
ChronoLog: A Distributed Shared Tiered Log Store
with Time-based Data Ordering

Anthony Kougkas, Hariharan Devarajan, Keith Bateman, Jaime Cernuda, Neeraj Rajesh, and Xian-He Sun
Illinois Institute of Technology, Department of Computer Science, Chicago, IL

akougkas@iit.edu,{hdevarajan, kbateman, jcernudagarcia, nrajesh}@hawk.iit.edu, sun@iit.edu

Abstract—Modern applications produce and process massive
amounts of activity (or log) data. Traditional storage systems
were not designed with an append-only data model and a
new storage abstraction aims to fill this gap: the distributed
shared log store. However, existing solutions struggle to provide
a scalable, parallel, and high-performance solution that can
support a diverse set of conflicting log workload requirements.
Finding the tail of a distributed log is a centralized point of
contention. In this paper, we show how using physical time can
help alleviate the need of centralized synchronization points. We
present ChronoLog, a new, distributed, shared, and multi-tiered
log store that can handle more than a million tail operations
per second. Evaluation results show ChronoLog’s potential,
outperforming existing solution by an order of magnitude.

Index Terms—distributed log, shared log, tiered storage

I. INTRODUCTION

Today, data is being generated at a rate that even the largest
computing systems cannot handle [1], [2]. Further, significant
developments in hardware innovation have lowered the mone-
tary cost of data storage (less than $0.02 per GB), leading to a
”store everything” mindset [3]. This data explosion stems from
the proliferation of modern sensors, IoT devices, web activity,
mobile and edge computing, telescopes, enterprise digitization,
and others. In addition to the data production caused by
human activity, computer systems are also producing data
caused by systems synchronization, fault tolerance replication
techniques, system utilization monitoring, service call stack,
error debugging, and so much more [4], [5]. Among all this
data production, one common trend is the need to store activity
data, also known as log data, which describes things that hap-
pen rather than things that are (i.e., maintain what happened
and when). Several domains such as Internet companies and
their web services, financial applications, scientific computing,
and the Internet-of-Things (IoT) rely heavily on processing log
data efficiently. This trend is further supported by modern non-
monolithic architectures such as microservices, containers,
and task-based computing. Today, the activity data volume,
velocity, and variety is staggering, reaching up to 7 TB/s [6],
demanding a rethinking of the storage stack we have today.

Modern applications spanning from Edge to Cloud to
High-Performance Computing (HPC), produce/process log
data and create a plethora of workload characteristics that
rely on a common storage model, the distributed shared
log. Applications such as key-value stores and column
databases [7], [8], message brokers [9], [10], metadata,
coordination, and file system namespace services [11]–[14]

are sensitive to latency and require fast operations at the end of
the log (i.e., appends and tail reads). Other applications, such
as search query engines [15], [16], ML training pipelines [17],
and graph exploration [18], [19] require high-throughput for
processing historical data in the log (i.e., catch-up reads).
Log durability is particularly important in transactions [20],
[21] and to provide fault tolerance in databases (e.g., update
and edit logging) [22], [23]. Streaming apps [24]–[27] and
replication engines [28]–[30] stress out the importance of
the log’s write availability (i.e., high data ingestion rate).
Time-series applications [31], [32] and indexing [33], [34]
demand efficient range queries on logs, a requirement
especially difficult to implement on top of an append-only
data structure. Lastly, sensor data analysis [35], modern
microservices [36], [37], and containerized workloads [38]
require tunable parallelism semantics across logs (i.e., log
seasonality). Many of these applications’ log requirements
are often conflicting with one another. Further, applications
do not run in isolation but in integrated workflows, making it
harder to satisfy these requirements under the same system.

To address the diverse requirements of applications, both
industry and scientific communities have adopted several
distributed shared log store designs, each motivated by their
pre-dominant running workloads. Cloud-based distributed
shared log projects include the Apache Kafka [39] and the
Apache Bookkeeper [40]. These log stores expose a typical
log API including append and tail read to/from the end of the
log and catch-up read from a given event. Also, they can scale
well in production (e.g., Twitter’s Bookkeeper case: 1.5 trillion
records per day, record size from 100 bytes to hundreds of
KBs, 5-10ms latency, 17.5 PBs per day, million logs on more
than 1000 servers deployment). Advanced features include
log replication, geo-distribution, consumer groups, and epoch-
based visibility of log updates. On the other hand, the HPC
community has developed its own distributed shared log stores
mostly due to different philosophies, target environment, and
software stacks. These include Corfu [41] and its derivative
implementations in the form of SLoG [42] and ZLog [43].
These log stores lack advanced features since their main ob-
jective is high performance. Corfu can achieve 200K appends
per second using only 50 SSD drives. SloG was shown to be
able to scale to 100K cores peaking at 174 million appends
per second. What is common across all those log stores is the
difficulty of imposing total ordering. Some choose to address
this by defining only a single leader at a time responsible

for the tail of the log, effectively limiting the log parallelism.
Others distribute entries everywhere in the cluster with the
help of a centralized sequencer, which enforces the order, but
limits the overall throughput of the log. Thus, a distributed
shared log store that offers total ordering, high concurrency
and parallelism, and capacity scaling is highly desirable.

The simplicity of the log abstraction, however useful it may
seem, causes several problems when it gets distributed and
shared. Designing a distributed shared log store is challenging
for several reasons. First, ensuring data (e.g., record, entry,
event) total ordering in a distributed shared log is very difficult
and expensive, because assigning a log position (i.e., finding
the tail of the log) creates a single point of contention. Cloud-
based log stores address this by only offering ordering within
a segment or partition and not throughout the entirety of the
log. HPC-based log stores opt for a centralized sequencer that
enforces the log order at the expense of serializing requests.
Some log stores choose to provide client-side log ordering
within given epochs (i.e., time windows) that can limit the
value of the log semantics. Second, since a log is an append-
only structure, log stores need to be able to efficiently scale
their available log capacity. Existing log stores address this
by either imposing time- or space-based data retention policies
(i.e., data are kept within a specified time window and any
log entry older than the window is deleted or moved to a cold
storage external solution) or by adding more servers (i.e., hor-
izontal scaling). Third, a shared log has to efficiently support
highly concurrent log operations by multiple clients. Existing
log stores only offer a single-writer-multiple-readers (SWMR)
data access model which is a result of the active partition or
the centralized sequencer approach. This limits their operation
concurrency, and therefore their performance potential. Fourth,
I/O parallelism is crucial to the overall performance of a log
store. Existing solutions rely on an application-centric degree
of data parallelism (i.e., the caller is actually performing the
I/O) which is a weaker parallel model as log data volume
and velocity are expected to grow. Some log stores aim to
alleviate this requirement by defining consumer groups (i.e.,
groups of multiple clients reading the same log), which creates
an implicitly parallel I/O model. Lastly, partial data retrieval
(i.e., log querying) is not supported by the existing solutions.
Additional, often expensive, auxiliary indices are required to
address data exploration. For instance, Bookkeeper relies on
metadata look-ups whereas Corfu provides client side epochs
(which limits the visibility of log entries across processes to
the granularity of the epoch size). The ability to execute range
reads on a log is highly desirable but quite challenging to effi-
ciently support in log stores, which do not offer random access.

In this paper, we present the design and implementation
of ChronoLog, a new distributed shared log store that uses
physical time to provide total ordering on a log as well as
auto-tiering across multiple storage tiers, such as storage-
class memories (e.g., 3D XPoint) and new flash storage (e.g.,
NVMe SSDs), effectively scaling the log capacity infinitely.
ChronoLog adopts a tunable parallel access model offering
multiple-writers-multiple-readers (MWMR) semantics and

highly concurrent I/O to/from the multi-tiered storage
environment. ChronoLog also offers the ability to process
the log with partial reads via range queries. ChronoLog is
designed to offer high performance via I/O isolation (tail and
historical operations are handled separately), elastic storage
capabilities, and a novel 3D log distribution. ChronoLog and
its design makes the following contributions:
1) Demonstrate how physical time can be used to order log

data offering a scalable log distribution and the ability to
support efficient range data retrieval.

2) Showcase how multi-tiered storage can be used to scale the
capacity of a log and offer tunable data access parallelism.

3) Highlight how elastic storage semantics can match I/O
production and consumption rates supporting conflicting
workloads under a single system.

II. BACKGROUND AND MOTIVATION

A. Log-centric Computing

1) The rise of activity (log) data: New challenges for data
systems are created by recent trends in modern applications
that utilize log data within integrated production workflows.
For instance, the business model of many, if not all, Internet
companies and hyperscalers relies on their ability to track
user activity (e.g., logins, clicks, comments, search queries,
etc.,) and analyze it to produce recommendations, targeted
advertisement, spam and security protection, and content
relevance [39]. Similarly, financial applications (e.g., banking,
high-frequency trading, etc.,) support the economy by accu-
rately and promptly monitoring financial activity (e.g., transac-
tions, trades, etc.,) and perform time-series analysis to provide
real-time fraud protection [44]. Another trend is the explosion
of the Internet-of-Things (IoT) [45] and Edge computing [46].
Smart City initiative Array of Things [47] has deployed city-
wide sensors measuring several environmental factors that
will help solve a range of urban challenges [48], [49]. Lastly,
several scientific domains rely heavily on collected log data
(i.e., observed data) to drive discovery. Scientific instrument
sensors are used in many domains and knowledge extraction
is dependent on the ability to quickly ingest the high rate
of incoming data (e.g., SKA telescopes produce several
TB/s) [50], [51]. Connecting two or more stages of a data
processing pipeline without explicit control of the data flow
while maintaining the data durability is a common theme.

2) Logs as a storage abstraction: A log is perhaps the
simplest possible storage abstraction. It is an append-only,
totally-ordered sequence of immutable data entries. Often, the
contents and format of the entries are not important. Data are
appended to the end of the log, and reads proceed left-to-right
in a linear scan fashion. However, a log does not support in-
place updates. The ordering of a log’s data elements defines
a notion of ”time” since entries at the beginning (leftmost
positions) are guaranteed to be older then entries at the end of
the log (rightmost positions). Each entry is assigned a unique
log sequence number. Data is written into the log in indivisible
entries, rather than individual bytes. More importantly, a log

entry is the smallest unit of addressing: a reader always starts
reading from a particular entry (or from the next entry to be
appended to the log) and receives data one or more entries at a
time. In a sense, a log is not very different from a typical file or
table. A file is an array of bytes, a table is an array of records,
and a log is an immutable sequence of ordered data entries. It
does however relax the data model semantics to better balance
the trade-off between availability, durability, and performance
than a strictly POSIX-compliant distributed storage system.

3) Logs as a building block: Logs, sometimes called write-
ahead logs or commit logs or transaction logs, have been
around almost as long as computers and are at the heart
of many distributed data systems and real-time application
architectures. A core design challenge for distributed data
systems is the ability to agree upon an order of concurrent
changes in a state (i.e., making distributed processing deter-
ministic). A distributed shared log can model the problem of
reaching consensus since it represents a highly available and
durable source of repeatable totally ordered events. Shared
logs are a strong and versatile primitive that can provide
strong consistency, durability, failure atomicity, transactional
isolation, and asynchronicity [11]. In other words, a log can
act as an authoritative source for the state of multiple machines
(i.e., logical ”clock”). This simple observation places logs
in the center of distributed systems where a log can be a
commoditized building block for several scalable distributed
applications such as [9], [21], [30], [52]–[58]: a) a consensus
engine for consistent replication and indexing services, b) a
transaction arbitrator for isolation, atomicity, and durability, c)
an execution history for replica creation and synchronization,
d) a geo-distribution engine, e) a primary log-structured data
store with ”commit” semantics to the writer for snapshots and
checkpointing, f) a data integration and warehousing endpoint
connecting two stages of a data processing pipeline, g) a
backend for real time streaming processing with external data
subscription feed, NoSQL/Key-Value stores and file systems,
messaging, queuing, and other shared data structures, and h)
a platform for decoupled and event-driven systems as well as
debugging, auditing, and version control mechanisms.

