
LPM: A Systematic Methodology for Concurrent
Data Access Pattern Optimization from a

Matching Perspective
Yuhang Liu ,Member, IEEE and Xian-He Sun , Fellow, IEEE

Abstract—As applications become increasingly data intensive, conventional computing systems become increasingly inefficient due to

data access performance bottlenecks. While intensive efforts have been made in developing new memory technologies and in

designing special purpose machines, there is a lack of solutions for evaluating and utilizing recent hardware advancements to address

the memory-wall problem in a systematic way. In this study, we present the memory Layered Performance Matching (LPM)

methodology to provide a systematic approach for data access performance optimization. LPM uniquely presents and utilizes the data

access concurrency, in addition to data access locality, in a memory hierarchical system. The LPM methodology consists of models

and algorithms, and is supported with a series of analytic results for its correctness. The rationale of LPM is to reduce the overall data

access delay through the matching of data request rate and data supply rate at each layer of a memory hierarchy, with a balanced

consideration of data locality, data concurrency, and latency hiding of data flow. Extensive experimentations on both physical platforms

and software simulators confirm our theoretical findings, and they show that the LPM approach can be applied in diverse computing

platforms and can effectively guide performance optimization of memory systems.

Index Terms—Memory wall, memory stall time, efficiency, performance optimization, layered performance matching (LPM), memory

concurrency

Ç

1 INTRODUCTION

THE memory wall problem is a long-standing issue facing
the computing community.1 It is on the top of the 10ways

to waste time and efficiency of parallel computers [7]. The
term memory wall refers to the growing disparity of speed
between CPU andmemory outside the CPU chip [48]. During
the last two decades, processors have advanced from in-order
to out-of-order and from uni-core to multi-core; memory sys-
tems have advanced with many concurrency-oriented fea-
tures such as multi-port, multi-banked, pipelined and non-
blocking cache. Although these resources for concurrence are
abundant, they are usually not well utilized. Meanwhile,
memory-intensive applications have become increasingly
common in diverse fields such as bioinformatics, computer
aided designs, and complex social media interactions [15].

Compared with twenty years ago, the landscape of comput-
ing has changed, but the notorious memory wall still exists
and “thicker”. Memory stall time is the time CPU stalled
waiting for data. Memory stall time often contribute 50 to
70 percent of the total execution time for many applications
[20], [21], [25], [33]. Memory systems have become the most
prominent performance bottleneck of computing systems.

Modernmemory systems are equippedwithmany innova-
tions developed over the years, where improving locality and
concurrency are the two basic approaches. Hierarchical mem-
ory is a standard design of modern computers to ease the
memory wall problem. The idea behind memory hierarchy is
to explore locality. That is, data previously accessed may be
used again soon (temporal locality), and data near the previ-
ously accessed data are likely to be used next (spatial locality).
The locality of hierarchical memory systems has been well
studied [17], [18]. However, a modern memory system is not
only supported bymemory hierarchy but also by various data
access concurrency [16]. The overall performance of amemory
system is a combined effort of memory hierarchy and concur-
rency, where the effectiveness of concurrency also influence
latency hiding. Understanding the combined impact of local-
ity and concurrency of memory accesses is a necessity to fully
utilize the potential of amodernmemory system.

In this study, we use two newly proposed performance
models, Concurrent Average Memory Access Time (C-
AMAT) [37] and Accesses Per memory active Cycle (APC)
[36], [46] to capture the combined impact of locality and con-
currency. The APCmodel reflects the quality of service (QoS)
of modern memory systems. That is, due to concurrency, the

1. This paper is an extensively extended version of the authors’ ICPP
paper [31], with addition on formal presentation and evaluation of the
time model, QoS goal, analytical definition, minimum requirement,
measurement method, new experiments and open issues of LPM.

� Y. Liu is with the State Key Laboratory of Computer Architecture, Institute
of Computing Technology, Chinese Academy of Sciences, No.6 Kexueyuan
South Road Zhongguancun, Haidian District, Beijing 100190, China.
E-mail: liuyuhang@ict.ac.cn.

� X.-H. Sun is with the Department of Computer Science, Illinois Institute
of Technology, Chicago, IL 60616. E-mail: sun@iit.edu.

Manuscript received 24 Nov. 2018; revised 9 Apr. 2019; accepted 10 Apr.
2019. Date of publication 23 Apr. 2019; date of current version 11 Oct. 2019.
(Corresponding author: Yuhang Liu.)
Recommended for acceptance by W. Yu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2019.2912573

2478 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

1045-9219� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5784-3581
https://orcid.org/0000-0002-5784-3581
https://orcid.org/0000-0002-5784-3581
https://orcid.org/0000-0002-5784-3581
https://orcid.org/0000-0002-5784-3581
https://orcid.org/0000-0002-1093-0792
https://orcid.org/0000-0002-1093-0792
https://orcid.org/0000-0002-1093-0792
https://orcid.org/0000-0002-1093-0792
https://orcid.org/0000-0002-1093-0792
mailto:
mailto:

ultimate measurement is no longer the cache hit latency or
cache hit rate, but how many accesses are finished in each
memory active cycle. The C-AMAT model provides an ana-
lytical tool to understand the APCmeasurement. C-AMAT is
an extension of the conventionalAMAT [48]model by includ-
ingmemory concurrency into averagememory access time. It
can be expressed recursively to identify the bottleneck of a
memory hierarchy andwill be used as themajor performance
measurement in this study.

Designing a layered performance matching memory sys-
tem is the goal of many computer architects [2], [3], [9], [10],
[49]. While the concept of memory Layered Performance
Matching (LPM)was presented in 2015 [31], the potential and
practical implementation of the LPM method were not fully
understood.

In this study, from a request-supply perspective, a quanta-
titive definition of LPM is first presented, based on which the
necessity and feasibility of LPM are formally studied. The
necessity is on the required matching degree of supply over
request, while the feasibility concerns how to achieve the
requiredmatching degree.

Onemajor contribution of concurrent data access for reduc-
ing memory stall time is latency-hiding. Specifically, latency-
hiding can be achieved via overlapping, which includes the
overlapping of hit versusmiss andmiss versusmiss in concur-
rent data accesses. When upper layer can hide more latency,
the matching requirement for lower layer is reduced. Many
latency-hiding possibilities with diverse technologies are
available in modern computing systems. In our study, we
explicitly quantify the effectiveness of latency-hiding due to
data access concurrency, and thenwe present the requirement
of LPMunder different degrees of latency-hiding.

Our study of LPM is based on the following four observa-
tions. First, each time a word is requested, the word is loaded
in by a cache block (line) [30]. Therefore, if the cache block is
reused multiple times, one physical data movement can sup-
port multiple data requests. Consequently, the supply rate
can be increasedwith the improvement of locality.

Second, memory concurrency can mask data access delay.
The hit-hit (all the data accesses are cache hits, and is termed
as pure hits), hit-miss (or miss-hit, that is, at least a cache hit
exists with cache misses), andmiss-miss (all the data accesses
are cache misses, and is termed as pure misses) [37] opera-
tions all have overlapping, thus all can mask data access
delay. The hit-hit scenario increases data access bandwidth.
In the hit-miss scenario, the cache hit provide data for proces-
sor to keep the pipeline go ahead and therefore masks the
penalty of the cache miss. A miss-miss overlapping also will
reduce data access delay, since two overlappingmisses partly
or completely share their delay.

Third, programs often have periodic behaviors, and their
data access patterns often are predictable [32]. With a set of
lightweight performance counters, we can deploy adaptive
optimization techniques to meet the data requirements of an
application.

Fourth, application-specific integrated circuit, reconfig-
urable hardware [47] and heterogeneous memory sys-
tems [15] have become prevalent and continue progress.
These technologies provide the means to achieve LPM and,
in the meantime, can utilize LPM to realize their full poten-
tial in reducing memory stall time.

The LPM methodology proposed in this study facilitates
both hardware and algorithms to simultaneously consider
data locality and concurrency, provides a systematic and
automatic way to match data request to supply, and can
reduce the memory stall time to achieve user-defined perfor-
mance targets effectively.

We have made the following contributions in this study:

(1) Four theorems (Theorems 1, 2, 3 and 4) are derived
to quantify the latency-hiding effect in modern mem-
ory system. With the quantifications, data access
latency-hiding can be accurately measured. We have
measured that up to 85.1 percent memory access
latency can be hidden on commercial processors by
cache hits, showing the importance of data access
concurrence in reducing memory stall time.

