed in a
machine, and let W' be the amount of work of the al-
gorithm when p' > p processors are employed to main-
tain the average speed, then the scalability from sys-
tem size p to system size p' of the algorithm-machine
combination is:

_p-w

ZZJ(P,P') = p—W’ (1)

Where the work W' is determined by the isospeed con-
straint. Finally, let T,(W) be the time for computing
W work on a p processors system, equation (2) shows
how parallel execution time could be computed from
scalability,

Ty (W) = ¢~ (p,p') - Tp(W). (2)

Three approaches have been proposed to determine
scalabilities [7]. They are: computing the relation be-
tween problem size and speed, directly measuring the
scalability, and predicting scalability with certain pre-
determined parameters. Among them, scalability pre-
diction seems to be the most useful for data-parallel
compilation systems.

The parallel execution time T,,(W) can be divided
into two parts: the ideal parallel processing time and
parallel processing overhead, T},.

r,w)=2 41,2 p, 3)

b p

where T is the sequential execution time. The paral-
lel processing overhead T, contains the load imbalance
overhead, communication overhead, and other possi-
ble parallelism degradations. By the definition of scal-
ability (see (1)), scalability can be predicted if and
only if the scaled work size, W', can be predicted. A
prediction formula has been given in [12] to compute
w'

a-p - T,(W")

W= 1—aA ()

where a is the average speed, A is the computing rate
of a single processor, and T, (WW') is the parallel pro-
cessing overhead on p' processors. Parallel processing
overhead T,(W') in general is a function of problem
size. With unknowns on both sides of the equation,
using formula (4) for scalability prediction is not a
straightforward task.

3.2 Performance Crossing Point and
Range Comparison

Theorem 1 gives a relation between scalability and
execution time of two different algorithm-machine
combinations [10].

Theorem 1 If algorithm-machine combinations 1
and 2 have execution time a-T and T, respectively, at
the same initial stale (the same initial ensemble and
problem size), then combination 1 has a higher scal-
ability than combination 2 at a scaled ensemble size
if and only if the execution time of combination 1 is
smaller than the a multiple of the execution time of

combination 2 for solving W' at the scaled ensemble
size, where W' is the scaled problem size of combina-
tion 1.

Theorem 1 shows that if an AMC is faster at the ini-
tial state and has a better scalability than that of oth-
ers then it will remain faster over the scalable range.
Range comparison becomes more difficult when the
initially faster AMC has a smaller scalability. When
the system ensemble size scales up, an originally faster
code with lower scalability can become slower than
another code with a better scalability. Finding the
fast/slow crossing point is critical for choosing effi-
cient program transformations in a data-parallel en-
vironment. Finding the superiority/inferiority cross-
ing point, however, is very difficult and is depending
on the view of scalable computing [11]. Definition 2
gives a formal definition of crossing point based on the
isospeed scalability.

Definition 2 (scaled crossing point) For any a > 1,
if algorithm-machine combinations 1 and 2 have exe-
cution time oT and T respectively at the same initial
state, then we say a scaled ensemble size p' is a cross-
ing point of combinations 1 and 2 if the ratio of the
isospeed scalability of combination 1 and combination
2 is greater than o at p'.

Let AMC 1 have execution time %, scalability
®(p,p’), and scaled problem size W'. Let AMC 2 have
execution time T, scalability ¥ (p, p'), and scaled prob-
lem size W*. By Definition 2, p’ is the crossing point
of AMC 1 and 2 if and only if

> a. (5)

In fact, as proven by Theorem 2, when ®(p,p’) >
a¥(p,p’) we have t, (W') < T, (W*). Notice that
since & > 1 combination 2 has a smaller execution
time at the initial state, t,(W) > T,(W). This su-
periority /inferiority changing in execution time gives
the meaning of performance crossing point. The cor-
rectness of Theorems 2 is proved in [11].