B. Existing Distributed Shared Log Stores

Scaling the capacity of a shared log requires distributing its
entries across many machines while maintaining the order of
the log. There are two classes of log stores that achieve this.

1) Cloud-based Log Stores: In the Cloud computing space,
the Apache Foundation has fostered several distributed shared
log projects such as Kafka [39], Bookkeeper [40], and Dis-
tributedLog [59]. Further, Apache Pulsar [60] and EMC’s
Pravega use Bookkeeper as the back-end log store, establishing
it as the dominant solution in this space. The main idea behind
these log stores’ data distribution is the organization of a log
(a.k.a. topic or ledger) into smaller pieces (a.k.a. partitions,
segments, active ledgers) which are mapped to a single server.
Hence, data are distributed not with a log-entry but with a
log-partition granularity. Each server is responsible for several
partitions across different logs but only one partition is active

per log at a given time. Clients have to ping the metadata
manager to get the server ID that currently holds the active
partition and then push their data to the log. Once the active
partition is full, it closes and operations are redirected to a
new active partition. Since only one partition can be active and
only one server is responsible to hold it, the order within the
partition is enforced by server arrival time. Thus, Bookkeeper
provides only partial ordering in a log (i.e., only partition
ordering is guaranteed). All tail operations are executed by
only the single server that holds the active partition. Only
historical reads will be implicitly parallel since they might
read data from several replicated partitions, and, thus, multiple
servers. Scaling the log store is achieved by adding more
servers which will accept future partitions. Some log stores
perform log partition migrations upon adding more servers
for load balancing. Partitions are also replicated to increase
read availability and log durability.

2) HPC-based Log Stores: Log stores are not very common
in HPC and are difficult to implement on top of the storage
stack. A popular log store solution, that also gave birth to
many others, is Corfu [41], [61], [62]. The Corfu protocol
organizes a collection of flash devices (i.e., SSD drives)
into a single shared log that can be concurrently accessed
by many clients over a network. A different implementation
of the Corfu protocols called SloG [42] maps events to a
collection of Lustre OSTs instead of SSD pages. Similarly,
ZLog [43] implements Corfu protocols by mapping events to
a collection of RADOS objects in Ceph. Additionally, several
high-level abstractions on top of Corfu have been presented
in the literature. Tango [11] offers several distributed data
structures over the shared log abstraction. vCorfu [63] provides
a strongly consistent object store on top of a shared log
targeting extreme scales. The main idea behind these log stores
is the explicit parallelism of the log access. In this class of log
stores, the granularity of data distribution is not a log partition
but an SSD page or an object. A centralized sequencer is
employed to provide order by handling the tail of the log.
Clients access the log after they call the sequencer to identify
which SSD page to write. This increases the log parallelism
since different log entries are spread to the entire cluster, but
is limited by the performance of the sequencer [7]. Since these
designs focus on performance, these log stores lack advanced
features such as geo-distribution. Additionally, features such
as durability and high-availability depend on the support of
the underlying storage subsystem (i.e., Ceph, Lustre). Lastly,
they do not support elasticity (i.e., adding more servers on
demand), limiting the scalability of the log capacity.

3) Limitations and Challenges of Existing Solutions: What
the above log stores, both Cloud- and HPC-based, have in
common is the logical abstraction of a shared log and its
API. However, there are several differences and limitations
stemming from the design of each log store. More specifically,
Bookkeeper’s limitations include: a) all tail operations are
serviced by a single server, b) additional storage footprint
caused by writing data in both a journal and in an entry log,
c) increased metadata lookup costs (i.e., it relies heavily on

TABLE I
DISTRIBUTED SHARED LOG STORES FEATURE MATRIX

Features
Bookkeeper

Kafka / DLog
Corfu

SloG / ZLog ChronoLog

Locating the
log-tail

MDM lookup
(locking)

Sequencer
(locking)

MDM lookup
(lock-free)

I/O isolation Yes No Yes
I/O parallelism
(readers-to-servers) 1-to-1 1-to-N

M-to-N
(always)

Storage elasticity
(scaling capacity) Only horizontal No

Vertical and
horizontal

Log hot zones Yes (active ledger) No No

Log capacity Data retention
Limited by
of SSDs

Infinite
(auto-tiering)

Operation Parallelism Only Read (Implicit) Write/Read Write/Read
Granularity of
data distribution

Closed Ledgers
(log-partition)

SSD page
(set of entries)

Event
(per entry)

Log total ordering No (only on partitions) Yes (eventually) Yes
Log entry visibility Immediate End of epoch Immediate
Storage overhead
per entry Yes (2x) No No

Tiered storage No No Yes

Zookeeper for all metadata info). On the other hand, Corfu’s
limitations include: a) all operations are tokenized via the
sequencer, b) fragmentation of logs requiring trim and fill
API calls to reclaim space, c) client-side synchronization via
epochs making entries visible only after the epoch projection
commits all appends, and d) ordering entries within segments
requires a seal operation which means log ordering is
achieved only eventually. All of the existing log stores are
challenged from balancing log ordering, write-availability,
log capacity scaling, parallelism, log entry discoverability,
and performance. These requirements are often conflicting.
For instance, durability and fault tolerance causes increased
write latency, log range queries require additional expensive
indexing, and efficient catch-up reads demand log ordering.
Each design makes some choices as to what to optimize.
There is no ”one-size-fits-all” between the existing log stores.
Table I shows the feature set of each class of log stores. New
distributed shared log store designs are required to address
the growing demand for a solution that offers total ordering,
high concurrency and parallelism with log-entry granularity,
and the ability to scale its capacity infinitely.

C. Motivation

Two key observations motivate us to design a new dis-
tributed shared log store. First, as stated earlier, the log
abstraction encapsulates the idea of a logical ”clock” since the
ordering of entries in a log defines a notion of time. However,
as shown in Section II-B, this ordering is hard to achieve in a
distributed and shared environment due to the synchronization
costs incurred by agreeing upon which request gets the next
log sequence number. In this work, we argue how using
physical time as a globally meaningful number, representing
the log entry position (i.e., log sequence number or log offset)
in a log, can resolve several of the issues that distributed shared
log stores face. The physical timestamps naturally reflect a
serialization order satisfying the linearizability property [64]
of a log store. Traditionally, storage solutions avoid using
physical time as a data identifier and prefer instead a unique

ID. A timestamp has been typically used as an additional
attribute to a data entry. In this paper, we show how data
consistency can be built around a system that uses physical
time as a data identifier and handles the clock uncertainty and
drift rate. A similar approach has been used by Spanner [65],
Google’s globally-distributed database. Spanner uses physical
time to globally distribute replicas of a database by modelling
the clock uncertainty. A key insight is that a combination of
the append-only nature of a log abstraction and the natural
strict order of a global truth, such as physical time, can be
combined to build a distributed shared log store that avoids
the need for expensive synchronizations.

Second key observation we make in this study is the rising
trend of the existence of multiple tiers of storage organized in
a hierarchy [66]. Innovations in hardware technologies such
as persistent memory [67] (i.e., storage-class memory [68])
and new flash storage devices [69] (e.g., NVMe SSD) aim to
bridge the gap between DRAM and HDD performance. Many
system designs incorporate such technologies in various forms
and shapes. Compute nodes are now equipped with node-local
fast storage [70], burst buffers [71], [72] are placed in between
compute and storage nodes, and data staging resources [73]
are placed side-by-side with compute nodes. Hierarchical
storage designs are expected to be the norm in many modern
computing environments. A key insight is that a multi-tiered
storage environment creates a spectrum of performance and
capacity per tier. Higher levels of the hierarchy (e.g., DRAM,
Intel Optane PM) are faster but smaller in capacity than lower
levels (e.g., NVMe, SSD). In this paper, we argue that the log
abstraction provides a simple yet powerful property: entries
at the end of the log are guaranteed to be newer than entries
at the beginning. We show that an efficient mapping of the
log entries to the tiers of the hierarchy (i.e., auto-tiering a
log) can help scale the capacity of the log and offers two
important I/O characteristics: tunable access parallelism and
I/O isolation between tail and historical log operations.

III. CHRONOLOG

ChronoLog is a new class of a distributed shared log store
that leverages physical time for achieving total ordering of
log entries and utilizes multiple storage tiers to distribute a
log both horizontally but vertically (a distribution we call
3D data distribution). ChronoLog takes advantage of the
strictly linear global order that physical time imposes to
achieve synchronization-free log ordering, a highly concurrent
log access model (MWMR), and the ability to process a
log partially via data range retrieval mechanisms. The log
auto-tiering capability of ChronoLog allows the system
to effectively scale the log capacity infinitely and offer a
more parallel and elastic I/O model. The set of features that
ChronoLog embodies, as well as its adaptive nature, make
the system ideal for a diverse collection of applications from
scientific to Web and IoT. ChronoLog is particularly well
suited for time series analysis applications due to its properties
of time-based data ordering and support for log range retrieval.

A. Design and Architecture

1) Design Requirements: As any distributed shared log
store, ChronoLog is responsible for the organization, storage,
and retrieval of activity data. ChronoLog’s main objective is
to support a wide variety of applications with conflicting log
requirements under a single platform. ChronoLog’s objectives
are set by the design innovations in the following areas:

a) Log distribution: Log data should be distributed by a log-
entry (rather than log-partition) granularity, resulting in a
highly parallel distribution model. Further, log data should
be distributed both horizontally (i.e., multiple nodes) but
also vertically (i.e., multiple tiers of storage). Hence, the
system follows a 3D distribution model defined by a 3-
tuple of (logs, nodes, tiers) forming a square pyramidal
frustum [74] (i.e., top truncated pyramid).

b) Log ordering: Finding the tail of the log should be free of
expensive synchronizations such as metadata locking or a
centralized sequencer that enforces the order. Additionally,
the system should guarantee ordering of entries on the
entirety of a log and not only on a log-partition granularity.

c) Log access: Interacting with the log should follow a highly
concurrent access model effectively providing multiple-
writer-multiple-reader (MWMR) semantics. Further, tail
and historical log operations should be handled separately
via I/O isolation. The log should not favor one type of
operation over the other offering high performance for
both. Lastly, the log must be able to be partially processed
via range retrieval moving away from a limiting sequential
access model imposed by mechanisms such as log iterators.

d) Log scaling The log should be able to scale its capacity
and automatically expand its footprint to multiple storage
tiers via auto-tiering. No explicit user intervention should
be required. The system should map the natural ordering of
a log to the spectrum of performance characteristics of each
storage tier (e.g., recent entries in upper tiers, older entries
in lower), potentially scaling the log capacity infinitely.

e) Log storage Persisting log data should be executed by a
tunable parallel I/O model to match the rate of log data
production. In other words, the storage infrastructure must
be elastic and adaptive via storage auto-scaling leading to
better performance and resource utilization. Additionally,
a tiered log store should leverage the type of the target
storage device (e.g., NVMe SSDs are less sensitive to
random access than HDD that prefer sequential access).

2) Abstractions and Operations: ChronoLog’s data model
revolves around the chronicle abstraction. A chronicle, which
represents a typical log created by the user, is a named data
structure that consists of a series of data elements ordered by
physical time. Each data element, called an event, is a simple
key-value pair. The key is a ChronoTick (i.e., time tick or slot)
and the value is an uninterpreted byte array. A ChronoTick
is a monotonically increasing positive integer (uint32_t)
representing the time distance from a base value of a
chronicle (i.e., offset from beginning of time). A chronicle’s
base value is the creation timestamp, set by a global clock. A

chronicle is indexed by a configurable granularity expressed
in time units such as nanoseconds (default in ChronoLog).
By adjusting the indexing granularity, a chronicle can group
multiple events while maintaining its order. A tags structure
stores a list of chronicle properties and other metadata such
as the total size in bytes, ownership details, permission flags,
and access mode (e.g., read/write). The property list includes
the chronicle type (e.g., prioritized), the indexing granularity
(e.g., ns, ms, seconds, etc.,), the auto-tiering policy for the
hierarchical storage, and the data coherency semantic.