(2) Three theorems (Theorems 5, 6 and 7) are derived to
present the performance models and the associated
measurements of LPM. With the theoretical results,
we can understand what is an LPM-oriented design,
what factors impact LPM, and how to optimize.

(3) Two theorems (Theorems 8 and 9) are derived to for-
mally present the requirements of LPM. Knowing
the requirements will facilitate fast optimization and
avoid useless exploration and testing.

(4) The parameters of LPM can be measured online via
performance counters of commercial processors.
Compared to miss ratio (MR), LPM is more effective
for performance tuning.

(5) Three case studies on either a physical platform or a
simulator are conducted. Experiment results demon-
strate that the LPM approach can be applied through
codemodification, reconfiguring system hardware, or
scheduling on a heterogeneous platform. With only a
few lines of code modification, the performance of the
mcf benchmark that is a well-known cache buster has
been improved by 13.8 percent. With a reconfigurable
hardware, the LPM algorithm finds a perfect match
for the bewaves benchmark in five steps rather than
exhaust searching. With LPM, a semi-optimal sched-
uling is achieved in polynomial time in a heteroge-
neous environment, which is impossible without
LPM. These case studies confirm the practical value of
the proposed theoretical results.

The remainder of this paper is organized as follows.
Section 2 introduces the backgrounds. With two theorems,
Section 3 proves that the time model is recursive and quanti-
fies the latency-hiding effect of modern processors. Section 4
formalizes the goal of LPM. Using three theorems, Section 5
presents the definition and quantification of LPM. Section 6
proposes the requirement of LPM, for which two theorems
are presented. Section 7 presents the algorithm of LPM.
Section 8 presents a case study on commercial processors and
two case studies on simulators. Section 9 reviews related
works. Finally, Section 10 concludes this study and discusses
potential future work.

2 BACKGROUNDS

Memory systems can be characterized from space or time per-
spectives. From the space perspective, hierarchical structures

LIU AND SUN: LPM: A SYSTEMATIC METHODOLOGY FOR CONCURRENT DATA ACCESS PATTERN OPTIMIZATION FROM A... 2479

are developed to explore the data access locality. From the
time perspective, in each clock cycle, there could be many
accesses being issued or returned in each layer of a memory
system, and these concurrent data accesses can increase data
access bandwidth and hide data access delay. Therefore,
memory stall time is the combined result of locality and
concurrency.

The performance optimization of modern memory system
needs a comprehensive and accurate model integrating the
effects of both locality and concurrency. Note that, sixteen
individual optimizationmethods are summarized in [22]. For
instances, loop interchange and code vectorization can
increase data access locality; non-blocking and multibank
cache can increase data access concurrency. These techniques
are useful on different occasions. However, these methods
are entangled and sometimes even conflict with each other.
How to use these techniques effectively to reach a global opti-
mization state is still elusive.

There are four important measurements related to mem-
ory performance, the longest access time, the Average Mem-
ory Access Time (AMAT), the Concurrent Average Memory
Access Time, and the memory stall time. Fig. 1 shows five
individual memory accesses, where the longest one takes six
cycles. However, not all the six cycles are memory stall time.
Let n be the total number ofmemory layers. The conventional
AMAT formulation of the ith (i = 1, 2, ..., n-1) memory layer is
shown in Eq. (1) [48], where H is the hit time of memory
accesses, MR is the miss rate and AMP is the average miss
penalty. AMP is the sum of all miss access latencies divided
by the total number ofmisses.

AMATi ¼ Hi þMRi �AMPi: (1)

The average miss penalty of one layer is the average
access time of its lower layer, that is, Eq. (2) holds.

AMPi ¼ AMATiþ1: (2)

Eqs. (3) can be derived by Eqs. (1) and (2), showing that
AMAT is recursive.

AMATi ¼ Hi þMRi �AMATiþ1: (3)

In Fig. 1, each access contains three cycles for cache hit
operations. If it is a cache miss, additional miss penalty
cycles will occur, depending where the miss ends. Access 1,
2, and 5 are cache hits; Access 3 and 4 are cache misses.
Access 3 has a 3-cycle miss penalty; Access 4 has only a

1-cycle miss penalty. By Eq. (1), AMAT is 3 + 0.4 � 2 or 3.8
cycles per access. Compared to the longest access time,
AMAT is 36.6 percent smaller.

Although locality has been considered, AMAT does not
consider the concurrency of memory accesses. To cover the
concurrent access properties of modernmemory systems, the
analytical expression of C-AMAT model is shown in Eq. (4)
[37]. The first parameter H is the same as that in AMAT; the
second parameter CH represents hit concurrency; the third
parameter CM represents the pure miss concurrency while
the conventional miss concurrency is referred to as Cm. CH

can be provided by caches with multi-port, multi-bank or/
and pipelined structures. CM can be provided by non-
blocking cache structures. In addition, out-of-order execu-
tion, multi-issue pipeline, multithreading, chip multiproces-
sor (CMP), can all increase CH and CM . The pure miss rate
pMR is the number of pure misses over the total number of
accesses, which is different from the conventional miss rate.
A pure miss here means that a miss contains at least onemiss
cycle that does not have any hit access activity [37]. pAMP is
the average number of pure miss cycles per pure miss access.
The notation abbreviations are summarized in Table 1.

C-AMATi ¼ Hi

CHi

þ pMRi � pAMPi

CMi

ði ¼ 1; 2; ::; n:Þ: (4)

In Fig. 1, when considering the access concurrency, only
Access 3 contains two pure miss cycles. Though Access 4 has
one miss cycle, this cycle is not a pure miss cycle because it
overlaps with the hit cycles of Access 5. Therefore according
to the definition of concurrent pure miss rate, the (pure) miss
rate of the five accesses is 0.2, instead of 0.4 as that of the con-
ventional non-concurrent version.Whenmiss cycles are over-
lapping with hit accesses, the processor will not stall; the
processor can continue processing with the hit accesses.
According to Eq. (4), C-AMAT is eight cycles out of 5 accesses
or 1.6 cycles per access. Compared to AMAT, C-AMAT is
57.9 percent smaller. The difference between AMAT and C-
AMAT is due to the contribution of concurrency of memory

Fig. 1. Example of concurrent data accesses and their overlapping
detail.

TABLE 1
Symbol Abbreviations

Notation Meaning

MST Memory Stall Time
MSE Memory System Efficiency
AMAT Average Memory Access Time
C-AMAT Concurrent AMAT
APC Accesses Per (memory active) Cycle
H Hit time
MR conventional Miss Rate
pMR pure Miss Rate
AMP conventional Average Miss Penalty
pAMP pure Average Miss Penalty
CH Hit Concurrency
CM pure Miss Concurrency
Cm conventional miss Concurrency
m1 miss cycle proportion
k1 the impact indicator of pure cache misses
fmem memory access frequency
CPU time the total application running time
IC Instruction Count
cycle-time the length of each clock cycle

2480 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

access. Fig. 2 shows the difference among the longest access
time, AMAT andC-AMAT.

A key contribution of C-AMAT is that it provides a unified
formulation to capture the joint performance impact of local-
ity and concurrency. Performance analysis and optimization
can be conducted with the five parameters of C-AMAT.
Access Per memory active Cycle is a newly proposed mem-
ory performance measurement to consider memory concur-
rency[36], [46]. The relation between C-AMAT and APC is
given by Eq. (5) [36], [46]. The measurement of C-AMAT can
be obtained directly through APC as shown in Eq. (5), where
n is the total number ofmemory layers.

C-AMATi ¼ 1

APCi
ði ¼ 1; 2; 3; . . . ; n:Þ: (5)

C-AMAT contains AMAT as a special case where memory
concurrency does not exist. When memory concurrency does
not exist, CH = 1 and CM = 1, pAMP = AMP, pMR = MR,
therefore, C-AMAT = AMAT. C-AMAT provides an
approach to evaluate and optimize the five performance
parameters, individually or in combination. Note that C-
AMAT can be used in multi-core environments, since each
core can measure their individual C-AMAT separately. Due
to thesemerits, we choose to use C-AMAT in the LPM study.

In an in-order processor, when a cache miss occurs, the
processor waits for the fetched data before continuing, stall-
ing processor pipeline for several cycles. The stalled cycles
per instruction due to memory access are often referred to
as memory stall time (MST). Eq. (6) is the conventional MST
formula based on AMAT for in-order processor [48]. Here,
fmem is the portion of the instructions that access memory.

