
12/27/2019 Scalable Computing Software Lab, Illinois Institute of  Technology 1

Memory, New Techs and Bandwidth 

Challenges for Future HPC-Systems

◼ Jeffrey Vetter
Oak Ridge National Laboratory

◼ Thorsten Hoefler
ETH Zurich

◼ Ron Brightwell
Sandia National Laboratories

◼ Xian-He Sun (Session Chair)
Illinois Institute of Technology



Scalable Computing Software Lab, Illinois Institute of  Technology 2

Deep Memory-Storage Hierarchy 
and 

Pace-Matching Data Access

A Invited Talk at ISC2019

Xian-He Sun

Illinois Institute of Technology
sun@iit.edu

mailto:sun@iit.edu


12/27/2019 Scalable Computing Software Lab, Illinois Institute of  Technology 3

Hot Issues

L2

L1

DF

Memory Wall

◼ Big Data

◼ High Performance and Could Computing

◼ AI and Deep Learning



Scalable Computing Software Lab, Illinois Institute of  Technology 4

1

10

100

1,000

10,000

100,000

1980 1985 1990 1995 2000 2005 2010

Year
P

e
rf

o
rm

a
n
c
e

Memory

Uni-rocessor

Multi-core/many-core processor

The Memory-wall Problem

◼ Processor performance 

increases rapidly

❑ Uni-processor: ~52% until 

2004

❑ Aggregate multi-core/many-

core processor performance 

even higher since 2004

◼ Memory: ~9% per year

❑ Storage: ~6% per year

◼ Processor-memory speed gap 

keeps increasing

Source: Intel

Source: OCZ

25%

52%

20%

9%

60%

9%

Memory-bounded speedup (1990), Memory wall problem (1994)



Multi-core

Multi-threading

Multi-issue

Multi-banked Cache

Multi-level Cache

Multi-channel

Multi-rank

Multi-bank

CPU

Cache

Memory

Out-of-order Execution
Speculative Execution
Runahead Execution

Pipelined Cache

Non-blocking Cache 

Data Prefetching
Write buffer

Solution: Memory Hierarchy & Concurrency

Parallel File System
Input-Output (I/O)

Disks

Pipeline

Non-blocking 

Prefetching
Write buffer



1 2 4 4 10 20

100

400

0

50

100

150

200

250

300

350

400

450

ALU

Inst

FP

Cmp

FP

Mul

L1

Access

FP Div L2

Access

L3

Access

MM

Access

Extremely Unbalanced 

Operation Latency

C
y
c
le

s

IO Access 5~15M cycles

Assumption of  Current Solutions

❑ Memory Hierarchy: Locality

❑ Concurrence: Data access pattern
o Data stream

Performances vary 

largely



Existing Memory Metrics

❑ Miss Rate(MR)
o {the number of miss memory accesses} over {the number of total memory accesses}

❑ Misses Per Kilo-Instructions(MPKI)
o {the number of miss memory accesses} over {the number of total committed Instructions ×

1000}

❑ Average Miss Penalty(AMP)
o {the summary of single miss latency} over {the number of miss memory accesses}

❑ Average Memory Access Time (AMAT)
o AMAT = Hit time + MR×AMP

❑ Flaw of Existing Metrics 

o Focus on a single component or

o A single memory access  

Missing memory parallelism/concurrency



APC: a concurrent measurement from memory side

◼ Access Per memory active Cycle (APC)

❑ APC = A/T

◼ APC is measured as the number of memory accesses per 

memory active cycle or Access Per Memory Active Cycle 

(APMAC)

❑ Measure T based on memory (active) cycle 

❑ Measure A based on the overlapping mode

◼ Benefits of APC 

❑ Separate memory evaluation from CPU evaluation

❑ Each memory level has its own APC value

X.-H. Sun and D. Wang, "APC: A Performance Metric of Memory Systems", 

ACM SIGMETRICS Performance Evaluation Review, Volume 40 , Issue 2, 2012.



APC & IPC: Changing Cache Parallelism

◼ Changing the number of MSHR entries (1→2→10→16)

◼ APC still has the dominant correlation, with average value of 0.9656

◼ AMAT does not correlate with IPC for most applications

❑ APC record the CPU blocked cycles by MSHR cycles

❑ AMAT cannot records block cycles, it only measure the issued memory requests

D. Wang, X.-H. Sun "Memory Access Cycle and the Measurement of Memory 

Systems",  IEEE Transactions on Computers, vol. 63, no. 7, pp. 1626-1639, July.2014



Concurrent-AMAT: step to optimization

◼ The traditional AMAT(Average Memory Access Time) :

AMAT =  HitCycle + MR×AMP

◼ MR is the miss rate of cache accesses; and AMP is the average miss penalty 

◼ Concurrent-AMAT (C-AMAT):