Theorem 2 If algorithm-machine combination 1
has a larger execution time than algorithm-machine
combination 2 at the same initial state, then, for any
scaled ensemble size p', p' is a scaled crossing point if
and only if combination 1 has a smaller scaled execu-
tion time than that of combination 2.

Based on the above theoretical findings Figure 1
gives the range comparison algorithm in terms of scal-
ability.

Assumption: Assume algorithm-machine combina-
tions 1 and 2 have execution time a7 and T respec-
tively at the same initial state, where a > 1.
Objective: Find the superior range of combination
2

Range Comparison

p=p+1

Find the Scalability of comb. 1 ®(p,p');

Find the Scalability of comb. 2 ¥(p,p');
Until(®(p,p’) > a¥(p,p’) or p' = the up-limit)
If ¢(p,p') > a¥(p,p) then

p' is the smallest scaled crossing point

Comb. 2 is superior over range < p,p’ — 1 >;
Else

Comb. 2 is superior over range < p,p’ >
End{If}
End{Range Comparison }

Figure 1: Range Comparison Via Performance Cross-
ing point

3.3 Automatic Crossing-Point Prediction

The range comparison algorithm listed in Figure 1
is in terms of scalability. Scalabilities of different code
implementations, or different algorithm-machine com-
binations in general, still need to be determined for
range comparison. In this paper we propose an itera-
tive method listed in Figure 2 to compute W’ and to
predict the scalability automatically. We assume that
the underlying application is scalable and its problem
size (computation work) is a monotonically increasing
function of a scaling parameter n (input data size). We
also assume that parallel overhead T, is either inde-
pendent of parameter n or is monotonically increasing
with n. Function ¢(WW) is implied by equation (4).
Mathematically, the iterative algorithm is to find a
fixed point of ¢(W') such that W = ¢(WW). A proof of
correctness of the algorithm is provided in [13].

Like most iterative methods, the convergence rate
of the algorithm is application dependent. It depends
on the properties of function f(n). For most scien-
tific computations, f(n) is a low degree polynomial
function and the algorithm converges very fast. Our
experimental results show that the algorithm only re-
quires three to five iterations to converge to a solution
with an error bound of 1072

Assumption: Assume work W and overhead T, are
increasing functions of the scaling parameter n, W =
fn) and T, = g(n), or T, = g(n) is a constant,
and assume the parallel code under study has been
executed on the target machine with W work and p
processors.

Objective: Compute the scalability from machine
ensemble size p to machine ensemble size p’, where
p' > p, with an error of € > 0.

Iterative Method
Begin
Initial Value: W, = pI'TW;
Compute ¢(Wp);
If p(Wp) := Wy do
W' = Wg;
Elseif ¢(W,) > Wy do
Begin Iteration (k=0; k++)
Wit1 = ¢(Wy)s
until |[Wiy1 — Wi < €
W' = Wiy
Else do
Begin Iteration (k=0; k++)
Wit = ¢~ (Wy)
until ||Wiy1 — Wi <e
W' = Wiy
End{If}
End{Iterative Method}

Subroutine ¢(WW)
Solve f(n) =W for n;
Compute T, = g(n);
Compute ¢(V) = L1

Subroutine ¢~ 1(WW)
Compute T, = 1;‘;AW;
Solve g(n) =T, for n;
Compute ¢~ (W) = f(n);

Figure 2: An Iterative Method for Predicting Scala-
bility

4 Integrated Range Comparison Un-
der VFCS

Scientific applications have been tested under
VFCS to confirm the correctness and efficiency of the
proposed range comparison. The experiments have
been carried out on an iPSC/860 hypercube with 16
processors. The parallel processing overhead T, used
in the scalability iteration algorithm contains commu-
nication overhead and load imbalance. Limited by the
current functionality of P3T, we choose two codes, Ja-
cobi and Redblack, which have good load balance. T,
therefore, contains only the communication time that
can be obtained by the formula

To=Z(a+(8-D)+~-h), (6)

where Z - the number of data transfers - and D -
the amount of data transferred - can be predicted at
compile time for any problem size W using P3T. «
and (8 are the startup time and the transfer time per
message byte, respectively. - represents the additional
overhead for each network hop and A is the number of
hops.