MST ðin-orderÞ ¼ fmem �AMAT1: (6)

Unfortunately, Eq. (6) is no longer true for out-of-order
(OoO) processors, because it does not reflect the concurrency
in the modern complex memory systems. To address this
issue, Eq. (7) presents the memory stall time expression of
out-of-order processors, that is, the relationship between the
memory stall time and the concurrency-aware data access
time C-AMAT [27]. Here, overlapRatioc-m is the ratio of the
computing and memory access overlapping time over the
total memory access time. In modern processors, simu-
ltaneous multi-threading, out-of-order execution, and non-
blocking cache contribute overlapRatioc-m by enabling
computation to continue while memory access is being

conducted. The expression of overlapRatioc-m will be pro-
vided in Section 3.

MSTðOoOÞ ¼ fmem � C-AMAT1 � ð1� overlapRatioc-mÞ:
(7)

Eq. (6) is a special case of Eq. (7), because in-order proces-
sor is a special case of out-of-order processor when over-
lapRatioc-m is zero and concurrency does not exist (i.e., C-
AMAT=AMAT). In other words, Eq. (7) holds for any type
of processors, regardless memory concurrency is involved
or not. Therefore, in this study, we take Eq. (7) rather than
Eq. (6) as the basic performance formula.

3 THE TIME MODEL OF LPM

An accurate time model is of great importance for efficient
performance optimization. The time model of LPM should
include the effect of concurrency and locality, especially the
hiding influence among cache hits and misses, and the over-
lapping impact between computing and data access.

Theorem 1 shows the relation between C-AMAT and
AMAT. Therefore, C-AMAT concerns the effects of both
locality and concurrency.

Theorem 1 (Relation between C-AMAT and AMAT). C-
AMAT and AMAT have the following relationship, where C is
the average data access concurrency.

C-AMAT ¼ C�1 �AMAT: (8)

Proof. Assume the number of data accesses is N and the
number of memory active cycles isM.

Each data access has its own length of duration time;
thus each data access is corresponding to a time line (See
Fig. 1 for instance). We have two different methods to
count the total length of the time line of each data access.
One method is to count access by access, and the result is
N �AMAT . The other method is to count cycle by cycle,
and the result is

PM
i¼1 Ci.

The results of the two counting methods are same, that
is, the sum of the concurrency Ci of each memory active
cycle is the same as the sum of the sequential access cycles
of each of theN data accesses. Therefore, we have

XM
i¼1

Ci ¼ N �AMAT: (9)

Recall Eq. (5), we have

C-AMAT ¼ M

N
: (10)

Combining Eqs. (9) and (10), we get

XM
i¼1

Ci ¼ M

C-AMAT
�AMAT: (11)

That is,

XM
i¼1

Ci � 1

M
¼ AMAT

C-AMAT
: (12)

Fig. 2. The longest access latency, AMAT, and C-AMAT of Fig. 1.

LIU AND SUN: LPM: A SYSTEMATIC METHODOLOGY FOR CONCURRENT DATA ACCESS PATTERN OPTIMIZATION FROM A... 2481

Recall the definition of memory concurrency, C, we
have

C ¼
XM
i¼1

Ci � 1

M
: (13)

Combining Eqs. (12) and (13), we conclude the
theorem. tu
It is well known that the widely used average memory

access timemodel, AMAT, can be extended recursively to the
next layer of the memory hierarchy [22]. It is important to
know whether this recursiveness is also true for C-AMAT.
Theorem 2 shows the recursive relationships between C-
AMAT1 and C-AMAT2. Therefore, C-AMAT is an effective
cross-hierarchymemorymodel.

Theorem 2 (Recurrence Relation of C-AMAT). Assume
C-AMAT1 is the L1 C-AMAT and C-AMAT2 is the L2 C-
AMAT. Eq. (14) gives the recurrence relation of C-AMAT.

C-AMAT1 ¼ H1

CH1

þMR1 � k1 � C-AMAT2; (14)

where

C-AMAT1 ¼ H1

CH1

þ pMR1 � pAMP1

CM1

C-AMAT2 ¼ H2

CH2

þ pMR2 � pAMP2

CM2

k1 ¼ pMR1

MR1
� pAMP1

AMP1
� Cm1

CM1

: (15)

Proof. According to Theorem 1, for the second memory
layer, we have

C-AMAT2 ¼ AMAT2

Cm1

; (16)

and recall Eq. (2),

AMAT2 ¼ AMP1; (17)

we then have

C-AMAT2 ¼ AMP1

Cm1

: (18)

Combining Eqs. (15) and (18), we obtain

MR1 � k1 � C-AMAT2 ¼ pMR� pAMP1

CM1

: (19)

We then conclude the theorem. tu

By following the same arguments for Eq. (14), C-AMAT
can be further extended to the next layer of the memory
hierarchy as well. Generally, for memory layer i ¼ 1; 2; . . . ;
n� 1, we have Eq. (20).

C-AMATi ¼ Hi

Ci
þMRi � ki � C-AMATðiþ1Þ: (20)

By Theorem 2, Eq. (14) illustrates useful properties of con-
current data accesses: the impact of C-AMAT2 on C-AMAT1

can be mitigated by MR1 and k1, where MR1 indicates the
locality contribution and k1 quantifies the hit-miss masking
effect. This potential of penalty reduction is the theoretical
foundation and motivation of the layered matching mecha-
nism proposed in this research. The parameter k1 is measur-
able and has a physical representation. A part of cache miss
penalty can be masked by cache hit activities. The parameter
k1 indicates these contributions.

From Eq. (14), we can identify which layer incurs the
memory stall time. Taking the typical values of the parame-
ters for modern processors, H1 = 1, CH1

= 4, MR = 1 percent,
k1= 3/4. Let us consider two cases. If C-AMAT2 = 100, then
by Eq. (14), C-AMAT1 = 1. If C-AMAT2 = 20, then by
Eq. (14), C-AMAT1 = 0.4. It is seen that the 5-fold difference
of C-AMAT2 values in the two cases only bring in 2.5-fold
difference to C-AMAT1. That is, there exists a latency-
hiding effect in the memory system. The latency-hiding
effect is contributed by two factors, MR1 and k1, where MR1

is the contribution of locality and k1 is the result of hit-miss
masking effect.

Theorem 3 (Hiding influence among cache hits and
misses). The value of k1 defined in Eq. (15) equals the ratio of
the amount of pure miss cycles over that of conventional miss
cycles, and its value is less than or equal to 1.

Proof. As shown in Table 2, we assume the number of pure
miss cycles is d, and the cycle id is p1; p2; . . . ; pd, res-
pectively. Meanwhile, as shown in Table 3, we assume
the number of hit/miss mixed (i.e., miss but not pure
miss) cycles is e, and the cycle id is h1; h2; . . . ; he, res-
pectively. By definition, conventional miss cycles include
the cycles of the above two cases, and therefore the con-
ventional miss cycle id is h1; h2; . . . ; he, p1; p2; . . . ; pd, resp-
ectively. That is, the number of conventional miss cycles
is ðeþ dÞ.

Let us assume the number of pure misses and conven-
tional misses are b and a, respectively. By Tables 2 and 3,
we can calculate MR, pMR, Cm, CM , AMP, and pAMP,
respectively. The number of accesses is N . Therefore,
MR=a=N , pMR=b=N .

Cm ¼ 1

eþ d

Xe
i¼1

Cim þ
Xd
i¼1

Cip

 !
(21)

TABLE 2
Concurrency Degree of Each Pure Miss Cycle

Clock cycle id p1 p2 ... pd
Pure miss concurrency degree C1p C2p ... Cdp

TABLE 3
Concurrency Degree of Each Hit/Miss Mixed Cycle

Clock cycle id h1 h2 ... he

Hit concurrency degree C1h C2h ... Ckh

Miss concurrency degree C1m C2m ... Ckm

2482 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

CM ¼ 1

d
ð
Xd
i¼1

CipÞ (22)

AMP ¼ 1

a
ð
Xe
i¼1

Cim þ
Xd
i¼1

CipÞ (23)

pAMP ¼ 1

b
ð
Xd
i¼1

CipÞ: (24)

Combining the above equations, we get

k1 ¼ pMR1

MR1
� pAMP1

AMP1
� Cm1

CM1

¼ d

eþ d
: (25)

As e � 0, we can conclude that k1 � 1 is always true. tu
According to Eq. (14) in Theorem 2, the smaller the k1

is, the smaller the C-AMAT1 is, thus k1 is a new latency
reducer presented in this study.