C-AMAT = HitCycle/CH+ pMR×pAMP/CM = 1/APC

◼ CH is the hit concurrency; CM is the pure miss concurrency

◼ pMR and pAMP are pure miss rate and average pure miss penalty

◼ A pure miss is a miss containing at least one cycle which does not 

have any hit activity 

X.-H. Sun and D. Wang, "Concurrent  Average Memory Access Time", in IEEE 

Computers, vol. 47, no. 5, pp. 74-80,May 2014.(IIT Technical Report, 

IIT/CS-SCS-2012-05)



Recursive in Memory Hierarchy

◼ AMAT is recursive

❑ AMAT = HitCycle1 + MR1×AMP1

Where AMP1 = (HitCycle2 + MR2×AMP2)

❑ AMAT =  HitCycle + MR×(H2 + MR2× (H3 + MR3×AMP3 ))

◼ C-AMAT is also recursive

Where

1

1
1 1 1 2- -

H

H
C AMAT MR C AMAT

C
= +  

2 2

2 2
2 2-

H M

H pAMP
C AMAT pMR

C C
= + 

1

1

 1 1
1

1 1  

m

M

CpMR pAMP

MR AMP C
 =  

X.-H. Sun, “Concurrent-AMAT: a mathematical model for Big Data access,” HPC-Magazine, May 12, 2014

With Clear Physical Meaning



C-AMAT in Multicore Environments

Separation in shared environments



Lecture  Page 13

Data Access Time: AMAT

◼ Average Memory Access Time (AMAT)

= Thit(L1) + Miss%(L1)* (Thit(L2) + Miss%(L2)* (Thit(L3) + Miss%(L3)*T(memory) ) ) 

◼ Example: (Latency as shown above)

❑ Miss rate: L1=10%, L2=5%, L3=1% (Be careful miss rate definition) 

❑ AMAT  

= 2.115

L1

Cache L2

Cache L3

Cache Main 

Memory

(DRAM)

1 clk
Hit Time

10 clks 20 clks 300 clks

On-die



Data Access Time:  C-AMAT

L1

Cache L2

Cache L3

Cache Main 

Memory

(DRAM)

1 clk
Hit Time

2
Hit Concurrency

10 clks 20 clks 300 clks

3 4 6

◼ Concurrent Average Memory Access Time (C-AMAT)

=
H1
CH1

+MR1 × κ1 ×
H2

CH2

+MR2 × κ2 ×
H3

CH3

+MR3 × κ3 ×
HMem

CHMem

◼ Example

❑ Miss Rate: L1=10%, L2=5%, L3=1%       pMR, pAMP, AMP, CM, Cm:   L1=7%, 10, 10, 5, 4

❑ 𝜅: 𝐿1=0.56, L2=0.6, L3=0.8                                                                              L2=3%, 60, 40, 9, 6

❑ C-AMAT≈0.696                                                                                                     L3=0.8%, 400, 300, 16, 12



Technique Impact Analysis (with C-AMAT)

Classes Items IssueRatio MR pMR AMP pAMP CH CM AMAT C-AMATstall

Hardware 

techniques

Pipelined cache access + ⊕ − ⊕ ⊕ − ⊕
Non-blocking caches + ⊕ ⊕ ⊕ ⊕
Multi-banked caches + ⊕ ⊕ ⊕ ⊕ ⊕

Large IW & ROB, Runahead + ⊕ ⊕ ⊕ ⊕ ⊕

SMT + − − ⊕ ⊕ ⊕ − ⊕

Compiler 

techniques

Loop Interchange + ⊕ + ⊕
Matrices blocking + ⊕ + ⊕

Data and control dependency related 

optimization
⊕ ⊕ ⊕

Application 

techniques

Copy data into local scalar variables 

and operate on local copies
+ ⊕ + ⊕ + ⊕

Vectorize the code + ⊕ + ⊕ + ⊕
Split structs into hot and cold parts, 

where the hot part has a pointer to 

the cold part
+ ⊕ + ⊕ + ⊕

+ or ⊕means that the technique improves the factor, − means hurts the factor, and blank means it has no necessary impact. These notions are used in 

the same manner as that of Hennessy and Patterson [6]. 

◼ + means from AMAT (included by C-AMAT too), means from C-AMAT

◼C-AMAT unifies the combined impact of locality and concurrency, and makes

concurrency contribution measureable



Optimal = Optimal Locality 

What does C-AMAT says? 

1612/27/2019 LCPC-09-2016 

Optimal = Optimal Locality + Optimal Concurrence 

?



What Does C-AMAT Say?