Since ChronoLog is a multi-tiered distributed log store, the
storage representation of a chronicle highly depends on its
tiered distribution. Leveraging the latest trends in hardware
innovation, the machine model ChronoLog aims to support
is as follows: compute nodes equipped with a large amount
of RAM and local NVMe devices, a shared burst buffer
installation based on SSD equipped nodes, and a remote PFS
installation based on HDDs (motivated by the recent machines
Summit in ORNL or Cori in LBNL). The events of a chronicle
travel through the tiers of storage. In higher tiers (i.e., NVMe
and SSD) the events are stored in the form of key-value pairs
in a distributed persistent journal. For the HDD tier, events
are first sorted and then written sequentially in a file, called a
story. Hence, a chronicle is a collection of stories, which in
turn are collections of ordered events. The story abstraction
allows ChronoLog to leverage the type of storage device. In
other words, parallel file systems deployed on top of HDDs
are expected to perform well when the access is sequential.

The operations a chronicle supports resemble the typical
log operations: record an event (append), playback a chronicle
(tail-read), and replay a chronicle from a given event (catch-up
read). ChronoLog also allows replay operations to accept a
vector of ranges (i.e., a start and end event), enabling partial
access to a chronicle. Clients need to first acquire a named
chronicle before they record any events to it. ChronoLog
maintains an acquisition counter that is used to guide data
movements through the tiers. For instance, a chronicle that
is acquired by many clients is expected to have a higher
probability to be accessed, and, therefore, should be kept
in higher tiers of the storage hierarchy. A chronicle can
be deleted from a ChronoLog cluster or migrate from one
cluster to another. Lastly, a chronicle cannot be mutated
as it is an append only structure. However, the chronicle
abstraction could allow for partial range deletions but only in
the beginning or the end of it.

3) System Overview: ChronoLog is a distributed shared
log store that can be deployed on a cluster with multiple
tiers of storage. Figure 1 demonstrates the architecture of a
ChronoLog cluster which consists of the following three main
components: a ChronoVisor, a ChronoKeeper, and a tiered
ChronoStore. The ChronoVisor handles client connections and
chronicle metadata information. It also acts as the global
clock enforcing time synchronization between all server nodes
participating in a ChronoLog cluster. The ChronoVisor is
deployed on its own server node (usually a head node). The
ChronoKeeper serves all tail operations such as record()

ChronoLog
Cluster

ChronoKeeper

ChronoStore
(multi-tiered)

ChronoLog Client API

ChronoGrapher ChronoPlayer

Record
(append)

Playback
(tail-read)

Replay
(historic reads)

Distributed Key-Value Store
SSD SSD SSD SSD SSD SSD SSD SSD

Distributed/Parallel File System
HDD HDD HDD HDD HDD HDD HDD HDD HDD HDD HDD HDD

GraphDB,
OLAP stores

External Storage
(e.g., Object Stores, Hadoop File Systems, Parallel File Systems, DataLakes, Data Warehouses, Tapes)

NoSQL,
Search, Query

Monitoring,
Visualization

BigData
Analytics

Telescopes,
Sensors, IoT

Stream
Processing

Distributed Journal with Index

NVMe NVMe NVMe NVMe

ChronoVisor
Client

Registry

Chronicle Meta Directory

Global
Clock

Write (append)

Tail Read

Historic Read

Connect
Disconnect

Create
Destroy

Sync
Clock

Fig. 1. ChronoLog design overview

and playback(). It stores incoming events in a distributed
journal. Event distribution is achieved by the eventID (i.e.,
the ChronoTick). The ChronoKeeper is deployed on all or
a subset of compute nodes that are equipped with a fast
flash storage device (e.g., NVMe). The ChronoStore manages
both intermediate storage resources (e.g., burst buffers or data
staging resources) and the storage servers. It is organized into
two subcomponents, the ChronoGrapher and ChronoPlayer,
which are responsible for writes and reads, respectively. The
ChronoGrapher is using a real-time data streaming approach to
continuously ingest events from the ChronoKeeper and persist
them to lower tiers of the hierarchy. The ChronoPlayer serves
historical reads in the form of replay() calls. Both Chrono-
Store subcomponents have the ability to grow or shrink their
resources (e.g., writer or reader processes) offering an elastic
solution that can match the I/O demand. A ChronoLog cluster
can scale both horizontally, by adding more servers in any
of its components, and vertically, by adding more tiers to its
participating nodes. Lastly, ChronoLog has several connectors
to external storage resources that can be used to either pull data
in or push data out; thus it can act as a data warehouse solution.

To take full advantage of and interact with ChronoLog,
applications use a client library that defines a native
ChronoLog API (detailed in subsection III-A4). Clients
have to first connect to a ChronoLog cluster by registering
to the ChronoVisor. During connection, clients receive the
ChronoVisor’s base clock value and its clock drift rate that are
used to calculate the client’s time distance from the cluster. No
client time synchronization is required (i.e., no need to change
the client’s machine clock) since ChronoLog handles time
relative to a global time reference, that of the ChronoVisor in a
cluster. Upon successful connection, a client can create a new
(or acquire an existing) chronicle before any data operation
takes place. Once the chronicle is created, a client can start
recording (or replaying) events. ChronoLog implements a
novel decoupled server-pull architecture that splits the process
of event ingestion from event persistence. All incoming events
are first received by the ChronoKeeper which indexes and

Operation Args Return Description
Admin API

connect() URL status Connects to the cluster using the ChronoVisor's URL.
(e.g., chronolog://<hostname>:<port>)

disconnect() NULL status Terminates the connection to the cluster

sync_clock() URL base,
rate

Gets ChronoVisor's (URL) global clock value (base) and its ticking
drift rate (rate). Function is called when client first connects,
periodically, and on chronicle creation or migration.

Chronicle API

create()
name,
index,

tags
status

Creates a chronicle with name, with event granularity defined by
index. Default indexing is in nanoseconds but larger units can also
be selected. Tags is a set of attributes such as type of chronicle,
access permissions, tiering policy, etc.,

edit()
name,
index,

tags
status Edit a chronicle (e.g., renaming, re-indexing, and re-tagging).

destroy() name,
flags status

Deletes the entire chronicle. Flags define a sync or async
operation. ChronoLog will delete a chronicle only when all
acquisitions are released (i.e., reference_count =0).

acquire()
name,
flags CID Gets the ChronicleID (CID) associated with name. Type of

acquisition (e.g., exclusive/shared, full/partial) defined by flags.

release()
CID,
flags status Releases the acquired chronicle. Reduces reference count by 1. An

expiration time can be defined by flags.
Event API

record()
CID,
data EID Appends the serialized data to the chronicle with CID. An eventID

(EID) is returned upon success.
playback() CID data Gets the data at the tail of the chronicle with CID.

replay()
CID,

range,
constraint

data Gets any data between the requested range <startEID, endEID>.
Filtering of the retrieved data by applying the constraint.

Fig. 2. ChronoLog API

writes them to its distributed journal. Note that the distributed
journal’s capacity is finite and limited. Hence, the ChronoG-
rapher runs a data streaming job which continuously collects
events from the distributed journal, in real time, and writes
them to a distributed key-value store (KVS) running on top of
SSDs. Each KVS server is responsible for a range of eventIDs.
Once enough events are collected or sufficient time has passed,
the ChronoGrapher builds a story by sorting the events. Stories
are then written out, using parallel I/O (e.g., MPI-IO), to
a file in the HDD-based PFS. ChronoLog handles tail and
historical operations separately by different components (and
tiers), offering an I/O isolation property to its data model.

4) ChronoLog API: The ChronoLog API, provided by a
client library, consists of an Admin, a Chronicle, and an Event
API listed and described in Figure 2. The Admin API exposes
management operations including client handling via a registry
and cluster time management by running the global clock. The
Chronicle API exposes the metadata operations that include
managing the chronicle namespace, access properties, and the
manipulation of chronicle tags. The Event API mostly exposes
the interface for data interactions including write and read.

The power of the ChronoLog API stems from the chronicle
abstraction. For example, the indexing granularity defined
at the creation can be edited to a larger one (e.g., from
nanoseconds to seconds) which leads to a grouping of events
around the new granularity. The API also enables the ability
to partially acquire a chronicle in three modes: a) from the
beginning until a given eventID, b) from a given eventID
until the end, or c) between two eventIDs. This creates a
chronicle projection which helps ChronoLog achieve better
resource utilization. Furthermore, a hinting mechanism using
a set of tags and/or flags is exposed to enable additional

1. Record(C1,data)
Attach Timestamp T8

Hash T8 to server

...

Data Hashmaps

Chronicle #C1

Record() Play() GetTail()

Index Ordered Sets

Chronicle #C1
T6

T8T2

1.1 Invoke(record,C1,T8,data)

1.2 Insert data 1.3 Update index

Data Hashmaps

Chronicle #C1

Record() Play() GetTail()

Index Ordered Sets

Chronicle #C1
T3

T4T1

Tail Hashmap Server indices

0

2
1

C1
T3

T4T5
C22 T2T4 ...
C17 T4 T3T1

1 M N

...
T8

1.4 Update tail

Tail Hashmap Server indices

0

2
1

C9
T2

T5T7
C32 T4T1 ...
C79 T4 T7T5

1 M N

...
T3

ChronoKeeper Server #M ChronoKeeper Server #N

2. Playback(C1)
GetTail(C1)

Calculate Max(T[])

2.2 Return C1 tail array

2.1 Invoke()

2.3 Invoke(play,C1,T8)
2.4 Return data

0
1
2

3

n
6
5

4

C1T1

C8T5

C8T9 C8T3

C7T6C5T7

C8T7

tail head

Ev
en

t B
ac

kl
og

0
1
2

3

n
6
5

4

C1T2

C1T6

C1T8 C9T3

C3T6C5T6

C5T7

tail head

Ev
en

t B
ac

kl
og

DataKey
Data
Array Control

T2

T8

T6

0

21
...

48
...

T4

T1

T3

0

7
...

19
...

... ...

Fig. 3. ChronoKeeper design and architecture.

functionality. For instance, a client can request a chronicle
acquisition for a given time period. Once the timer expires,
the acquisition will automatically be released and the user
will lose access. This can help eliminate orphaned handles of
acquired chronicles. Another flag, for example, allows a user
to instruct the system to delay the ChronoGrapher evictions
keeping the events of an important chronicle (e.g., user
metadata) in the ChronoKeeper for a longer period of time
(i.e., faster access). Finally, ChronoLog can perform range
retrievals on the eventIDs without the need of an auxiliary
index. This capability is inherited from ChronoLog’s use of
physical time to order data (i.e., primary index). We argue
that this functionality is especially useful to time series
applications. Example queries could be ”bring me all events
from chronicle stock_values for all Mondays of 2012”,
or ”get me all events from chronicle bank_transactions
between January and March of all even years since 2000”.

B. Tail Operations via ChronoKeeper

The ChronoKeeper is responsible for all chronicle tail
operations, and, thus, is the gateway to the ChronoLog cluster.
It manages the highest available storage tier (e.g., NVRAM,
NVMe) on a ChronoLog cluster. It is a distributed component
that can either be deployed within each compute node, co-
located with the client, or on a dedicated subset of compute
nodes by a configurable ratio between client and Chrono-
Keeper servers (e.g., 1-to-64 server-to-client processes). If an
I/O forwarding layer exists, the ChronoKeeper can be deployed
on those nodes. Its main goal is to offer a highly available and
durable space for incoming events acting as a ”cache”, on top
of the ChronoStore, that holds the latest events. Figure 3 shows
the design and data structures of the ChronoKeeper.