Jacobi and Redblack, have been parallelized with
VFCS and their performance measured on 4 proces-
sors. The performance indices obtained, and needed
for computing the initial state of the scalability pre-
diction, are W,T),,T., Z, D, T,, where T, is the com-
putation time. Based on equation (3), the execution
models of Jacobi and Redblack are:

—92)2
Tp:K*A+T[,:11*uA+TO
p p
and
—1)2
=Y asr =6+ "=V AT,
p p

respectively. Computation is uniformly distributed
across all processors. T, = % x A. The computing

rate A = % and the average speed a = %
be determined by the measured computing time and
total execution time. The initial value of the predic-

p *xW

can

tion algorithm, Wy = , is computed based on the
work, W, performed on 4 processors. Starting with
iteration k = 0, a new input data size n; = f~1(W)
is computed for £k > 0 . The original source code is
then modified and automatically parallelized by using
VFCS. After parallelization, P3T automatically esti-
mates the number of transfers Z and the amount of
data transferred D. The communication overhead T,
and the scaled work W, are predicted using (6) and

(4), respectively. Scalability from processors p to pro-
cessors p’ is determined when the terminating condi-
tion ||[W), — Wi_1]|| < € is satisfied for a fixed € > 0
(e = 0.01 is used in our experiments). Otherwise the
method iterates with the new parameter ng4. Fig-
ure 3 depicts the path for predicting the scalability by
using VFCS and P3T.

Tables 1 and 2 show the measured and predicted
scalability of Jacobi algorithm with two different data
distribution strategies: two-dimensional block distri-
bution (Jacobi-2D) and one-dimensional (column) dis-
tribution (Jacobi-C) of all program arrays to a two-
dimensional and one-dimensional processors array, re-

spectively. The experimental results confirm that
Y(p,p') p'=38 p' =16
Pred | Meas | diff | Pred | Meas | diff
p=4 0.718 | 0.738 | 2.7% | 0.605 | 0.617 | 1.9 %
p=8 1.000 | 1.000 | 0% | 0.842 | 0.819 | 2.7%
p=16 1.000 | 1.000 | 0%

Table 1: Jacobi: 2D distribution, predicted and mea-
sured scalability

P(p,p') p =38 p' =16

Pred | Meas | diff | Pred | Meas diff

0.721 | 0.739 | 2.4% | 0.576 | 0.581 | 0.8 %

=16 1.000 | 1.000 | 0%

p=4
p=8 [1.000 | 1.000 | 0% [0.796 [0.808 | 1.5%
p

Table 2: Jacobi: column distribution, predicted and
measured scalability

our predicted scalabilities are very accurate and the
variations of scaled performance for various data dis-
tributions are also captured.

Table 3 shows the predicted and measured scala-
bility values of the Redblack algorithm with 2D dis-
tribution. Indeed, scalability can be used to predict
execution time by using (2). Table 4 presents the pre-
dicted execution times versus the measured ones.

The execution time of Redblack can be written as
ax Ty(64) = a * 1869 = 5560 psec and for Jacobi
T4(64) = 1869 psec. « is 2.975. According to Ta-
bles 1, 2, and 3, the scalability of Jacobi algorithm is
higher than that of Redblack algorithm. Therefore,
by Theorem 1, the smaller initial execution time and
larger scalability show that Jacobi scales better than

Input code

Parallelize (VFCS)

Execute on the target machine

Compute the initial performance indices
Compute Starting Points (A,average speed (a))
Compute Wo _%’W
—= Compute n,

Modity source code

Parallelize (VFCS)

Estimate Z and D using PT
ComputeTo (formula 12)

Compute W, (formula 7)