Due to Theorem 2, the measurable parameter k1 has a
physical representation, which reflects the difference
between pure miss and conventional miss. Note that a part of
the conventional miss penalty is masked by hit activities, and
the parameter k1 indicates these contributions. In this mean-
ing, k1 quantifies the latency-hiding effect in the first memory
layer perspective. We have proved that k1 � 1 is always true.
Taking Fig. 1 for example, k1 ¼ 2=3. The impact of C-AMAT2

toward the final C-AMAT1 can be reduced by both MR1

and k1. In this meaning, k1 can be taken as a lever to reduce
C-AMAT1.

Theorem 4 (Overlapping impact between computing
execution time and data access time). Assume the ratio
of the amount of conventional miss cycles over that of memory
active cycles is m1. The following relation holds.

1� overlapRatioc-m ¼ m1 � k1: (26)

Proof. By definition, overlapRatioc-m is the ratio of the com-
puting and memory access overlapping time over the
total memory access time. Assume the amount of pure
miss cycles is d, the amount of conventional miss cycles is
ðeþ dÞ, and the number of pure hit cycles is c.

The computing and memory access overlapping time
includes two exclusive parts, i.e., pure hit cycles, miss
but not pure miss cycles, thus the overlapping time is
cþ e. The total access time, i.e., the number of memory
active cycles, is cþ dþ e. Therefore,

overlapRatioc-m ¼ cþ e

cþ dþ e
: (27)

By definition,

m1 ¼
eþ d

cþ dþ e
: (28)

By Eq. (25), we have

k1 ¼ d

eþ d
: (29)

Then we have Eq. (26). tu
In Fig. 1, there exist 8 memory active cycles, 5 pure hit

cycles, 3 conventionalmiss cycles, and only 2 puremiss cycles
which incurmemory stall, so in 6 cycles processor computing
can continue. The value of overlapRatioc-m is 6/8. The value
m1 equals 3/8. The k1 is 2/3. All the five instructions issue
memory access, so the fmem is 1. The MST (per instruction) is
only 2/5 cycles.

4 THE QOS GOAL OF LPM

The execution time of a computer processor consists of two
parts [22]: processor computing time and memory stall time.
Here the processor computing time is the time when the pro-
cessor is occupied executing the user program. Eq. (30) is the
classic formulation of the CPU-time in terms of these two
components of time [22].

CPU-time ¼ IC � CPIexe þMSTð Þ � cycle-time: (30)

Here, IC is the number of instructions, cycle-time is the
length of a clock cycle, and CPIexe is the processor computa-
tion cycles per instruction under perfect cache (i.e., no cache
miss occurs).

As shown in Eq. (31), when the ratio of MST over CPIexe is
less than a threshold, D%, we say the memory system is
highly efficient, where D is a parameter determined by the
user and is application dependent. We take the percentage
approach, because the impact of memory stall time is relative
to computing time. If MST is less than 1 percent of the com-
puting time, for instance, we can claim there is no noticeable
memorywall effect toward the overall performance.

MST

CPIexe
� D%: (31)

The goal of memory system performance optimization is
to make D% as small as possible, with a reasonable tuning
cost. We define Memory System Efficiency (MSE) as the
ratio of pure computing time over the sum of pure comput-
ing time plus memory stall time as shown by Eq. (32). When
memory stall time is zero, MSE is 100 percent; when D% is
close to zero, the value of MSE is close to 1 - D%. We can use
1 - D% to approximate MSE. For examples, when D% is 1
percent, the MSE is about 99 percent. When D% is 10 per-
cent, the MSE is about 90 percent.

MSE ¼ CPIexe
CPIexe þMST

� 1

1þ D%
� 1� D%: (32)

Before presenting the LPM algorithm to achieve high effi-
ciency, we first estimate its potential benefit. For many data-
intensive applications, memory stall time can be up to 90 per-
cent of the total application execution time [20], [21], [25], [33],
whereas pure computing time is only 10 percent. At that time,
MSE is only 10 percent, and MST is 9 times of the pure com-
puting time. Therefore, when the optimization goal of
“D% ¼ 10%” is achieved, MSE is improved from 10 to 90 per-
cent; when the optimization goal “D% ¼ 1%” is achieved,
MSE is improved from 10 to 99 percent. As shown in our case
studies, the “D% ¼ 10%” condition is reachable on reconfigur-
able architectureswhere a huge design space exists.

LIU AND SUN: LPM: A SYSTEMATIC METHODOLOGY FOR CONCURRENT DATA ACCESS PATTERN OPTIMIZATION FROM A... 2483

5 THE ANALYTICAL DEFINITION OF LPM

In this section, we quantify the effects ofmismatch, and there-
fore provide a systematic way of performance optimization.

To optimize the performance of a memory system, we
need to match the performance at each layer of a hierarchi-
cal memory system as closely as possible. Fig. 3 illustrates
the Layered Performance Matching model of a memory
hierarchy. For the sake of simplicity and brevity, L2 is taken
as the LLC in Fig. 3 and in this study. The extension to addi-
tional cache levels is straightforward.

Each memory layer (except the top layer and the bottom
layer) has data accesses at two sides, including the requests
issued from the upper layer and the supplies provided by
the lower layer. For example, the demand from computing
components is the request rate of ALU and FPU, while the
service is the supply rate of L1 cache.

The matching ratios in the LPM model are the ratios of
request rate and supply rate between any two memory
layers. Eqs. (33) and (34) are the definitions of the LPM
Ratios (LPMR) that are abbreviated as LPMR1 and LPMRi,
respectively.

LPMR1 ¼ Request rate from ALU&FPU

Supply rate by L1 cache
(33)

LPMRi ¼ Request rate from Li�1

Supply rate by Li
ði ¼ 2; . . . ; n:Þ:

(34)

Although supplies are activated by requests, the supply
rate by a lower layer can be greater than the request rate from
an upper layer, because one cache line may provide multiple
cache hits. In counting the LPM ratio, we differentiate demand
accesses and prefetches. When prefetching is used, the
requests of prefetches are not counted into the request rate of
a memory layer. Prefetchers are designed to fetch demanded
data in advance. If the prefetches are successful, the pre-
fetched data would be used as demanded data. Otherwise,
prefetchers generate data traffic without any benefit. As we
only concern useful work, prefetch requests are not counted
into the request rate in our C-AMAT andAPC calculations.

Theorem 5 (LPMR in terms of APC). The LPM Ratios can
be expressed as Eqs. (35) and (36), respectively, in terms of APC.

LPMR1 ¼ IPCexe � fmem

APC
1

(35)

LPMRi ¼
IPCexe � fmem �Qi�1

j¼1 MRj

APCi
ði ¼ 2; . . . ; n:Þ: (36)

Proof. The supply rates of different layers in the memory hier-
archy can be denoted by APC values of corresponding layers
[36], [46]. That is, APC supplied by L1, LLC, and main mem-
ory are referred to as APC1, APC2, and APC3, respectively.

IPCexe is the peak performance of a processor. IPCexe

multiplied with the memory access frequency equals the
memory access intensity perceived by the L1 cache.
IPCexe is the reciprocal of CPIexe. Therefore,

Request rate of ALU and FPU ¼ IPCexe � fmem:

(37)

The memory access intensity perceived by the Li is the
request rates from the Li�1, which equals the memory
intensity filtered by Li�1.

Request rate from Li ¼ IPCexe � fmem

�
Yi�1

j¼1

MRj ði ¼ 2; . . . ; nÞ: (38)

MRj here refers to the local miss rate of the jth cache.
Therefore, by Eqs. (33) and (34), Theorem 5 holds. tu

Theorem 6 (LPMR in terms of total value of C-AMAT). In
terms of C-AMAT, the matching degree of different memory layers,
measured by LPMRatios, can be expressed as Eqs. (39) and (40).

LPMR1 ¼ C-AMAT1 � fmem

CPIexe
(39)

LPMRi ¼
C-AMATi � fmem �Qi�1

j¼1 MRj

CPIexe
ði ¼ 2; . . . ; n:Þ: (40)

Proof. According to Eq. (5), the supply traffic in each mem-
ory layer can be transformed from APC to C-AMAT for
performance analysis and optimization. Note that CPIexe
is the reciprocal of IPCexe. Therefore, by Theorem 5, we
have Theorem 6. tu
It is important to notice that LPMRquantifies themismatch

degree in a memory layer. The significance of Theorem-6 is
that it links C-AMATwith LPMR. Therefore, the five parame-
ters of C-AMAT can be used to decrease C-AMAT and thus
the LPMR. Theorem-6 tells us that the C-AMAT values are
measured in individual layers of a memory hierarchy so that
the LPMoptimizations can be done in individual layers too.