1) ChronoKeeper data structures: The ChronoKeeper uses
several distributed data structures implemented by the HCL
library [75], a high performance RPC protocol over RD-
MA/RoCE with the ability to invoke callbacks on the server.
HCL was chosen because it automatically distributes several
C++ STL-like data structures while having the ability to also
persist them on NVMe or SSD drives. Upon system initial-

ization, the ChronoKeeper servers expose a shared memory
window for deploying the following data structures:

a) Distributed journal: holds the data of incoming events. It
consists of a collection of data hashmaps distributed on all
ChronoKeeper servers. Event insertion time complexity is
O(1) since keys are not sorted. All operations are lock-free
making the journal highly concurrent.

b) Chronicle index: provides indexing over the journal with
one ordered set of eventIDs per data hashmap. The purpose
of the chronicle index is not to locate individual events but
to maintain their order. It is only used by the ChronoPlayer
during replay operations (more in subsection III-D). It pro-
vides O(logn) for both lookups and insertion operations.

c) Tail hashmap: provides a lock-free method to update
chronicle tails. It is a distributed hashmap with chronicleID
as the key and an array, with size equal to the number of
ChronoKeeper servers, of the latest eventIDs per chronicle
as its value. It is used by the clients to efficiently locate
the tail without any synchronizations or locking.

d) Event backlog: maintains a list of events that have
already been copied from the ChronoKeeper to the
ChronoStore. It is implemented by a circular queue of
tuples (chronicleID, eventID) with O(1) complexity
for pop/push operations. It is used by the ChronoKeeper to
target events that can be safely removed from the journal.

The tail hashmap and the event backlog are initialized upon
system init(), whereas the data hashmaps and chronicle
index are initialized when a chronicle is created or acquired.
All of the above structures are initialized by the ChronoVisor.

2) Record: Let us follow a record() call and its journey
through the ChronoKeeper (blue arrows in the figure). The
client calls record() on a chronicle and passes the data.
ChronoLog’s client library will first calculate the ChronoTick
and then hash it to get a serverID. By default, ChronoLog uses
a uniform hashing to achieve an embarrassingly parallel event
distribution and load balance among ChronoKeeper servers.
The high availability and durability requirements are, thus,
satisfied by this event distribution. When in co-located mode,
a locality-aware hashing algorithm [76], [77] may be used to
direct local traffic to the local drive, but at the risk of creating
hot zones. In contrast to existing solutions based on the Corfu
protocol, the ChronoKeeper does not need a sequencer to man-
age the tail of a chronicle. This is automatically handled by the
ChronoTick abstraction that encapsulates the natural property
of physical time: a strictly and monotonically increasing order.
Once the serverID is determined, the client will invoke a
record() callback on the target server passing the chronicle
name, the ChronoTick, and the data. Once the server receives
the call, it will insert the data in its local data-hashmap,
while at the same time update the chronicle index and tail-
hashmap. Note that the tail-hashmap update is atomic and does
not require locking. The cost of the two update operations
is hidden behind the data operation, which is expected to
last longer. Also note that the client bundles all the three
operations into one RPC call instead of making multiple client-

to-server roundtrips. Once all three operations complete, the
client can exit. A record() call can fail when: a) the chronicle
has not been created or acquired, b) the ChronoKeeper’s
capacity bounds have been reached, or c) the incoming event
is backdated, violating the chronicle’s immutability.

3) Playback: The performance of a tail-read in any dis-
tributed log store is determined by the ability to quickly locate
the tail of a distributed log. In ChronoLog getting the tail
is achieved by a playback() call to the ChronoKeeper.
Let us follow the red arrows in Figure 3 that show how
getting the tail of a chronicle works. The client calls playback()
with a chronicle name. The client library will first invoke the
get tail() function on the ChronoKeeper server responsible to
hold the tail-hashmap for that particular chronicle (i.e., the
chronicle name gets hashed to a specific server). The server
will return an array of eventIDs, indexed by serverIDs, that
represent the latest events each ChronoKeeper server has at
the time of the call. The client will then locate the max
ChronoTick in the array and use its index to invoke a play() on
that server. Upon receiving the call, the ChronoKeeper server
will get the data from its data hashmap and return them to
the client. Getting the event out of the data hashmap incurs
a random read which can be slow on a spinning hard drive.
However, ChronoKeeper servers utilize newer flash storage de-
vices (e.g., NVMe) which are expected to perform well under
such access patterns. Additionally, a byte-addressable storage-
class memory will further boost this operation. Due to network
latency between the playback and any other outstanding record
operation, ChronoLog guarantees that the clients will not get
an event newer than the time of playback call plus the network
latency L, which, as stated earlier, is measured during client
connection or chronicle acquisition. The ChronoKeeper offers
a lock- and synchronization-free solution to finding the tail of
a chronicle without the need of a centralized sequencer.

C. Recording Data via ChronoGrapher

The ChronoGrapher is responsible for continuously persist-
ing data from the ChronoKeeper journal to the ChronoStore.
It is a distributed component that is deployed on the available
resources in the data path from compute to the remote PFS
(e.g., burst buffer or data staging nodes). To provide chronicle
capacity scaling and since the ChronoKeeper’s storage capac-
ity is expected to be limited, ChronoLog needs to efficiently
and automatically move data down to the next larger but slower
tiers. To achieve this, the ChronoGrapher offers a very fast
distributed data flushing solution that can match the event
production rate (stemming from the ChronoKeeper), while
imposing some order to the randomness of the journal in the
top tier. The ChronoGrapher’s objectives include:

a) Real-time continuous data flushing: as soon as an event
is written in the ChronoKeeper’s journal, instead of batch
flushing, free up space by immediately copying it down.

b) Tunable parallelism (resource elasticity): match the
incoming event production rate from the ChronoKeeper by
resizing the resources accordingly (e.g., grow or shrink).

Event
Collector

Story
Builder

Story
Writer

Distributed Key-Value Store

KeyBy
CID1.1 Pull

events
from

journal

1.2 Put
data to

KVS

1.3 Add events
to Backlog

1.4 Emit
(CID,EID)

2.3 Emit story
(SID,{EIDs})

3.1 Get
data
from
KVS

3.2 Parallel
write to PFS

(MPI-IO)

[Optional]
External write

(REST)

2.1 GroupBy CID

2.2 SortBy EID

Fig. 4. ChronoGrapher design and architecture.

c) Leverage the type of storage device: use the SSD’s capabil-
ities for random access but avoid such access on spinning
drives at any cost. Create sequential access for HDDs.

d) Decoupled from ChronoKeeper and clients: implement a
server-pull instead of a client-push eviction model to amor-
tize the operational cost; always execute in the background.

To achieve the above requirements, we implemented
ChronoGrapher as a data streaming job executing three major
steps in a DAG: event collection, story building, and story writ-
ing. Each node in the DAG is dynamic and can grow or shrink
based on the traffic (i.e., number of events and size of data).
To maximize performance by minimizing data movements
between processing elements, ChronoGrapher splits the data
from the control flow. In our prototype, we used Apache Flink
to implement the DAG since it offers: ease of deployment,
only-once delivery guarantees, elasticity capabilities, and fault
tolerance semantics. We utilized Java’s Native Interface (JNI)
to interface the Java-based Flink framework to the rest of the
C++ ChronoLog code. Let us follow Figure 4 that shows the
design of ChronoGrapher and the three DAG nodes.

1) Event Collector: During system initialization or
chronicle acquisitions, the ChronoVisor spawns the
ChronoGrapher that connects the event collector processes
to the specified sources (e.g., ChronoKeeper’s journal). The
number of event collector processes is dynamic. To match
the available bandwidth of the more capable hardware on the
upper tier, the number of event collector processes should be
larger than (or worse case equal to) the number of NVMe
drives the journal is deployed on. The event collector then
starts pulling events from the journal (not removing them),
and immediately writes them to the distributed key-value store
(KVS). The ChronoGrapher’s KVS follows a tablet-based
distribution mechanism, inspired by Google’s BigTable [78],
where each server is responsible for a certain key range. This
range is configurable during bootstrap by the ChronoVisor. The
main reason we chose this approach is to preserve the temporal
locality of events. To avoid hot zones (which would overwhelm
an SSD server), the key range per server (i.e., time span in our
context) is kept way smaller than the number of available SSD
servers. Note that, at this point, events from the journal are
mixed across different chronicles. Next, once the event data are
written to the SSDs, the event collector will add the eventIDs
to the ChronoKeeper’s event backlog marking them as ”safe”
to be removed. The backlog contribution is two-fold: ensuring
durability and acting as a cache on top of the ChronoStore
(i.e., events can stay longer in the ChronoKeeper as long as

Replay
Handler

Range
Resolver

Request
Executor

1.1 Listen
for replays

1.3 Return data
to client

3.2 Push data to
response queue

3.1 Parallel
read

from

multi

tiers

Request

Response
Queues

Response

Request
Queues

2.1
Pull

1.2
Push

2.2
Create
ranges

Key
By

Range

Fig. 5. ChronoPlayer design and architecture.

there is space). Lastly, the event collector will emit tuples of
(chronicleID, eventID) to the next node of the DAG.

2) Story Builder: The story builder processes will first
group the eventIDs by chronicleIDs. The KeyBy operator will
dynamically create one node in the DAG per chronicleID. A
story creation epoch is defined to avoid this process running
forever. The length of the epoch is determined by either a
given number of events has been reached, or the total size of
the collected events is larger than a given threshold, or lastly
if a configurable timer has expired. The intuition behind the
story creation epoch is based on known good I/O practices
(e.g., larger sequential I/O rather than small random). Once
the epoch closes, a parallel running sort is used to sort
the eventIDs and create the chronicle story. Note that only
the eventIDs are necessary and no data movement happens
during this phase. Lastly, the story builder emits a tuple of
{storyID, set < eventIDs >} to the next node of the DAG.

3) Story Writer: The story writer processes will first deter-
mine which KVS servers hold the event data pertaining to the
story and then execute a range-get from the KVS, which lever-
ages the KVS key range distribution (i.e,. neighboring events
are likely to be on the same SSD, increasing data locality).
The event data are placed in a buffer and then the entire story
is written to the HDDs using an MPI collective I/O call with
multiple threads. The story is effectively a ChronoLog-specific
file in the PFS. Note that, external storage can also be used.

D. Replaying Data via ChronoPlayer

The ChronoPlayer is responsible for executing historical
read operations. It is a distributed component that is deployed
on all storage nodes throughout a ChronoLog cluster. It is
initialized by the ChronoVisor upon system initialization.
Since ChronoLog is a multi-tiered log store, at any given point
a chronicle might be spread across several locations: only in
the HDDs (in the form of one or more stories), in both the
SSDs and HDDs (in the form of unsorted events and sorted
stories), or even everywhere (with the latest recorded events
residing in the ChronoKeeper). Hence, the ChronoPlayer
needs to be able to access all tiers and read data efficiently.
Similarly to the ChronoGrapher, it is implemented by a data
streaming approach with a real-time, decoupled, and elastic
architecture. Figure 5 shows its design and its three main DAG
nodes: replay handlers, range resolvers, and request executors.

1) Replay Handler: Each replay handler process, running
in each storage server (both SSD and HDD), hosts a request
and a response queue. A client randomly selects a server from

the group and sends its replay request. The only job of the
replay handler is to push the incoming requests to the queue.
Upon completion of the replay operation, the replay handler
pushes the fetched data from the response queue to the client.