Ni
O w - wyll<e ket
YES

Computep (p.p’)

End

Figure 3: Predicting scalability under VFCS

Y, p') p'=38 p' =16
Pred | Meas diff Pred | Meas diff
p=4 0.524 | 0.565 | 7.8 % | 0.445 | 0.477 | 7.1 %
p=8 1.000 | 1.000 | 0% 0.851 | 0.846 | 0.5%
p=16 1.000 | 1.000 | 0%

Table 3: Redblack: 2D distribution, Predicted and
Measured Scalability

Alg. p=8 p=16
Pred | Meas | diff | Pred | Meas | diff
J2D | 2603 | 2532 | 2.7% | 3089 | 3066 | 0.7%
J.C 2373 | 2313 | 2.5% | 2971 | 2944 | 0.9%
R.2D | 10611 | 9840 | 7.2% | 11324 | 11641 | 2.7%

Table 4: Predicted and Measured Execution times (in
usecs)

Redblack, which is confirmed by measured results as
given in Table 4.

A more interesting result is given by the two dif-
ferent versions of the Jacobi algorithm. From Tables
1 and 2, we can see that the 2D distribution imple-
mentation has a larger initial execution time and a
better scalability, on p = 16, than that of column dis-
tribution. According to Theorem 2, there will be a
crossing point at some scaled ensemble size p'. How-
ever, in this case the crossing point is greater than 16
and cannot be confirmed by our testing environment.
Table 5 shows the scaled input data sizes (parameter
n) for Jacobi with the two data distribution strate-
gies used. As we see, at p = 8 the isospeed scalability

Algorithm | p=4 | p=8 | p=16
Jacobi 2D | 64 105 161
Jacobi_C 64 105 165

Table 5: Scaled input data sizes

is maintained at the same data size (n = 105). The
initial problem size used in Tables 1, 2, and 3 is de-
termined by the asymptotic speed [12] for best perfor-
mance, where n = 64 is chosen. As pointed out in [12],
the difference of isospeed scalability between “good”
and “bad” algorithms increases with the communica-
tion/computation ratio. For Jacobi, the communica-
tion/computation ratio increases with the decrease in

problem size. At the initial state p = 4, and n = 20,
the execution time for Jacobi with column distribu-
tion strategy is T4(20) = 594 usec and for Jacobi with
2D distribution it is a * T4(20) = 753 usec, where
a = 1.267. Considering the scalability results of Ta-
ble 6, we see that for p’ = 8, the 2D distribution (Ta-
ble 6a) scales better than that of column distribution
(Table 6b). The ratio between the two predicted scal-
abilities, 3952 = 1.747, is greater than a. Therefore,
by Definition 2, p' = 8 is a crossing point where the ex-
ecution time of 2D distribution becomes less than that
of column distribution implementation. This perfor-
mance crossing is due to the communication behavior
involved on iPSC/860 for p' = 8 and is confirmed by
measured performance as shown in Figure 4. Table 7

Y(p,p) | p=4|p=8|p =16
(a) p=4 | 1.000 | 0.652 | 0.548
p=8 1.000 | 0.840
p=16 1.000
Y(p,p) | p=4|p=8|p =16
(b) p=4 | 1.000 | 0.373 | 0.333
p=8 1.000 | 0.893
p=16 1.000

Table 6: Predicted scalability for Jacobi with (a) 2D
distribution and (b) column distribution

presents the scaled input data sizes for Jacobi starting
the scalability prediction with n = 20.