Theorem 7 (LPMR in terms of analytical expression of
C-AMAT). The LPM Ratios can be expressed in terms of the
five parameters of C-AMAT as Eqs. (41) and (42).

LPMR1 ¼ H1

CH1

þ pMR1 � pAMP1

CM1

� �
� fmem

CPIexe
(41)

LPMRi ¼ ðHi

CHi

þ pMRi � pAMPi

CMi

Þ � fmem

CPIexe
�
Yi�1

j¼1

MRj

ði ¼ 2; . . . ; n:Þ:
(42)

Proof. Combining Theorem 6 and Eq. (4),we get Theorem 7.tu

Fig. 3. The request-reply LPM model (The memory hierarchy is seen
from the perspective of performance matching; note that the computing
components, ALU and FPU, are taken as L0.).

2484 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

As we have defined the LPM, we are now ready to study
the requirement for LPM to achieve an arbitrarily given
memory system efficiency.

6 THE MINIMUM REQUIREMENT FOR LPM

The smaller the value of LPMR is, the higher thememory per-
formance is. However, when LPMR is already small, further
reduction may only bring in minimum performance gain
with a large effort. To make the tuning process effective, we
only need tomeet theminimum requirement for LPM.

Theorems 8 and 9 give the thresholds of LPMR1 and
LPMR2 to achieve an arbitrarily given performance goal.

Theorem 8 (Minimum Requirement for LPMR1). If
Eq. (43) holds for an arbitrarily given application, then the mem-
ory stall time of the application is less than or equal to D% of its
pure computing time.

LPMR1 � D%

m1 � k1
: (43)

Proof. With Eqs. (7) and (39), we get the relation between
memory stall time and LPMR1 as shown in Eq. (44).

MST ¼ CPIexe � ð1� overlapRatioc-mÞ � LPMR1:

(44)

By Eq. (26) in Theorem 4, we have

MST ¼ CPIexe � ðm1 � k1Þ � LPMR1: (45)

To achieve high system efficiency (see Eq. (31)),
Eq. (46) must be satisfied.

MST � CPIexe � D%: (46)

Combining Eqs. (45) and (46), we obtain Eq. (43). tu
Corollary 1. The threshold value of LPMR1 decreases with the

increase of the desired memory system efficiency (i.e., 1� D%)
and L1’s latency-hiding effect (i.e., m1 � k1).

Proof. Corollary 1 is a direct result of Theorem 8. tu
From the perspective of the first memory layer, m1 � k1

indicates the latency-hiding effect. In Fig. 1, m1 is 3/8, and k1
equals 2/3, so m1 � k1 is 2/8. Therefore, the threshold of
LPMR1 can be four times of D%. In practices, the value of
m1 � k1 can be very small. For instance, we measured that the
overlapRatioc-m of wordcount in BigDataBench is 98.4 per-
cent, and m1 � k1 is 1.6 percent. In this case, if the expected
computing efficiency is 90 percent (i.e., D% is 10 percent), the
value of T1 is 6.25. In this manner, the requirement for the T1

has been lowered.

Theorem 9 (Minimum Requirement for LPMR2): For an
arbitrarily givenD%, to make an application’s memory stall time
be less than or equal to D% of its pure execution time, the mini-
mum requirement for LPMR2 is shown as Eq. (47).

LPMR2 � D%

k1
: (47)

Proof. By Theorem 2 in [27],

C-AMAT1 � ð1� overlapRatioc-mÞ ¼ pMR1 � pAMP1

CM1

: (48)

Combining Eqs. (19) and (48), we derive

MST ¼ fmem �MR1 � k1 � C-AMAT2: (49)

Then due to the expression of LPMR2 in Eq. (36), we
get Eq. (50).

MST ¼ CPIexe � k1 � LPMR2: (50)

To achieve high system efficiency (see Eq. (31)),
Eq. (51) must be satisfied.

MST � CPIexe � D%: (51)

Combining Eqs. (50) and (51), we obtain Eq. (47). tu
Corollary 2. The threshold value of LPMR2 decreases with the

increase of the desired MSE (i.e., 1� D%) and L2’s latency-
hiding effect (i.e., k1).

Proof. Corollary 2 is a direct result of Theorem 9. tu
From the perspective of the second memory layer, k1 indi-

cates the latency-hiding effect. In Fig. 1, there exist 3 conven-
tional miss cycles, but only two of them are pure miss cycles,
which incur processor data stall, so k1 equals 2/3. In practices,
k1 can be less than 50 percent. For instance, wemeasured that
the k1 value of the bewaves benchmark is 14.9 percent (the
experimental environment will be presented in Section 8).
Thus, for the bewaves benchmark, up to 85.1 percent latency
can be hidden. If the expectedmemory system efficiency is 90
percent (i.e., D% is 10 percent), the threshold of LPMR2, T2, is
6.04, which means that the rate of data supply can be up to 6
time slower than that of the data request to achieve the
desiredmemory system efficiency.

As shown in Fig. 3, from a hierarchy perspective, the com-
puting components, ALU and FPU, can be taken as L0. Of
general significance, m1 � k1 and k1 quantify the latency-
hiding effects in the view of L0 and L1, respectively.
Theorems 8 and 9 show the impact of latency-hiding on LPM.
If the latency-hiding effect is more significant, the required
LPMvalueswould be larger and thus easier to achieve.

Once the required LPM values given by Theorems 8 and 9
aremet, the optimizations of the corresponding layers are fin-
ished. In next section, we will give the LPM algorithm to
improve the matching of the layered performance to achieve
global optimizations ofmemory systems.

7 THE ALGORITHM OF LPM

Different optimization techniques mentioned in the Back-
ground section can be used as levers to conduct the perfor-
mance optimization at each layer. Fig. 4 shows the pseudo-
code of the LPM algorithm. Let Ti be the threshold of LPMRi

as given by Theorems 8 and 9. Initially, the information
about mismatch is measured and collected. Optimizations
are necessary only when the LPMR1 value is large (larger
than T1). If LPMR1 is larger than T1, we need to decide to
optimize L1 layer and L2 layer simultaneously, or only

LIU AND SUN: LPM: A SYSTEMATIC METHODOLOGY FOR CONCURRENT DATA ACCESS PATTERN OPTIMIZATION FROM A... 2485

optimize the L1 layer. In both cases, the optimization of the
L1 layer is required.

Only when LPMR1 is larger than T1 and LPMR2 is larger
than T2, the optimizations of the L1 layer and L2 layer are
needed at the same time.

After each optimization, all the metrics are updated to
decide if it is necessary to continue optimizing. An interesting
point is how to find the “minimum match” when we have
LPMR1 < T1. If LPMR1 is smaller than its threshold value T1

by more than d, we know that hardware has been over pro-
vided. The value of d is positive, which can be set by users
with a tradeoff between benefit and effort. This step is
optional, but we include it in the algorithm for completeness.

Note that all the steps of the LPM algorithm can be con-
ducted online to adapt to the dynamic behavior of the under-
lying application. The LPM algorithm is called periodically
for each time interval. The time interval size can be set with a
trade-off between performance improvement and optimiza-
tion cost. The cost here is due to the implementation of a
reconfiguration operation or a scheduling operation. The
LPM algorithm also can be conducted offline for application
specific design optimization. We conduct online optimiza-
tions in this study, since it is the harder part of the problem.

Based on the GEM5 simulator, we implemented a recon-
figurable 16-core CMP, with four cycles cost for each

reconfiguration operation and 40 cycles for each scheduling.
In our experiment, for hardware approach, we found that
when the interval size is set to 10 cycles for each scheduling,
96 percent of the burst data access patterns can be perceived
and processed timely. When the interval size is set to 20
cycles, 89 percent of the burst data access patterns can be per-
ceived and processed timely. For software approach, when
the interval size is set to 40 cycles, 73 percent of the burst data
access patterns can be perceived and processed timely.

An interesting point of the LPM algorithm is that the opti-
mization presents minimal but enough hardware support to
ease memory stall. It not only can be applied to a general
architecture design, but also can be applied in a shared envi-
ronment to improve overall performance via scheduling.
Taking time intervals i1 and i2 for example, we assume appli-
cation in the interval i1 is data intensive, and in the interval i2
is not data intensive. In the initial stage of i1, the LPMRvalues
are large and thus optimization is conducted. The optimiza-
tion takes effect in most of the time in interval i1 (deducing
the startup cost). Then in interval i2, the data access patterns
are changed (i.e., become not data intensive), thus the thresh-
olds of LPMRs are also different in comparison (less than)
with the previous threshold. The hardware support is over
provided, and thus should be reduced for the present appli-
cation (and then can be used for those applications that need
more hardware support).