2) Range Resolver: The range resolvers pull one or more
requests from the request queues. In case of increased replay
demand, two or more resolvers can serve the same queue.
At minimum, each queue has a resolver. Since a chronicle is
spread across multiple storage tiers, each replay request might
reflect multiple ranges across tiers. The resolver will create a
vector of ranges for each replay request. Further, since we want
to apply well-known I/O practices, a replay call may request a
lot of data, and, hence, the resolvers will split it in several sub-
requests to better suit the read granularity (e.g., every 4MB).
Lastly, as shown in subsection III-A4, the replay call can also
pass a constraint on the range that may filter the fetched data.
The resolvers will consider this constraint to further refine the
ranges. Lastly, one possible optimization resolvers can do is
to check the response queues before finalizing the ranges. If
relevant data are found there, additional reading is avoided.
Once ranges have been created, the resolvers emit them to the
request executors to perform the I/O operations.

3) Request Executor: The request executors accept vectors
of ranges from the resolvers. First, to avoid excessive I/O,
executors deduplicate ranges to detect overlapping requested
chronicle regions. A replay epoch can be applied to achieve
request aggregation, and, thus, further minimize I/O. To
avoid starvation and serve requests faster, a timer is used
to force the closure of an epoch. This is configurable on
chronicle creation or acquisition. After range deduplication,
the executors will fetch data from one or more tiers using the
appropriate interfaces (e.g., range reads from SSDs, parallel
I/O from HDDs). Note that if the replay does not include an
endEventID, this means the client wants everything from
given point until the end of the chronicle. If the chronicle
is acquired, readers have to contact the ChronoKeeper and
get the latest events. ChronoKeeper’s chronicle index helps
execute this quickly. Once all data have been fetched, the
request executors push them to the response queues and
clients are notified. In case the range is equal to one eventID,
the client library will resolve the replay operation, without
invoking the ChronoPlayer, by locating the event itself.

E. Ramifications of Physical Time

One key insight this paper offers is that using time as a
method to distribute and order data is beneficial since it avoids
expensive locking or synchronization mechanisms. However,
this approach assumes that time is the same across all partic-
ipants, something that is not true in most computing systems.
Our thesis is that using physical time only makes sense in a
log context, not in a general storage abstraction, since it is
an append-only data structure that only moves forward, like
a clock does. It is beneficial to deal with the ramifications of
physical time to achieve higher performance and scalability.

1) Taming the Clock Uncertainty: There are two main chal-
lenges related to clocks in computers: a) time distance between

6 7 8 92 3 4 50 1

3 4 51 20

2 310

Δ(C1) = +½

Δ(C2) = - 1

ChronoVisor clock ticks
Client1 is ahead and runs twice as fast
Client2 is behind and runs twice as slow

CTick(C1)=3/2+0.5 = 2 CTick(C2)=2,5/0.5+(-1) = 4

Fig. 6. Modeling Clock Uncertainty with ChronoTicks.

two clocks, and, b) different ticking rates, called drift rates.
These two observations are encapsulated into a clock uncer-
tainty model. It is not expected that two clocks will ”tell” the
same time or run at the same rate. Since ChronoLog relies on
the physical time to identify events, simply attaching the actual
timestamp from the client-side would not work. Additionally, it
is not realistic to expect all clients to synchronize their clocks
with the ChronoLog cluster before they use it. ChronoLog
handles the clock uncertainty in two ways. First, it requires
all participating server nodes in a cluster to synchronize their
clocks with the ChronoVisor, which acts as the master global
clock. This synchronization happens in the initialization and
periodically afterwards. Second, since ChronoLog does not re-
quire clients to change their clocks to the ChronoVisor’s time,
then a new way is needed to ”tell” the same time across decou-
pled remote machines. This is achieved by the ChronoTicks
that model the time as a relative distance from a base clock.
Figure 6 shows how this works. The darkest timeline is that of
the ChronoVisor, and the one the rest of the cluster is ticking
by. The blue timeline is a client that is running ahead by half
a time unit (e.g., say seconds in this example) and runs twice
as fast. The green timeline is a client that is running behind by
one time unit and ticks at a rate half as fast as the ChronoVisor.
Let us follow an example where the blue client wants to
append an event (see red lines). The client will calculate the
ChronoTick by dividing his current time by his drift rate
and add his clock distance from that of the ChronoVisor.
ChronoTicks ensure that all involved parties speak the same
”time language”. Note that clients just need the base clock and
its ticking rate to calculate their own distance and drift rate.

2) Handling Backdated Events: Due to the non-
determinism inherent in all distributed systems, an event with
a certain ChronoTick may arrive later, mostly due to network
latency, violating the immutability property of a log (i.e.,
event becomes backdated). Since time cannot be rewound,
chronicles cannot be mutated. To address this limitation, the
ChronoKeeper defines an Acceptance Time Window (ATW)
within each chronicle acquisition period. ATW is practically a
moving window on the timeline that each chronicle acquisition
imposes. An ATW is equal to twice the network latency
between the client and the ChronoKeeper. This latency can
be measured during client connection or chronicle acquisition
(whichever is longer). The ChronoKeeper accepts events with
ChronoTicks no earlier than acquisition time or current time
minus the ATW, ensuring the chronicle’s ordering requirement.
If an event arrives with a ChronoTick outside the ATW, it will

atw(6) atw(8)

acquire(C1)

latency=1
atw = 2atw(1,2,3)

release(C1)

atw(5) atw(7) atw(9)

record(C1,T2,data)

6 7 8 92 3 4 50 1 timeline

record(C1,T3,data)

Acquisition period of chronicle C1

atw(4)

Fig. 7. ChronoKeeper Event Acceptance Time Window (ATW).

be rejected, and the client will retry with a new ChronoTick.
Figure 7 shows an example of two record calls. The first
(green) arrives at T3 with ChronoTick T2, which falls within
the ATW, and succeeds. The second (red), however, arrives at
T6 with a ChronoTick T3, which falls outside its ATW, and
fails. Finally, the duration of an ATW is also the lower bound
of the time an event will stay in the backlog before it can be
safely evicted from the ChronoKeeper’s NVMe drives.

3) Handling Event Collision: Each chronicle has an
indexing granularity expressed in a time unit (e.g., seconds).
This represents how events are placed in a chronicle. For finer
indexing granularity (e.g., default is nanoseconds), events
are expected to fall in different ChronoTicks. However, for
coarser granularities, events might start to collide on the same
ChronoTick. This may happen within the same chronicle
acquisition period. There are two challenges associated with
event collisions: a) detecting a collision, and, b) correcting a
collision. The ChronoKeeper handles both. Detection happens
within an acceptance time window. Clients might have
attached the same ChronoTick, and thus the colliding events
will be hashed to the same ChronoKeeper server which can
then detect any collisions. Four semantics are defined to handle
those event collisions. Those semantics are set in the chronicle
tags during creation, reflecting different chronicle behaviors,
and cannot be edited later. During an acquisition, the
ChonoVisor passes those tags to the ChronoKeeper defining
the collision policy. Figure 8 demonstrates these semantics.
a) Semantic A: the server will link all events in a server-

arrival-time order. When requesting this ChronoTick, the
server will return, not one, but all events. This semantic
can be used for idempotent workloads.

b) Semantic B: the server will only place in the chroni-
cle the event that arrived the last. When requesting this
ChronoTick, the server will return only one event. This se-
mantic reflects workloads that push events for redundancy.

c) Semantic C: the server will place the event that arrived first
and reject the others. Therefore, clients will retry with a
new ChronoTick. This semantic provides more control to
the user, ensuring absolute ordering.

d) Semantic D: the server will place the event that arrived
first to the requested ChronoTick and the remaining
event(s) to the next available slot(s). This is for workloads
that require sequentiality while processing the entire log.

F. Design Implications and Other Considerations

1) Storage Resource Elasticity: Resizing a ChronoLog
cluster is possible with a minor caveat. Due to the data

Semantic A: server places all collided events in
a linked list ordered by arrival time.

T1
T1
T1 T3

 t0 t1 t2 t3 t4 timeline

Semantic B: server replaces collided events
with the event that arrived last.

T1
T1
T1 T3

 t0 t1 t2 t3 t4 timeline
Semantic C: server places the first arrived event
and returns error for other collided events.

T4T2T1 T3

X

X

X X

 t0 t1 t2 t3 t4 timeline

Semantic D: server places the collided events in
the first available timeslot.

T3T2T1 T4
 t0 t1 t2 t3 t4 timeline

Fig. 8. Event collision detection and semantics.

streaming approach, both ChronoGrapher and ChronoPlayer
have been shown to be elastic. However, adding more servers
to the ChronoKeeper is not suggested since it will incur a
rehashing of all keys, and, therefore, data movements. This
should only happen by the admins during downtime.

2) Chronicle Migration: Moving a chronicle from one
ChronoLog cluster to another is not trivial like moving a file
from one file system to another. It requires synchronization be-
tween the source and destination ChronoVisors. When a chron-
icle is created, a base value is attached to it by the ChronoVi-
sor. Since ChronoTicks represent a distance from a base value,
when migrating a chronicle, the destination ChronoVisor needs
to calculate its distance and drift rate from the source Chrono-
Visor. The clients will receive these values upon connect, and
calculating a ChronoTick will point to the correct slot.

3) Fault Tolerance: Fault tolerance in ChronoLog is offered
via replication. If required, the client must enable this flag
during the chronicle creation. Since events cannot be replicated
(this implies the same ChronoTick), ChronoLog will create
additional chronicle IDs that are not visible to the user.
Recorded events will be automatically written to both the
primary and all associated chronicle replicas.

IV. EVALUATION

A. Methodology

1) Testbed: All tests were conducted on the Ares
cluster [79] at Illinois Tech, which was built to enable
multi-tiered storage research. Each compute node has a dual
Intel(R) Xeon Scalable Silver 4114 and 96 GB RAM whereas
each storage node has a dual AMD Opteron 2384 @ 2.7Ghz
and 32GB RAM. The entire cluster is interconnected by a
40GBit Ethernet network with RoCE enabled. Each compute
node is equipped with both a fast NVMe PCIe x8 drive and
a SATA M.2 SSD. Each storage node has a SATA SSD and a
traditional HDD. The total experimental cluster consists of 24
client nodes, 8 dedicated NVMe nodes, and 32 storage nodes.

2) Prototype implementation: Our ChronoLog prototype
implementation 1 is written in C++ summing up to 20K lines
of code. For the persistent Key-Value Store deployed on the
SSDs we used our own implementation using HCL and for the

1https://bitbucket.org/scs-io/chronolog

0

200K

400K

600K

800K

1.0M

1.20M

1 2 4 8

T
H

R
O

U
G

H
P

U
T

 (
E

V
E

N
T

S
/S

E
C

)

#CHRONOKEEPER SERVERS

Record

Playback

(a) Scaling

0

2K

4K

6K

8K

10K

12K

14K

16K

18K

4 64 1024 2048 4096

B
A

N
D

W
ID

T
H

 (
M

B
/S

)

SIZE OF EVENT (KB)

Record

Playback

(b) Message Size

Fig. 9. ChronoKeeper Performance and Scaling.

PFS we used OrangeFS 2.9.7. As stated earlier, ChronoKeeper
data structures were built using the HCL library. Further,
ChronoGrapher and ChronoPlayer were built as a data
streaming job implemented using Apache Flink 1.9.2.

3) Workloads and Metrics: We have developed our own
microbenchmark that generates log-based workloads to stress-
test ChronoLog and its components in isolation. Additionally,
we have used three real application workloads: a key-value
store (KVS) built on top of a log, a state-machine replication
(SMR), and a time series (TS) analysis kernel. All tests were
conducted using the maximum scale of 960 client processes.
All test have been performed 10 times and we report the
average results. The metrics used are logging rates expressed
in events per second, achieved bandwidth expressed in MB
per second, and execution time in seconds.