Algorithm | p=4 | p=8 | p=16
Jacobi_2D | 20 33 50
Jacobi_C 20 43 64

Table 7: Scaled input data sizes for crossing-point test-
ing

5 Conclusion

There are many ways to parallelize an application,
and the relative performance of different paralleliza-
tions vary with problem size and system ensemble size.
Comparing the performance of different implementa-
tions over a range of system and problem sizes is cru-
cial in developing effective restructuring compilation

2000.0
o 15000 F /
£ /
e
c
S
5
(%]
Q
]
1000.0
/ G—>© 2D distribution
/ =— Column distribution
i
500.0 ! . .
4 8 16

Processors

Figure 4: Scaled crossing point of the Jacobi with
n=20

systems and ultimately in reducing the burden of par-
allel programming. In this study a practical methodol-
ogy is developed and tested for automatic range com-
parison in a data-parallel compilation system. The
proposed methodology is built on rigorous analytical
models. Experimental results confirm its effectiveness
in a restructuring system.

This work is a part of our current effort in develop-
ment of the SCALA (SCALability Analyzer), an inte-
grated performance analysis system. SCALA is an ad-
vanced system that is comprised of performance pre-
diction techniques, advanced post-execution, and scal-
ability analysis to compute performance indices that
reflect the behavior of scalable parallel programs. It
is integrated into restructuring systems in order to ex-
ploit knowledge from the compiler and guide the user
as well as the compiler in the selection of restructuring
transformations and optimization strategies.

References

[1] B. Chapman, P. Mehrotra, and H. Zima, “Pro-
gramming in Vienna Fortran,” Scientific Pro-
gramming, vol. 1, pp. 31-50, 1992.

[2] H. P. Fortran Forum, “High performance Fortran
language specification version 1.0.” Technical Re-
port, Department of Computer Science, Rice Uni-
versity, May 1993.

[3] V. S. Adve, J. M. Crummey, M. Anderson,
K. Kennedy, J.-C. Wang, and D. A. Reed, “An

[10]

[11]

[12]

[13]

integrated compilation performance analysis en-
vironment for data parallel programs,” in Proc.
of Supercomputing, (San Diego, CA), Dec. 1995.

T. Fahringer, Automatic Performance Prediction
of Parallel Programs . Kluwer Academic Pub-
lishers, Boston, USA, ISBN 0-7923-9708-8, March
1996.

S. Benkner, S. Andel, R. Blasko, P. Brezany,
A. Celic, B. Chapman, M. Egg, T. Fahringer,
J. Hulman, Y. Hou, E. Kelc, E. Mehofer,
H. Moritsch, M. Paul, K. Sanjari, V. Sipkova,
B. Velkov, B. Wender, and H. Zima, Vienna For-
tran Compilation System - Version 2.0 - User’s
Guide, October 1995.

G. Fox, M. Johnson, G. Lyzenga, S. Otto,
J. Salmon, and D. Walker, Solving Problems on
Concurrent Processors, vol. 1. and 2. Englewood
Cliffs, NY: Prentice Hall, 1988.

X.-H. Sun and D. Rover, “Scalability of parallel
algorithm-machine combinations,” IEFE Trans-
actions on Parallel and Distributed Systems,
pp. 599-613, June 1994.

V. Kumar, A. Grama, A. Gupta, and G. Karypis,
Introduction to Parallel Computing, Design
and Analysis of Algorithms. The Ben-
jamin/Cummings Publishing Company, Inc.,
1994.

S. Sahni and V. Thanvantri, “Performance met-
rics: Keeping the focus on runtime,” IEEE Par-
allel € Distributed Technology, pp. 43—56, Spring
1996.

X.-H. Sun, “The relation of scalability and execu-
tion time,” in Proc. of the International Parallel
Processing Symposium’96, April 1996.

X.-H. Sun, “Performance range comparison via
crossing point analysis,” in Lecture Notes in
Computer Science, No 1388 (J. Rolim, ed.),
Springer, march 1998.

X.-H. Sun and J. Zhu, “Performance prediction:
A case study using a scalable shared-virtual-
memory machine,” IEEE Parallel & Distributed
Technology, pp. 36—49, Winter 1996.

X.-H. Sun, M. Pantano, and T. Fahringer, “Inte-
grated range comparison for data-parallel compi-
lation systems.” Technical Report #97-004, De-
partment of Computer Science, Apr. 1997.