◼ C-AMAT is an extension of AMAT to consider concurrency

❑ C-AMAT can be measured at each layer with APC

◼ C-AMAT is data-centric thinking 

❑ Data access is as important as computing

◼ High locality may hurt performance

❑ The Pure Miss concept

◼ Balance locality, concurrency, overlapping with C-AMAT 

◼ C-AMAT uniquely integrates the joint impact of locality, 

concurrency, and overlapping for optimization (analysis and 

measurement)



Application: Memory stall time (the performance we care)

Memory stall time

Memory stall time

Traditional AMAT model

Memory stall time

Only pure miss will cause processor stall, and the penalty is formulated here

Y. Liu and X.-H. Sun, "Reevaluating Data Stall Time with the Consideration of Data Access Concurrency," 

Journal of Computer Science and Technology (JCST), March, 2015

𝐶𝑃𝑈−𝑡𝑖𝑚𝑒 = 𝐼𝐶 × 𝐶𝑃𝐼𝑒𝑥𝑒 + 𝑓𝑚𝑒𝑚 × 𝐴𝑀𝐴𝑇 × 𝐶𝑦𝑐𝑙𝑒−𝑡𝑖𝑚𝑒

𝐶𝑃𝑈−𝑡𝑖𝑚𝑒 = 𝐼𝐶 × 𝐶𝑃𝐼𝑒𝑥𝑒 + 𝑓𝑚𝑒𝑚 ×
𝑝𝑀𝑅 × 𝑝𝐴𝑀𝑃

𝐶𝑀
× 𝐶𝑦𝑐𝑙𝑒−𝑡𝑖𝑚𝑒

New C-AMAT model

Exec − time = IC×(CPIexe + fmem×C − AMAT×(1–overlapRatioc-m))×cycle − time



Application: Layered Performance Matching

Main memory

ALU&FPU

L1 cache

Last level cache

Request rates 

of computing 

components

Supply rates 

of L1 cache

Request rates 

of L1 cache

Request rates of 

Last level cache

Supply rates of 

Last level cache

Supply rates of 

main memory

APC1

APC2

APC3

Yu-Hang Liu, Xian-He Sun, “LPM: Concurrency-driven Layered Performance Matching,” in ICPP2015,

Beijing, China, Sept. 2015.



Quantify Mismatching: with C-AMAT

20

1

1
exe memIPC f

LPMR
APC


=

1
2

2

exe memIPC f MR
LPMR

APC

 
=

1 2
3

3

  exe memIPC f MR MR
LPMR

APC

  
=

▪ C-AMAT measures the request and supply at each layer

▪ C-AMAT can increase supply with effective concurrency

▪ Mismatch ratio directly determines memory stall time

Y. Liu, X.-H. Sun. "LPM: A Systematic Methodology for Concurrent Data Access Pattern Optimization from 

a Matching Perspective,” IEEE Transactions on Parallel and Distributed Systems (IEEE TPDS), June 2019



Xian-He Sun     21

The LPM Algorithm

Optimize only L1 layer to 

reduce LPMR1, and 

update all metrics

Optimize both L1 and L2 

layer to reduce LPMR1 and 

LPMR2, and update all 

metrics

LPMR1 < T1

LPMR2 < T2

END

Yes

Yes

BEGIN

No

Measure LPMR1 and 

LPMR2

Reduce hardware 

overprovision, and 

update all metrics

No

LPMR1 + ∆ < 

T1

Yes

No

Stop when stall time is less 

than 1% of pure execution time

Calculate the thresholds 

of  T1 and T2



C-AMAT in Action

Memory stall time

New C-AMAT model

Only pure miss will cause processor stall, and the penalty is formulated here

Y. Liu and X.-H. Sun, "Reevaluating Data Stall Time with the Consideration of Data Access Concurrency," 

Journal of Computer Science and Technology (JCST), March, 2015

The Relation of LPMR and Stall time

Memory stall time

𝐶𝑃𝑈−𝑡𝑖𝑚𝑒 = 𝐼𝐶 × 𝐶𝑃𝐼𝑒𝑥𝑒 + 𝑓𝑚𝑒𝑚 ×
𝑝𝑀𝑅 × 𝑝𝐴𝑀𝑃

𝐶𝑀
× 𝐶𝑦𝑐𝑙𝑒−𝑡𝑖𝑚𝑒

𝐶𝑃𝑈 − 𝑡𝑖𝑚𝑒 = 𝐼𝐶 × 𝐶𝑃𝐼𝑒𝑥𝑒 × 1 + 𝜅1 × 𝐿𝑃𝑀𝑅2 × 𝐶𝑦𝑐𝑙𝑒 − 𝑡𝑖𝑚𝑒



Off-chip

side

Pace Matching Data Access（搏动数据获取）

Processor

side

Layer 1 Layer 2 Layer 3 Layer 4

No delay data access (using C-AMAT as the gate to guide 

and LPM as the global controller for in-situ optimization)

Case #1

Case #2

Case #3

Case #4

Sun, Xian-He, and Yu-Hang Liu. "Utilizing Concurrency: A New Theory for Memory Wall." In International 

Workshop on Languages and Compilers for Parallel Computing, pp. 18-23. Springer, Cham, 2016.