B. ChronoLog Component Analysis

To test ChronoLog’s design, we run a series of tests to iden-
tify potential bottlenecks within each component of the system.

1) ChronoKeeper: To test the ability of the ChronoKeeper
to quickly service tail operations, we perform two tests. In
the first test shown in Figure 9(a), each of the 1024 clients
issue 32K requests of 4KB size each, for a total I/O traffic of
128GB. We scale the number of ChronoKeeper servers from
one to eight to see how well it scales. Each server has four
threads that manage one NVMe device. As it can be seen
in the figure, the ChronoKeeper scales quite linearly. Record
throughput reaches more than 900K events/sec for the largest
scale tested, while playbacks surpass the 1M events/sec. Both
record and playback are lock-free and their slight difference in
performance stems from the capability of the hardware itself
(i.e., higher read BW). In the second test shown in Figure 9(b),
we test how the event size affects the bandwidth extracted
from eight ChronoKeeper servers. The total I/O size was kept
at 128GB but we scaled the event size each client issues (i.e.,
32K requests of 4KB, 4K requests of 64KB, etc.). As it can
be seen, as the event size increases, the achieved bandwidth
improves with records reaching their saturation point (i.e.,
around 1MB) sooner than for playbacks (i.e., around 2MB).
The bandwidth in this case is directly bound by the NVMe
devices as there is no synchronization in these two operations.

2) ChronoGrapher: To evaluate the ChronoGrapher’s
ability to quickly absorb events from the ChronoKeeper and

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

3300

0

250K

500K

750K

1.0M

1.25M

1.50M

1.75M

2.0M

2.25M

2.50M

1 2 4 8 16 32

B
A

N
D

W
ID

T
H

 (
M

B
/S

)

R
A

T
E

 (
E

V
E

N
T

S
/S

E
C

)

CHRONOGRAPHER NODES

Event Collection Story Creation Story Writing

(a) Scaling

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

3300

0

250K

500K

750K

1.0M

1.25M

1.50M

1.75M

2.0M

2.25M

2.50M

4 64 1024 2048 4096

B
A

N
D

W
ID

T
H

 (
M

B
/S

)

R
A

T
E

 (
E

V
E

N
T

S
/S

E
C

)

SIZE OF MESSAGES (KB)

Event Collection Story Creation Story Writing

(b) Message Size

Fig. 10. ChronoGrapher Performance and Scaling.

persist them into stories in the bottom tiers of the hierarchy we
perform two tests. In the first test shown in Figure 10(a), we
scale the ChronoGrapher’s deployment from one node up to
32. Each ChronoGrapher server has 6 threads that are used for
the three DAG nodes in the streaming job. We use 16 nodes for
the persistent KVS and all 32 storage nodes for the PFS. Each
client issues 32K requests of 4KB size each, for a total 128GB
I/O size among the 1024 participating clients. We observe
that event collection improves as we increase the number
of collector processes as more data can be pulled from the
journal in ChronoKeeper. Since the journal with eight NVMe
drives can offer a rate of 1M records per second, increasing
the number of collectors past two per NVMe drive (i.e., 16
in total) will not benefit performance much. A matching
of production and consumption rates has been achieved.
We can also observe that story creation, since it is purely
a computation phase where no data is moved, can benefit
from more available processes. The running sort algorithm
implemented is parallel, and, thus the rate of creating stories
is increased with more available threads. Lastly, story writing
bandwidth is determined by the performance of the parallel
writers on top of the PFS. In our test, stories are written
sequentially using MPI collective I/O and 32 ChronoGrapher
servers achieve almost the max performance of our PFS (i.e.,
around 3GB/sec). In the second test shown in Figure 10(b),
we test how the event size affects the ChronoGrapher’s
performance using all 32 servers. The deployment is the same
but we change the size of the events collected and persisted
from 4KB to 4MB while keeping the overall I/O size to 128GB
among all clients. As it can be seen, the ChronoGrapher’s
bandwidth is not affected since stories are created by a size
granularity and not by the number of events in them. Hence,
the ChronoGrapher’s overall throughput remains stable.

3) Chronoplayer: Similarly, we perform two tests to evalu-
ate the ChronoPlayer’s scalability and perfromance to service
historical reads. The deployment of the ChronoPlayer is the
same as the previous test with 16 KVS and 32 PFS daemons.
In the first test shown in Figure 11(a), we scale the number
of ChronoPlayer servers from one to 32. Each client issues
32K replay calls of 4KB range (i.e., each replay fetches one
event). As it can be seen, when we increase the number of
servers, the listeners’ queuing capabilities increase linearly.
The resolvers are purely a computation task and therefore

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

500K

1.0M

1.50M

2.0M

2.50M

3.0M

3.50M

4.0M

4.50M

5.0M

1 2 4 8 16 32

B
A

N
D

W
ID

T
H

 (
M

B
/S

)

R
A

T
E

 (
E

V
E

N
T

S
/S

E
C

)

CHRONOPLAYER NODES

Listener Resolver Reader

(a) Scaling

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

500K

1.0M

1.50M

2.0M

2.50M

3.0M

3.50M

4.0M

4.50M

5.0M

4 64 1024 2048 4096

B
A

N
D

W
ID

T
H

 (
M

B
/S

)

R
A

T
E

 (
E

V
E

N
T

S
/S

E
C

)

RANGE SIZE (KB)

Listener Resolver Reader

(b) Message Size

Fig. 11. ChronoPlayer Performance and Scaling.

more processes can parallelize the work and boost their rate
proportionally. More interestingly, the overall bandwidth of
the ChronoPlayer is mostly determined by the performance of
its reader processes and their ability to fetch data from the
PFS in parallel. Results show clearly that we were able to
scale the read bandwidth quite linearly up to the PFS max
read performance of around 4GB/s. In the second test shown
in Figure 11(b), we scale the size of the replay calls (i.e., event
range) and measure the rate of all 32 ChronoPlayer servers.
The overall I/O size we replay is kept the same at 128GB. We
observe that, the change of the replay size does not affect the
listeners’ performance since the request is still 16-bytes long
(i.e., msg size in the queue). The resolvers’ performance de-
creases slightly since the replay size increase reflects a bigger
event range, and, thus more sub-ranges and deduplications.
However, it maintains a high resolving rate of more than
3 million events/sec and it is not the bottleneck. Lastly, as
all replay ranges are broken down to sub-ranges based on a
”good” read granularity (e.g., every 4MB), the performance of
the readers is consistent across different replay sizes.

4) Event Journey Analysis: Since ChronoLog’s architecture
is decoupled and multi-tiered, observing where the system
spends the most time during its operations is quite challenging.
To better understand the system’s behavior, we instrumented
the source code with time measurements on each ChronoLog
component. In Figure 12 we demonstrate the journey of an
event throughout the entire system. We issued 32K record
calls and we measure the individual time spent by an event
through each part of the recording. We present the average
time each step took as a percentage of the overall end-to-end
time. Here end-to-end reflects the entire event journey:
starting from the ChronoKeeper and its journal, through
the ChronoGrapher, and all the way to a story on the PFS
HDDs. We observe that the majority of the time (i.e., 84%)
is spent in the ChronoGrapher which is a continuous process
of collecting events, sorting them, and writing them to the
HDDs. However, this is all happening in the background
and clients do not see this cost. A record call can exit once
the event is recorded to the ChronoKeeper’s journal. This
effectively completes in only 16% of the overall end-to-end
time. In summary, the heaviest operations are the ones
involving data such as the journal insertion with 14%, the
KVS insertion 21%, and writing to the PFS with 41%.

0.13%

6%

8%

0.60%

1.17%

21%

3.13%

6%

13%

41%

5%

1.Attach ChronoTick 2.Send to server

3.Add data 4.Update index

5.Update tail 6.Put data to KVS

7.Add to backlog 8.Create story

9.Sort story 10.Write story

Client
ChronoKeeper
ChronoGrapher

Fig. 12. Event Journey Performance Analysis.

C. Benchmarks and Applications

The analysis presented in the previous subsection IV-B
revealed that ChronoLog’s design can perform well with
artificial workloads. In this subsection we evaluate ChronoLog
with real log workloads and compare it with both Bookkeeper
and Corfu as well as TimeScaleDB for time series queries.

1) Stress Test: In this first test, we perform a stress test for
all solutions. To compare apples-to-apples, we run all systems
on 8 servers equipped with NVMe devices. For ChronoLog
this practically means ChronoKeeper performance. We used
1024 clients that issue append and tail-read requests of various
sizes, but for a total I/O size of 128GB, and we measure
the achieved bandwidth in MB/s. Note that the NVMe drives
perform better for read operations by specification. Results
are shown in Figure 13. As it can be seen, ChronoLog
outperforms both Bookkeeper and Corfu, but for different
reasons. For Bookkeeper, append performance is determined
by a single server that is responsible for the active ledger
(i.e., log partition). Tail-read performance can be implicitly
parallel since multiple clients process the log at different
offsets so more ledgers might be used. However, it is still
not an explicitly parallel access model. In contrast, Corfu
parallelizes all tail accesses, and, thus is able to achieve higher
bandwidth. It is, however, still limited by the performance of
its centralized sequencer. Append bandwidth reached 4 GB/s
which is 2x faster than Bookkeeper but quite lower than the
18 GB/s the 8 eight NVMe drives can achieve if saturated
well. Tail-reads seem to be able to perform around 11 GB/s
since the sequencer is not involved. However, Corfu uses
client synchronization epochs that limit its tail-read bandwidth
due to the increased latency. This test highlights the effect
of the importance of locating the tail without expensive
synchronizations. ChronoLog achieves this using physical
time, with its ChronoTicks, and, therefore can perform higher
with 16 GB/s record and 18 GB/s playback bandwidth.

2) Key-Value Store: In this test, we evaluate the achieved
operation throughput of a key-value store implemented on
top of a log. We use the native KVS implementations for
both competitive log stores: Bookkeeper Table Service [80],
and CorfuDB [81]. For ChronoLog we implemented our
own key-value store that simply maps a key to a chronicle
event. ChronoLog is deployed as follows: the ChronoKeeper
runs on 8 NVMe drives with 4 threads on each server, the

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

4 64 1024 2048 4096

B
A

N
D

W
ID

T
H

 (
M

B
/s

)

MESSAGE SIZE (KB)

Bookkeeper

Corfu

ChronoLog

(a) Append (i.e., record)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

4 64 1024 2048 4096

B
A

N
D

W
ID

T
H

 (
M

B
/s

)

MESSAGE SIZE (KB)

Bookkeeper

Corfu

ChronoLog

(b) Tail Read (i.e., playback)

Fig. 13. Evaluation of Log-Tail Operations.

ChronoStore uses 16 SSD and 32 PFS daemons with both
ChronoGrapher and ChronoPlayer running on 32 servers.
Since none of the other log stores tested are multi-tiered,
and, in order to keep the comparison fair, we allocated the
same 56 total number of drives (i.e., 8 NVMe, 16 SSD, and
32 HDD) and used their default configurations. We run two
workloads: a) each client pushes 32K put() calls of 4KB
each and then gets all keys back sequentially, and b) each
client puts and immediately gets back keys of 4KB and does
so 32K times. For ChronoLog we tested two configurations
with and without the backlog enabled. When the backlog is
disabled events are moved from higher tiers to lower ones
whereas when it is enabled events are copied but not removed
from the tier allowing a ”caching” effect.