The optimization of the LPMalgorithm shown in Fig. 4 can
be achieved via the hardware, software, or amixed approach,
respectively. If the hardware can be improved, an optimiza-
tion can be conducted easily by improving the five parame-
ters of C-AMAT to increase data access concurrency and
locality. If we assume the underlying hardware configuration
is fixed, the LPM-based optimization can be conducted via
software by exploring and utilizing heterogeneity of the
underlying hardware. However, the condition of T1 and T2

may not be satisfied via pure software optimization or pure
hardware optimization.

Let us take the scheduling on heterogeneous system for
example to consider the software approach. AssumingN differ-
ent computing units exist in a heterogeneous computing system,
the idea of the software approach is to sort the LPMRs of the N
computing units to find a best hardware/application match (in
terms of the capacity of the available computing units).

The purposes of the hardware approach and software
approach are the same, that is, to mitigate the layered mis-
match to achieve application-awareness and hierarchy-
awareness to improve performance. If we only have very
limited hardware choices in hardware design or hardware
availability, the software approach is the way to go. The dif-
ference is that hardware approach designs an optimal hard-
ware configuration for an application, whereas software
approach chooses an available configuration from a set of
existing configurations to best match hardware configuration
for an application.

The optimization potentials of hardware approach and
software approach are determined by their available design
space. In most cases, the design space of the hardware appr-
oach is much larger than that of the software approach, thus
the former has a much larger room for performance improve-
ment, and theminimum requirements indicated by T1 and T2

may not be satisfied solely by software optimization.

Fig. 4. Pseudo-code of the LPM algorithm (Let Ti be the threshold of
LPMRi as given by Theorems 8 and 9.).

2486 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

As will be shown in next section, the LPM algorithm can
facilitate software optimizing on commercial processors that
are not reconfigurable, facilitate architecture design space
exploration to avoid exhausting search for the best confi-
guration, and facilitate scheduling to achieve application-
awareness and heterogeneity-awareness.

8 OPTIMIZATION CASE STUDIES

In the following three sections, one case study for LPM optimi-
zation is conducted on commercial processors, and two repre-
sentative case studies for LPM optimization are conducted on
simulators. Case Study I uses software approach on commercial
processors. Case Study II uses hardware approach on reconfig-
urable architectures. Case Study III deploys software approach
to optimize LPMR in heterogeneous memory systems. The
state-of-the-art cycle-accurate simulator GEM5 [1] is used to
provide an appropriate full system performance simulation. A
detailed out-of-order CPU model and DRAMSim2 module in
the GEM5 simulator were adopted to achieve the most accurate
simulation results. SPEC CPU2006 and CPU2017 benchmark
suites with “ref” input data sets are used [34].

8.1 Case Study I: LPM Optimization on Commercial
Processors

In this section, we conduct a case study on the mcf bench-
mark running on an Intel Xeon E5-2,630 processor. Experi-
mental testing and case study can be conducted on either a
real machine or a simulator. We conduct experiments on real
machine in this section, because we want to verify that the
LPM method can work on real machines only by software
approach. We will conduct case studies on simulator in the
other sections.

It is of great practical significance that the values of the
parameters in LPM model can be measured in mainstream
commercial processors. Intel Xeon E5 provides many per-
formance monitor unites (PMU). It is worth noting that the
number of memory active cycles are different at different mem-
ory layers. The number of active cycles in L1 is recorded by
CYCLE_ACTIVE_MEM_ANY, while that in L2 is counted by
L1D_PEND_MISS:PENDING_CYCLES.Meanwhile, OFFCOR-
E_REQUESTS_OUTSTANDING:ALL_DATA_RD_CYCLES

counts the number of active cycles in L3 for the detected core.
Based on the PMUs in the processors, PAPI [11], HPCTool-
kits [12], Perfexpert [13], are used to identify the hotspots and
their memory access patterns. Figs. 5 and 6 show the value of
m1 and k1 for the hotspots of diverse benchmarks, respectively.
The benchmarks are from eight suites that include SPECint
and SPECfp from SPEC CPU2006 [34] [39], PARSEC [43], Big-
DataBench [45], MLbench [40], HPCC [42], HPCG [41] and
Graph500 [44]. Each benchmark suite may include several dif-
ferent benchmarks and tests, and each benchmark may include
multiple hotspots. For the convenience of presentation, Fig. 6
only shows the average and the range.

The mcf benchmark from SPEC CPU2006 is developed
for application in the public transportation systems of Ham-
burg and Berlin, and has been integrated into the vehicle
and personnel planning system MICROBUS [8]. We select
mcf benchmark to demonstrate the optimization process,
because mcf benchmark is known as a cache buster (see
page 116 in [22]), which means the on-chip hierarchy cannot
deal with the data requests of mcf effectively. The optimiz-
ing process will help people understand why it is a cache
buster. Table 4 shows the configuration of the experimental
system. The mcf benchmark is running on only one of the
10 cores, but possesses all the LLC without competitive
applications. Note that, in the baseline, we do not disable
the hyperthreading and turbo boost.

The hotspot code before optimization is shown in Fig. 7,
which traverses the link structures. The link structure
implies not only low locality, but also low concurrency of
data accesses. Although the hotspot is very short, it takes
34.3 percent of total benchmark running time. Before opti-
mization, the IPC is 0.452, LPMR2 is 8.42, k1 is 0.86, memory
stall time is 7.26-fold of pure computing time (i.e., D% is 726
percent), and the computer’s system efficiency is only 12.1
percent.

According to Corollary 2, for an arbitrarily given D%, the
threshold value of LPMR2 decreases with the decrease of
the overlapping between cache hits and cache misses (i.e., 1
- k1). Because k1 is 0.86 which is close to one, the threshold
value of LPMR2 is 0.93 when the desired MSE is 80 percent.
Note that the real value of LPMR2 before optimization is
8.42, which is about 9-fold of the threshold value.

Fig. 5. The value of m1 for hotspots of diverse benchmarks. Fig. 6. The value of k1 for hotspots of diverse benchmarks.

LIU AND SUN: LPM: A SYSTEMATIC METHODOLOGY FOR CONCURRENT DATA ACCESS PATTERN OPTIMIZATION FROM A... 2487

To improve the system efficiency, according to Theorem
8, we need to reduce LPMR2 or k1. The bottleneck in the
mcf benchmark has a linked data access pattern and thus
has a low concurrency. Prefetching is a way to increase con-
currency, and prefetching will be effective if hardware con-
currency is not a constraint. In this case study, the
maximum available hardware concurrency in Intel Xeon
processors is pretty high. For this situation, software pre-
fetching can work well and can reduce LPMR2.

In each iteration of the optimizing process, the MR and
concurrency of each layer are changed simultaneously, thus
their respective value and combined impact need to be con-
sidered. The C-AMAT takes the role of indicator to guide us
to quickly find the optimal parameters of the prefetcher.
The hotspot code after optimization is shown in Fig. 8.

Due to high cache miss rate of accessing the head pointer
and tail pointer, software fetching is applied for these two
pointers. Because head and tail pointers are the members of
the arc structure, we load the arc structure into the on-chip
caches before prefetching head and tail. Thus, the software
prefetching strategy is to prefetch the arc structure requ-
ired after 4 iterations and the head and tail required after 2
iterations.

After optimization, LPMR2 has reduced by 50.2 percent.
The total running time before optimization is 5:70� 1011

cycles, while that after optimization is 5:01� 1011 cycles,
thus the improvement of performance is 13.8 percent. The
memory stall time before optimization is 5:63� 1011 cycles,
and that after optimization is 4:60� 1011 cycles.

Note that the original mcf program has 2766 different
lines of code, and we have only added 9 lines of code in the
optimization process, thus the small tuning effort pays off
due to the effectiveness of the LPMmechanism.

This case study shows that the parameters of LPM meth-
odology can be measured on commercial processors, and
the LPMmethodology has effectively guided the optimizing
process even when hardware is not reconfigurable. On a
real computing system that is not reconfigurable, we cannot
change the hardware, thus we are only able to implement
LPM algorithm via software approach. However, for com-
puting systems that have reconfigurable supports, hard-
ware approach also can be used.