Case study I: Eliminate memory-wall impact

24

Increased data access performance for more than 150 times with the LPM algorithm

LPM Optimization on Reconfigurable Architecture: T1= 1.52, T2 = 2.14

Configuration A B C D E

Sluice Width

Pipeline issue width 4 4 6 8 8

IW size 32 64 64 128 96

ROB size 32 64 64 128 96

L1 cache port number 1 1 2 4 4

MSHR numbers 4 8 16 16 16

L2 cache interleaving 4 8 8 8 8

Mismatching 

degree

LPMR1 8.1 6.2 2.1 1.2 1.4

LPMR2 9.6 9.3 3.1 1.6 1.9



Case I Discussion

◼ GEM5 & DRAMSim2 are integrated with added C-AMAT component

❑ 410.bwaves benchmark from SPEC CPU 2006

◼ Stall time was > 60%, optimized to < 1%

❑ Stall time reduction (memory performance improvement) is 150 times

Execution time speedup 2.5 (100/40)

❑ If beginning is 70%, then speedup is 230 times (0.7/0.003)

❑ If beginning is 90%, then speedup is 900 times (0.9/0.001)

◼ The stall time reduction

❑ Application dependent

❑ Including computing and data access overlapping

❑ LPM can be used in task scheduling in a heterogeneous environment

❑ Can be used to determine the optimal number of layers

Memory-wall 

Removed !!!



26

Memory Sluice Gate Theory

▪ It is mathematically correct, but under the 

assumptions
o The application has sufficient data locality & concurrency

o The system has sufficient hardware to support the data locality & 

concurrency

▪ The architecture needs to be elastic
o Even for a given application may have different data access 

patterns

▪ It is a framework for solving the memory-wall 

problem
o Do not need to wait for technology improvement

o Guide technology improvements

Y. Liu, X.-H. Sun. "LPM: A Systematic Methodology for Concurrent Data Access Pattern Optimization from 

a Matching Perspective,” IEEE Transactions on Parallel and Distributed Systems (TPDS), June 2019.



27

Application of Sluice-Gate Pace Matching

▪ Architecture Design and Configuration
o Co-Design for data intensive computing

o FPGA, ASIC, GPU utilization

▪ System Design and Optimization 
o Deep memory hierarchy

o Data concurrency considered scheduling and optimization

o Compiler technology

▪ Algorithm Design and Optimization
o Explore data concurrency

oMemory-centric programming

▪ File system is the last level of memory

Y-H Liu & Xian-He Sun, "C^2-bound: A Capacity and Concurrency driven Analytical Model for Manycore 

Design," in Proc. of the ACM/IEEE SC'15, Austin, USA, Nov. 2015.



Current Work: Deep Memory-Storage Hierarchy 

28

Application

Memory 

System

Optimization 

Mechanism

Evaluation

& Analysis

Benchmark

Concurrency

Parallelism

Measurement

Workload

Parallelism

Customization

Access pattern

Customization

Integration

Integration
Evaluation

◼ Application-aware I/O 

optimization (HDF5)

◼ Smart, selective, multi-

layers, software-

hardware, memory-IO

◼ (Dynamic) Customized 

optimization

◼ Following the C-AMAT 

memory and path-

matchng model

Kougkas, A., H. Devarajan, and X.-H. Sun. "Hermes: a heterogeneous-aware multi-tiered distributed I/O buffering 

system," in Proceedings of the 27th International Symposium on High-Performance Parallel and Distributed Computing 

(ACM HPDC), pp. 219-230, ACM, 2018. 



29

Xian-He Sun, Professor

sun@iit.edu

● A new, multi-tiered, distributed caching platform that:

○ Enables, manages, and supervises I/O operations in the Deep Memory and 

Storage Hierarchy (DMSH).

○ Offers selective and dynamic layered data placement/replacement

○ Is modular, extensible, and performance-oriented.

○ Supports a wide variety of applications (scientific, BigData, etc.,).

Hermes Overview



Scalable Computing Software Lab, Illinois Institute of  Technology 30

Conclusion

◼ Big data is asking us to rethinking of memory system design

◼ C-AMAT, LPM, & sluice gate data transfer are new thoughts to 

meet the needs

◼ Hermes is a system which breaks the rank of memory & storage 

◼ More challenges and opportunities toward the data-centric 

system design 