Results are presented in Figure 14. We can make the
following observations. First, both Bookkeeper and Corfu
achieve a put() rate less than 100K operations per second for
two main reasons: a) their append performance is bound from
the active ledger or sequencer bandwidth (as shown earlier),
and b) they are not designed to properly utilize multiple tiers
of storage which leads to underutilizing NVMe drives, and,
thus mostly getting HDD performance. In contrast, ChronoLog
reaches more than a 1M operations per second since it always
appends events to the ChronoKeeper (i.e., NVMe) and does
not use any centralized syncrhonization point. Activating the
backlog reduces the put() rate by 18% since more work is
needed for a record() call to complete. Second, for get()
operations in the first workload, both Bookkeeper and Corfu
perform quite well. Sequentially reading the entire log that
holds all the keys is a workload that is quite favorable to
their designs for different reasons: a) for Bookkeeper, there is
implicit parallelism with no contention since many ledgers are
spread on all servers, and b) for Corfu, there is no need to use
the sequencer since the clients know the log sequence number
and simply get the key. In contrast, for ChronoLog, when
backlog is disabled all events are moved to the bottom tiers
automatically and most get() calls will hit the HDDs. When
backlog is enabled, most keys will be found in the upper tiers
of the storage hierarchy, and, thus extract a higher bandwidth.
For the second workload, where get() calls arrive right after
the put(), a lot of contention is introduced for all log stores and
put rates are thus reduced. For ChronoLog, however, all get()
(i.e., playbacks) will hit the ChronoKeeper. Hence, it achieves

0
.7

0
6

1
0

.7
9

7

0
.6

2
6

1
1

.4
5

1

0
.0

9
1

1
.1

2
3

1
6

.5
0

2

10000 100000 1000000
NUMBER OF PUT OPERATIONS

0
.6

9
0

7
.0

9
7

0
.2

6
4

5
.0

8
9

0
.0

3
7

0
.5

2
8 1
0

.1
8

5

0

10

20

30

40

50

60

10000 100000 1000000

T
IM

E
 (

S
E

C
O

N
D

S
)

NUMBER OF GET OPERATIONS

5
1

K 1
8

3
K

4
5

K

4
6

K

6
9

K

3
4

1
K

5
7

K

6
2

K

1
.1

9
M

2
4

3
K

7
9

2
K 9
0

9
K

1
.0

3
M

6
8

3
K

7
1

7
K 8

9
2

K

0

200K

400K

600K

800K

1.0M

1.20M

Put Get Put Get

GetAll after PutAll Get after Put

T
H

R
O

U
G

H
P

U
T

 (
O

P
/S

)

KEY-VALUE STORE WORKLOADS

Bookkeeper Corfu ChronoLog w/o Backlog ChronolLog w Backlog

Fig. 14. Evaluation of Key-Value Store Operations.

1

10

100

1K

10K

100K

1.0M

1 2 4 8 16 32 64 128 256 512 1024 2048

S
M

R
 R

A
T

E
 (

C
M

D
s

/S
E

C
)

#REPLICAS

Bookkeeper Create Bookkeeper Retrieve
Corfu Create Corfu Retrieve
ChronoLog Create ChronoLog Retrieve

Fig. 15. SMR Throughput Analysis (Y-axis is in log scale).

significantly higher performance (i.e., NVMe bandwidth).
3) State Machine Replication (SMR): In this test, all sys-

tems have the same deployment as the previous experiment.
We test the ability of all log stores to effectively provide a fast
store for replicated state machines (SMR). In this application,
each client appends a command set of 4KB into the log and
then it reads all events that contain the command sets from
all other processes. The log offers the total ordering helping
to reach consensus of what command to execute next. As the
number of replicas increases, more and more data are pushed
to the log and creating and retrieving SMRs will eventually
saturate. Figure 15 demonstrates the results. We compare the
number of replicas each log store can support (i.e., create and
retrieve lines are met). As it can be seen, for all three systems
the create() rate increases as we add more replicas. Since each
log store performs differently for appends, the rates differ with
ChronoLog being able to push close to 1M commands per sec-
ond. On the other hand, the retrieve rate decreases with more
replicas since the SMRs get bigger, and, thus more commands
have to be retrieved. The main difference between Bookkeeper,
Corfu, and ChronoLog is the operation parallelism. In the
former two, the clients are actually retrieving from the log
whereas for ChronoLog, the ChronoPlayer is able to parallelize
the replay() calls and perform deduplication of the requested
chronicle ranges reducing the amount of data read. Practically,
the ChronoPLayer servers are replaying the log and broadcast
the contents to all SMR clients. Bookkeeper was able to
saturate the SMR throughput around 200 replicas while Corfu
around 380. In contrast, ChronoLog achieves a higher SMR
throughput of approximately 1900 replicas making it 5x faster.

0

50

100

150

200

250

300

350

400

450

500

NVMe SSD HDD Tiered

TimescaleDB ChronoLog

E
X

E
C

U
T

IO
N

 T
IM

E
 (

S
E

C
)

STORAGE DEVICE TYPE

Insert

Find

Query

Fig. 16. Time Series Analysis using TMBS.

4) Time Series Kernel: In this last test, we compare
ChronoLog with TimeScaleDB, a popular time series
database. We run the widely used Time Series Benchmark
Suite (TSBS) [82]. The benchmark inserts, finds, and queries
the data in 4MB data ranges of 4KB events calculating
Min, Max, and Average values. This is a single node test
with TimeScaleDB deployed on all types of storage devices
available to the node (i.e., NVMe, SSD, HDD). It is configured
to use 40 workers while ChronoLog uses 1 ChronoKeeper
server, 1 SSD KVS, 1 HDD daemon, and 32 ChronoGrapher
and ChronoPlayer servers. As it can be seen in Figure 16,
TimeScaleDB greatly benefits by the NVMe bandwidth and
random access capabilities of the drive whereas performance
gets a big hit when running on top of HDD. However, since
ChronoLog is designed to leverage the hierarchical storage
environment, it performs up to 25% faster than TimeScaleDB
stemming from the fact that the chronicle is already indexed
by physical time and stored in all available devices.

V. CONCLUSION AND FUTURE WORK

The rise of activity (or log) data in modern applications
expects a distributed shared log store that is capable to scale
well. Multi-tiered storage designs are the norm, not the
exception, and modern storage software stacks need to be
elevated to take advantage of the new types of storage devices
and offer superior performance. We present ChronoLog, a new,
distributed, shared, and tiered log store that utilizes physical
time to order and distribute data both horizontally in multiple
nodes but also vertically in multiple tiers. ChronoLog adopts
a truly hierarchical design and a decoupled architecture, that
is elastic, to match the I/O production and consumption rates.
Evaluation results show that eliminating a centralized synchro-
nization point can boost performance to new highs. ChronoLog
can achieve millions of tail operations per second and can
outperform existing log stores by an order of magnitude.

Several future steps remain to be designed and executed.
We plan to investigate deeply the performance characteristics
of ChronoLog under different workloads and further evaluate
geo-distribution of chronicles. More evaluation is required
to model the effects of using physical time to order
events. Lastly, we plan to investigate how streaming, SQL,
MapReduce, and Deep Learning applications can leverage
ChronoLog as their storage back-end.

REFERENCES

[1] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data, bigger
digital shadows, and biggest growth in the far east,” 2012.

[2] “The Digitization of the World From Edge to Core,”
https://www.seagate.com/files/www-content/our-story/trends/files/idc-
seagate-dataage-whitepaper.pdf, Accessed: 2020-1-18.

[3] C. Boja, A. POCOVNICU, and L. BATAGAN, “Distributed parallel
architecture for big data[j],” Informatica Economica, vol. 16, pp. 116–
127, 01 2012.

[4] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Salsa:
Analyzing logs as state machines.” WASL, vol. 8, pp. 6–6, 2008.

[5] A. Rabkin and R. Katz, “Chukwa: A system for reliable large-scale log
collection,” in Proceedings of LISA10: 24th Large Installation System
Administration Conference, 2010, p. 163.

[6] “Scribe: Transporting petabytes per hour via a distributed, buffered
queueing system,” https://engineering.fb.com/data-infrastructure/scribe/,
Accessed: 2020-1-19.

[7] F. Nawab, V. Arora, D. Agrawal, and A. El Abbadi, “Chariots: A
scalable shared log for data management in multi-datacenter cloud
environments.” in EDBT, 2015, pp. 13–24.

[8] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A comprehen-
sive study of convergent and commutative replicated data types,” 2011.

[9] P. A. Bernstein, C. W. Reid, and S. Das, “Hyder-a transactional record
manager for shared flash.” in CIDR, vol. 11, 2011, pp. 9–20.

[10] A. K. Goel, J. Pound, N. Auch, P. Bumbulis, S. MacLean, F. Färber,
F. Gropengiesser, C. Mathis, T. Bodner, and W. Lehner, “Towards
scalable real-time analytics: An architecture for scale-out of olxp work-
loads,” Proceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1716–
1727, 2015.

[11] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran,
M. Wei, J. D. Davis, S. Rao, T. Zou, and A. Zuck, “Tango: Distributed
data structures over a shared log,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, 2013, pp. 325–340.

[12] M. Bevilacqua-Linn, M. Byron, P. Cline, J. Moore, and S. Muir,
“Sirius: distributing and coordinating application reference data,” in
2014 USENIX Annual Technical Conference (ATC 14), 2014, pp. 293–
304.

[13] A. Thomson and D. J. Abadi, “Calvinfs: Consistent {WAN} replication
and scalable metadata management for distributed file systems,” in 13th
{USENIX} Conference on File and Storage Technologies ({FAST} 15),
2015, pp. 1–14.

[14] M. Wei, C. Rossbach, I. Abraham, U. Wieder, S. Swanson, D. Malkhi,
and A. Tai, “Silver: a scalable, distributed, multi-versioning, always
growing (ag) file system,” in 8th {USENIX} Workshop on Hot Topics
in Storage and File Systems (HotStorage 16), 2016.

[15] A. Hogan, A. Harth, J. Umrich, and S. Decker, “Towards a scalable
search and query engine for the web,” in Proceedings of the 16th
international conference on World Wide Web, 2007, pp. 1301–1302.

[16] Y. Lei, V. Uren, and E. Motta, “Semsearch: A search engine for the
semantic web,” in International conference on knowledge engineering
and knowledge management. Springer, 2006, pp. 238–245.

[17] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro et al., “Applied machine learning
at facebook: A datacenter infrastructure perspective,” in 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2018, pp. 620–629.

[18] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable graph
exploration on multicore processors,” in SC’10: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2010, pp. 1–11.

[19] F. Checconi, F. Petrini, J. Willcock, A. Lumsdaine, A. R. Choudhury,
and Y. Sabharwal, “Breaking the speed and scalability barriers for graph
exploration on distributed-memory machines,” in SC’12: Proceedings
of the International Conference on High Performance Computing, Net-
working, Storage and Analysis. IEEE, 2012, pp. 1–12.

[20] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price,
F. Putzolu, and I. Traiger, “The recovery manager of the system r
database manager,” ACM Computing Surveys (CSUR), vol. 13, no. 2,
pp. 223–242, 1981.

[21] F. Nawab, D. Agrawal, and A. El Abbadi, “Message futures: Fast
commitment of transactions in multi-datacenter environments.” in CIDR,
2013.

[22] R. Haskin, Y. Malachi, and G. Chan, “Recovery management in quick-
silver,” ACM Transactions on Computer Systems (TOCS), vol. 6, no. 1,
pp. 82–108, 1988.

[23] F. B. Schneider, “Implementing fault-tolerant services using the state ma-
chine approach: A tutorial,” ACM Computing Surveys (CSUR), vol. 22,
no. 4, pp. 299–319, 1990.

[24] A. H. Hormati, Y. Choi, M. Kudlur, R. Rabbah, T. Mudge, and
S. Mahlke, “Flextream: Adaptive compilation of streaming applications
for heterogeneous architectures,” in 2009 18th International Conference
on Parallel Architectures and Compilation Techniques. IEEE, 2009,
pp. 214–223.