8.2 Case Study II: LPM Optimization on
Reconfigurable Architecture

Based on the C-AMAT definition and LPM definition, opti-
mal hardware configurations can be found for mitigating the
memory-wall impact. Architecture design space S includes
all possible configurations of each parameter pi, and can be
expressed in the form of Cartesian product, S ¼ Sp1 � Sp2�
� � � � Spn , where Spi is the value range of architectural param-
eter pi. The size of design space, jSj ¼ jSp1 � Sp2 � � � � �
Spn j ¼ jSp1 j � jSp2 j � � � � � jSpn j.

Dozens of parameters could be adjusted in a computer
architecture, and each parameter has a set of different values.
For the sake of brevity, only six architecture parameters are
explored herein, including MSHR number, ROB size, and
pipeline issuewidth. Provided that each architectural param-
eter can be set with 10 different values, the design space size
of the six parameters is 106. Even with the limited consider-
ation, there are one million possible configurations. As the
design space is very large, exhausting search is not an option,
and a LPM optimization algorithm becomes amust.

Under five configurations A to E, Table 5 shows the aver-
age LPMR values for “bwaves” benchmark from SPEC
CPU2006. Let us cruise the general LPM algorithm in the
architecture design space exploration. The goal of the optimi-
zation is to keep the memory stall time per instruction within

TABLE 4
The Experimental System Configuration

CPU chip Intel Xeon E5-2630 v4
L1 dcache and L1 icache latency 4 cycles
L2 cache latency about 12 cycles 1

L3 cache latency about 40 cycles 1

DRAMmemory latency about 150 cycles 1

CPU freqency 2.2 GHz
FP latency 2 cycles
FP slow latency 18 cycles
TLB latency 45 cycles
Number of Memory channels 4
Capacity per channel 16 GB

1The latency value of each memory layer is variable, thus we measured them
using Intel memory latency checker [14].

Fig. 7. The original hotspot code inmcf benchmark.

Fig. 8. The optimized hotspot code inmcf benchmark.

2488 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

1 percent � CPIexe. First, in the current time interval, LPMRs
are measured for each application. Table 5 shows the LPMR
values in a memory hierarchy under configuration A. The
threshold values of LPMR1, LPMR2 are 2.8 and 6.2 respectiv-
ely based on the T1 and T2 given in Eqs. (43) and (47). Initially,
both the LPMRs are higher than the threshold values so that
the optimizations are carried in both layers at the same time.

We transform the architecture from configurationA toB in
Table 5. With configurationB, the mismatches are still higher
than their thresholds. Then we continue reduction and trans-
form configuration B to C. The mismatch now in L2 layer is
3.1, which is already less than its threshold value, 6.2. There-
fore, we no longer need continue reducing LPMR2, and only
need to focus on L1 layermismatch.

We increase ROB, MSHR number and pipeline width.
ConfigurationD is the first scheme which meets the require-
ment in the architecture exploration. The memory stall time
is 0.97 percent of CPIexe. The memory stall cost is already
small. As an optional step, for the purpose of resource sav-
ing, we continue to check if hardware is over provided.

In our experiment, we set d as 1 percent of T1. According to
the LPM algorithm, we do a fine tune to reduce possible
hardware overprovision to achieve cost-efficiency, which
leads to the final configuration E. Configuration E reaches
our 1 percent goal with minimal hardware support. The
saved resource can be used for other applications, making the
computermore energy-efficient.

The LPMR1 is reduced from 8.1 in the first configuration to
1.2 in the fourth configuration. As shown in this case study,
the LPMR reduction algorithm provides an effective guide
for the design space exploration. It presents a minimum but

enough hardware support to achieve the layered perfor-
mance matching in four steps. It avoids blind hardware over-
provisionwhile accommodating application diversity.

The search for optimal architectural parameters can be
guided by LPM. LPM quantifies the layeredmatching degree
and thus decides which parameter should be optimized on
demand. Fig. 9 shows how LPM algorithm works on recon-
figurable architecture. With hardware configurability, archi-
tectural parameters are adjusted to reduce LPMR at each
layer of a memory hierarchy [47]. Based on the feedback in
terms ofmismatching degree, an optimal architectural config-
uration is found quickly. Compared to traditional design
space exploration, the LPM algorithm has two merits. First,
its optimization is not based on global IPC, but based on local
metric LPMR. Therefore, the measurement and feedback are
completedmuch sooner. Second, its optimization is a focused
one, finding an architectural configuration that eliminates the
mismatching. Therefore, the optimization can be finished
withmuch fewer iterations.

To fully understand the way how these parameters take
effect, L2 cache size and L2 MSHR number, will be taken as
two primary leverages for performance optimization. Fig. 10
shows the IPC values of the wrf benchmark for different con-
figurations of L2 cache size and L2 MSHR number. Fig. 11
shows the values of the bzip2 benchmark. The horizontal axis
shows the different values of L2 cache size from 256 KB to
2 MB. L2 MSHR number is set to be 1, 2, 4 or 8. L2 cache size
impacts howmany data items can be held by the LLC. In this
sense, LLC cache is a traffic filter of the total number of off-
chip memory accesses. LLC MSHR number impacts the
upper bound ofmemory level parallelism, which refers to the
maximum number of concurrent memory accesses issued
simultaneously. In this sense, LLC MSHR number is a traffic
limiter of the parallelism of off-chipmemory accesses.

The wrf is a floating point benchmark, which does
weather modeling from scales of meters to thousands of
kilometers. The test case is from a 30 km area over 2 days. It
is seen that wrf is sensitive to data concurrency rather than
LLC cache size. For wrf , only 256 KB of LLC is enough, but
8 LLC MSHRs need to be allocated. In comparison, bzip2 is
sensitive to LLC cache size rather data concurrency. The
bzip2 needs only one LLCMSHR but 2 MB LLC.

In running the LPM algorithm, until the LPMR meets the
requirement, the LLC capacity and LLC MSHR are allocated
gradually for an arbitrarily given application. When the LLC

TABLE 5
LPMRs Under Configurations with Incremental Parallelism

Configuration A B C D E

Pipeline issue width 4 4 6 8 8
ROB size 32 64 64 128 96
L1 MSHR numbers 2 8 16 16 16
L2 MSHR numbers 2 8 8 8 8
LPMR1 8.1 6.2 2.1 1.2 1.4
T1 2.8 2.8 2.8 2.8 2.8
LPMR2 9.6 9.3 3.1 1.6 1.9
T2 6.2 6.2 6.2 6.2 6.2
LPMR3 6.4 8.1 5.8 2.3 2.6

Fig. 9. Feedback-based LPM optimization on reconfigurable architecture
(piði ¼ 1; 2; . . . ; nÞ are architecture parameters).

Fig. 10. The IPC values of wrf for different configurations of L2 cache
size and L2 MSHR number.

LIU AND SUN: LPM: A SYSTEMATIC METHODOLOGY FOR CONCURRENT DATA ACCESS PATTERN OPTIMIZATION FROM A... 2489

capacity is not large enough to hold the working set, the LLC
misses would occur frequently, and the memory request rate
would be high. As a result, LPMR would be large and mis-
match exists. Taking bzip2 for example, when only 256 KB is
available, 891K misses occur. However, when 2 MB is allo-
cated, only 4K misses exist. Therefore, for applications such
as bzip2, LLCmiss rate has high impact on LPMR.

In another dimension, for applications such as wrf , data
concurrency impacts LPMR. Taking wrf for instance, when
only one LLC MSHR is allocated, the number of blocking
cycles is 1:43� 108. However, when 8 MSHRs are available,
the blocking cycles is reduced to 3:2� 104. Because the
requests have already been issued from processors, the
request rate is given. But due to the blocking cycles occurred
on MSHR, the memory lacks the ability to provide replies
timely, and therefore the reply rate becomes increasingly
lower and the LPMR is increasingly larger. In this example, it
is seen that the allocation of LLC MSHRs is vital for perfor-
mance, because the total MSHRs are limited and different
allocation schemes bring quite large performance difference.

8.3 Case Study III: LPM Optimization on
Heterogeneous Main Memories

This section shows an example of LPM optimization on
multicore architecture with heterogeneous main memories
that are called Non-Uniform Memory Access architecture

(NUMA). As shown in Fig. 12, in case study II, processor
group 1 and 4 are common computing units with long data
access paths, which means that single memory access will
cost hundreds of cycles. On the other hand, computing unit
group 2 and 3 are processors under memory (PUM), which
have less single access latencies by virtue of their close
physical connection to a stacked set of memory dies. Com-
puting unit group 4 and 2 can achieve higher memory band-
width based on wider wire connections.