[25] O.-C. Marcu, A. Costan, G. Antoniu, M. Pérez-Hernández, B. Nicolae,
R. Tudoran, and S. Bortoli, “Kera: Scalable data ingestion for stream
processing,” in 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2018, pp. 1480–1485.

[26] M. H. Iqbal and T. R. Soomro, “Big data analysis: Apache storm
perspective,” International journal of computer trends and technology,
vol. 19, no. 1, pp. 9–14, 2015.

[27] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-
baugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng et al., “Benchmarking
streaming computation engines: Storm, flink and spark streaming,” in
2016 IEEE international parallel and distributed processing symposium
workshops (IPDPSW). IEEE, 2016, pp. 1789–1792.

[28] M. Ji, A. C. Veitch, J. Wilkes et al., “Seneca: remote mirroring done
write.” in USENIX Annual Technical Conference, General Track, 2003,
pp. 253–268.

[29] L. Lamport, D. Malkhi, and L. Zhou, “Vertical paxos and primary-
backup replication,” in Proceedings of the 28th ACM symposium on
Principles of distributed computing, 2009, pp. 312–313.

[30] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-
M. Leon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Providing
scalable, highly available storage for interactive services,” 2011.

[31] N. H. Chan, Time series: applications to finance. John Wiley & Sons,
2004, vol. 487.

[32] R. S. Tsay, Analysis of financial time series. John wiley & sons, 2005,
vol. 543.

[33] C. P. Kolovson and M. Stonebraker, “Segment indexes: Dynamic in-
dexing techniques for multi-dimensional interval data,” ACM SIGMOD
Record, vol. 20, no. 2, pp. 138–147, 1991.

[34] A. Berson and S. J. Smith, Data warehousing, data mining, and OLAP.
McGraw-Hill, Inc., 1997.

[35] P. Jonsson and L. Eklundh, “Seasonality extraction by function fitting to
time-series of satellite sensor data,” IEEE transactions on Geoscience
and Remote Sensing, vol. 40, no. 8, pp. 1824–1832, 2002.

[36] S. Newman, Building microservices: designing fine-grained systems. ”
O’Reilly Media, Inc.”, 2015.

[37] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row,” in Present and ulterior software engineering. Springer, 2017, pp.
195–216.

[38] J. Bhimani, J. Yang, Z. Yang, N. Mi, Q. Xu, M. Awasthi, R. Pan-
durangan, and V. Balakrishnan, “Understanding performance of i/o
intensive containerized applications for nvme ssds,” in 2016 IEEE 35th
International Performance Computing and Communications Conference
(IPCCC). IEEE, 2016, pp. 1–8.

[39] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, 2011, pp. 1–7,
http://pages.cs.wisc.edu/ akella/CS744/F17/838-CloudPapers/Kafka.pdf.

[40] F. P. Junqueira, I. Kelly, and B. Reed, “Durability with bookkeeper,”
ACM SIGOPS Operating Systems Review, vol. 47, no. 1, pp. 9–15, 2013.

[41] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobbler, M. Wei,
and J. D. Davis, “{CORFU}: A shared log design for flash clusters,”
in Presented as part of the 9th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 12), 2012, pp. 1–14.

[42] P. Matri, P. Carns, R. Ross, A. Costan, M. S. Pérez, and G. Antoniu,
“Slog: Large-scale logging middleware for hpc and big data conver-
gence,” in 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2018, pp. 1507–1512.

[43] N. Watkins, “ZLog: a distributed shared-log on Ceph,”
https://nwat.xyz/blog/2014/10/26/zlog-a-distributed-shared-log-on-
ceph/, 2014, Accessed: 2020-1-28.

[44] Y. Liu, J. Peng, and Z. Yu, “Big data platform architecture under the
background of financial technology: In the insurance industry as an

example,” in Proceedings of the 2018 International Conference on Big
Data Engineering and Technology, 2018, pp. 31–35.

[45] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet of Things journal, vol. 1, no. 1,
pp. 22–32, 2014.

[46] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.

[47] “The Array of things (AoT),” https://www.anl.gov/mcs/array-of-things,
2018, Argonne National Lab, University of Chicago, Accessed: 2020-
1-28.

[48] K. Su, J. Li, and H. Fu, “Smart city and the applications,” in 2011
international conference on electronics, communications and control
(ICECC). IEEE, 2011, pp. 1028–1031.

[49] B. Xu, L. Da Xu, H. Cai, C. Xie, J. Hu, and F. Bu, “Ubiquitous
data accessing method in iot-based information system for emergency
medical services,” IEEE Transactions on Industrial informatics, vol. 10,
no. 2, pp. 1578–1586, 2014.

[50] C. L. Borgman, J. C. Wallis, M. S. Mayernik, and A. Pepe, “Drowning
in data: digital library architecture to support scientific use of embed-
ded sensor networks,” in Proceedings of the 7th ACM/IEEE-CS joint
conference on Digital libraries, 2007, pp. 269–277.

[51] C. Wu, R. Tobar, K. Vinsen, A. Wicenec, D. Pallot, B. Lao, R. Wang,
T. An, M. Boulton, I. Cooper et al., “Daliuge: A graph execution
framework for harnessing the astronomical data deluge,” Astronomy and
computing, vol. 20, pp. 1–15, 2017.

[52] N. Conway, P. Alvaro, E. Andrews, and J. M. Hellerstein, “Edelweiss:
Automatic storage reclamation for distributed programming,” Proceed-
ings of the VLDB Endowment, vol. 7, no. 6, pp. 481–492, 2014.

[53] F. Nawab, V. Arora, D. Agrawal, and A. El Abbadi, “Minimizing commit
latency of transactions in geo-replicated data stores,” in Proceedings of
the 2015 ACM SIGMOD International Conference on Management of
Data, 2015, pp. 1279–1294.

[54] S. Patterson, A. J. Elmore, F. Nawab, D. Agrawal, and A. E. Abbadi,
“Serializability, not serial: Concurrency control and availability in multi-
datacenter datastores,” arXiv preprint arXiv:1208.0270, 2012.

[55] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C. Ooi, “Logbase:
a scalable log-structured database system in the cloud,” arXiv preprint
arXiv:1207.0140, 2012.

[56] J. Lockerman, J. M. Faleiro, J. Kim, S. Sankaran, D. J. Abadi, J. Aspnes,
S. Sen, and M. Balakrishnan, “The fuzzylog: A partially ordered shared
log,” in 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18), 2018, pp. 357–372.

[57] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi,
“Calvin: fast distributed transactions for partitioned database systems,”
in Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, 2012, pp. 1–12.

[58] M. I. Seltzer, “Transaction support in a log-structured file system,” in
Proceedings of IEEE 9th International Conference on Data Engineering,
April 1993, pp. 503–510.

[59] S. Guo, R. Dhamankar, and L. Stewart, “Distributedlog: A high per-
formance replicated log service,” in 2017 IEEE 33rd International
Conference on Data Engineering (ICDE). IEEE, 2017, pp. 1183–1194.

[60] E. Renart, D. Balouek-Thomert, and M. Parashar, “Pulsar: Enabling
dynamic data-driven iot applications,” in 2017 IEEE 2nd International
Workshops on Foundations and Applications of Self* Systems (FAS* W).
IEEE, 2017, pp. 357–359.

[61] D. Malkhi, M. Balakrishnan, J. D. Davis, V. Prabhakaran, and T. Wob-
ber, “From paxos to corfu: a flash-speed shared log,” ACM SIGOPS
Operating Systems Review, vol. 46, no. 1, pp. 47–51, 2012.

[62] M. Wei, J. D. Davis, T. Wobber, M. Balakrishnan, and D. Malkhi,
“Beyond block i/o: implementing a distributed shared log in hardware,”
in Proceedings of the 6th International Systems and Storage Conference,
2013, pp. 1–11.

[63] M. Wei, A. Tai, C. J. Rossbach, I. Abraham, M. Munshed, M. Dhawan,
J. Stabile, U. Wieder, S. Fritchie, S. Swanson et al., “vcorfu: A cloud-
scale object store on a shared log,” in 14th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 17), 2017, pp.
35–49.

[64] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness
condition for concurrent objects,” ACM Trans. Program. Lang.
Syst., vol. 12, no. 3, p. 463492, Jul. 1990. [Online]. Available:
https://doi.org/10.1145/78969.78972

[65] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner:
Googles globally distributed database,” ACM Transactions on Computer
Systems (TOCS), vol. 31, no. 3, pp. 1–22, 2013.

[66] A. Kougkas, H. Devarajan, and X.-H. Sun, “Hermes: A heterogeneous-
aware multi-tiered distributed i/o buffering system,” in Proceedings of
the 27th International Symposium on High-Performance Parallel and
Distributed Computing, 2018, pp. 7–8.

[67] S. W. Fong, C. M. Neumann, and H.-S. P. Wong, “Phase-change mem-
orytowards a storage-class memory,” IEEE Transactions on Electron
Devices, vol. 64, no. 11, pp. 4374–4385, 2017.

[68] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and
R. S. Shenoy, “Overview of candidate device technologies for storage-
class memory,” IBM Journal of Research and Development, vol. 52, no.
4.5, pp. 449–464, 2008.

[69] Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz,
A. Shayesteh, and V. Balakrishnan, “Performance analysis of nvme ssds
and their implication on real world databases,” in Proceedings of the 8th
ACM International Systems and Storage Conference, 2015, pp. 1–11.

[70] G. Bronevetsky and A. Moody, “Scalable i/o systems via node-local
storage: Approaching 1 tb/sec file i/o,” Lawrence Livermore National
Laboratory, Livermore, CA, USA, Tech. Rep. TR-JLPC-09-01, 2009.

[71] A. Ovsyannikov, M. Romanus, B. Van Straalen, G. H. Weber, and
D. Trebotich, “Scientific workflows at datawarp-speed: accelerated data-
intensive science using nersc’s burst buffer,” in 2016 1st Joint Interna-
tional Workshop on Parallel Data Storage and data Intensive Scalable
Computing Systems (PDSW-DISCS). IEEE, 2016, pp. 1–6.

[72] A. Kougkas, M. Dorier, R. Latham, R. Ross, and X.-H. Sun, “Leveraging
burst buffer coordination to prevent i/o interference,” in 2016 IEEE 12th
International Conference on e-Science (e-Science). IEEE, 2016, pp.
371–380.

[73] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng,
“Datastager: scalable data staging services for petascale applications,”
Cluster Computing, vol. 13, no. 3, pp. 277–290, 2010.

[74] J. W. Harris and H. Stöcker, Handbook of mathematics and computa-
tional science. Springer Science & Business Media, 1998.

[75] “Hermes Container Library: Distributed Data Structures,”
https://github.com/HDFGroup/hcl, Accessed: 2020-2-15.

[76] V. Verroios and H. Garcia-Molina, “Top-k entity resolution with adaptive
locality-sensitive hashing,” in 2019 IEEE 35th International Conference
on Data Engineering (ICDE). IEEE, 2019, pp. 1718–1721.

[77] T. Christiani, “Fast locality-sensitive hashing frameworks for approxi-
mate near neighbor search,” in International Conference on Similarity
Search and Applications. Springer, 2019, pp. 3–17.

[78] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems (TOCS), vol. 26, no. 2, pp. 1–26, 2008.

[79] “Computing resources at Scalable Computing Software Laboratory - The
Ares cluster,” http://www.cs.iit.edu/ scs/resources.html, 2020, Illinois
Tech, Accessed: 2020-2-12.

[80] “Bookkeeper Table Service,” https://github.com/apache/bookkeeper/,
Accessed: 2020-1-5.

[81] “CorfuDB: A cluster consistency platform,”
https://github.com/CorfuDB/CorfuDB, Accessed: 2020-1-5.

[82] “Time Series Benchmark Suite, a tool for comparing and evaluating
databases for time series data,” https://github.com/timescale/tsbs, Ac-
cessed: 2020-1-10.