There exist four different groups of computing units for the
diverse applications to match. We set d as T1 � 50%. We mea-
sure LPMR1 and LPMR2 on each of the different computing
units. Fig. 13 shows the different C-AMAT values with the
four different structures on four different group of computing
units. The C-AMATvalues of structure 2 (PUM) are the small-
est, while those of structure 1 (common) are the largest.

The values in Fig. 13 can be obtained offline or online.
The offline method is straightforward. Applications are run
on different structures in turn, and the results are used for
future runs. The advantage of offline is that the data is accu-
rate, while the disadvantage is the need to run four times
for each application. Alternatively, the online method can
be used to estimate the performances of other structures at
runtime. We adopt the latter approach in our simulations.

The way we assign applications to the groups affects the
achieved system performance. For example, as shown in
Fig. 13, 445.gobmk has similar C-AMAT values on structure 2
and 4, while 401.bzip2 has quite different C-AMAT values on
structure 2 and 4. The optimal mapping for the two applica-
tions may be different. This observation is confirmed by our
experiments: the optimal location for 401.bzip2 is group 2,
while that for 445.gobmk is group 4.

With Eqs. (44) and (50), Hsp can be transformed into a
function of LPMR. Intuitively, to prevent the memory stall,
applications with high mismatch are assigned to PUM pro-
cessor groups (#2 and #3), and assign the others to conven-
tional processor groups (#1 and #4).

To automatically minimize the memory stall time, the
LPM algorithm is implemented to provide a semi-optimal
solution under a heterogeneous memory system environ-
ment and is referred to as the hybrid-aware scheduling algo-
rithm (Hybrid-SA). Wemeasure LPMRs for each of the units,
and then by calculating the requirement of each application’s
LPMR, the applications are assigned to the cores according
to their main memory access needs, rather than allocating
randomly.

As shown in Eq. (52). Harmonic Weighted Speedup, Hsp,
is a metric that strikes a balance between throughput and

Fig. 11. IPC values of bzip2 for different configurations of L2 cache size
and L2 MSHR number.

Fig. 12. Heterogeneous memory system of chip multiprocessors.

Fig. 13. C-AMAT values of heterogeneous structures (smaller is better).

2490 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

fairness [28]. When there is no contention, the value of Hsp is
one. Hsp has been widely used to evaluate the schemes in a
multiple program environment. In our study, to evaluate
the scheduling effect, we also use this metric. As shown in
Fig. 14, the throughput of multiple programs has been
improved by 26 percent.

Hsp ¼ NPN
i¼1

IPCoptimal

IPCreal

: (52)

9 RELATED WORK

Improving memory system performance is a long-term
goal of computer architects. In 1990, Sun and Ni proposed
the memory-bounded parallel speedup model (Sun-Ni’s
law) [35] , which quantified how memory access influences
systemparallel speedup.However, while Sun-Ni’s law shows
the importance of memory system, it discusses mainly the
application performance rather than memory system optimi-
zation. In 1994, the term memory wall was formally intro-
duced based on the sequential latency model, Average
Memory Access Time [48]. Note that in that time, memory
level concurrency is rare, so the sequential latency makes
sense. The AMATmodel is recursive that can be used in each
memory layer, so it can reflect the portion of latency con-
sumed by each memory layer. Memory concurrency technol-
ogies have become common during the last two decades to
improve memory system performance. The conventional
sequential latencymodel is no longer adequate to characterize
modern memory systems. Therefore, neither “low miss rate”
nor “small AMAT” are the best performance criteria of mod-
ernmemory systems.

LPM is a methodology to effectively utilize the available
technologies and mitigate their negative interaction effects.
While many optimizing technologies have been developed in
past decades, the interaction among them is subtle and com-
plex. Modern microprocessors utilize more than eighty per-
cent of on-die transistors for caches rather than computing
components, the on-chip hierarchy becomes increasingly
dominant. The increasing resources are designed with lots of
structures to make memory level concurrency ubiquitous.
Meanwhile, to utilize caches, cache mapping, replacement,
bypass and prefetch are long-standing hot topics of research.
However, the considerable cache capacity and the concur-
rency provided by hardware are utilized without a matching

perspective. Amdahl [23], Patterson [19], and Zhu [49] provi-
ded an alternative criterion ofmatching, respectively, in addi-
tion to ours [31]. We examine their criterions in the following.

Amdahl provides a rule of thumb that also known as
Amdahl’s balanced system law [23]. It is said that, a system
needs a bit of IO per second for each instruction per second:
about 8 MIPS perMBps. HereMillion Instructions Per Second
(MIPS) is the computing speed; Million Bytes Per Second
(MBps) is the memory access speed. Although Amdahl’s bal-
anced system law considers the ratio of memory access speed
and computing speed, it is a rule of thumb that is not accurate
and cannot be adapted to different applications and architec-
tures. As said in [23], Amdahl’s balanced system law becomes
more complex to interpret inmulti-issue pipelined processors.

Williams, Waterman, and Patterson presented Roofline
model for the attainable system performance [19]. If an
application is bounded by the peak computing speed, it is
compute-bound. If it is bounded by the product of peakmem-
ory bandwidth and operational intensity, it is memory-
bound. The purpose of Roofline is not to be very accurate but
just insightful. LPMmoves further and is more accurate than
Roofline in three aspects. LPM can be used not only for main
memory layer but also for any other layers of a memory hier-
archy. LPM quantifies the latency-hidden effect that is highly
important for modern out-of-order execution processors.
LPM reveals that the requirement of matching of each mem-
ory layer is determined by the expected efficiency and the
achieved latency-hidden effect.

Zhu, Xiao, et al proposed a balanced designwith themaxi-
mum criterion for a supercomputer [49]. The main idea of the
balanced design is the maximum criterion that providing
maximum bandwidth and enabling maximum number of
computing nodes that can concurrently access I/O systems.
Themaximumcriterion highlights the importance ofmemory
bandwidth and memory level concurrency. It is applied in
supercomputer system level, so the memory bandwidth and
concurrency can be added flexibly by increasing memory
nodes. However, in multi-core chip level, the management of
memory bandwidth and concurrency should be conducted
in memory access level. The maximum criterion is a rough
result that is obtained by estimation, intuition and experience,
thus may not be optimal due to the lack of an accurate model
for matching. In comparison, LPM presents the definition
and quantification ofmatching, whichwill significantly facili-
tate the performance optimization of memory systems while
thework [49] is amotivation example of LPMdesign.

Many individual optimizations can benefit from the
guideline of LPM, including cache allocation (e.g., Intel
CAT [4]) and memory scheduling (e.g., [38]). LPM provides
an accurate matching criterion for the resource manage-
ment. While we acknowledge the criterion provided by [26],
we found it only utilizes locality and it can be drastically
enhanced with a guide of LPM.

10 CONCLUSIONS AND FUTURE WORK

Matching the data request rate with the data supply rate in a
memory system is a known idea for memory system design.
However, how to identify the needed supply rate at each
layer of a memory hierarchy for an arbitrarily given applica-
tion, how the matching at each layer of a memory hierarchy

Fig. 14. Hsp values of different scheduling schemes on heterogeneous
memory system (higher is better).

LIU AND SUN: LPM: A SYSTEMATIC METHODOLOGY FOR CONCURRENT DATA ACCESS PATTERN OPTIMIZATION FROM A... 2491

influence the overall system performance, and how to iden-
tify mismatching and improve matching in a timely fashion
remain elusive and need to be addressed. In this study, we
propose a novel performance optimization method, the Lay-
ered Performance Matching method for memory system
design optimization. LPM emphasizes the performance
matching between the layers of a hierarchicalmemory system
and considers the integrated impact of data concurrency and
locality. It is based on a data-centric view of computing and
can be used to diagnose and identify performance bottlenecks
in locality and/or concurrency of data accesses at each layer
of a memory hierarchy and for the overall memory system.
The LPM method and its associated LPM algorithm have
been supported with rigorous mathematical analyses and
illustrated with case studies on an Intel Xeon processors and
on GEM5 simulators. Experimental testing has confirmed
and demonstrated the feasibility and ingenuity of the LPM
method inmemory systemdesign and optimization.

The proposed LPM facilitates the balanced exploration of
locality and concurrency of memory accesses and provides a
systematic and fast approach to match the data access
demands of the running application to the underlying mem-
ory system. This matching can be achieved by adjusting the
configuration of the underlying memory system or through
scheduling applications appropriately in a heterogeneous
environment. The data access considers both data locality and
concurrency. To achieve better LPM, data access locality of
the application should correspond to the locality of the under-
lyingmemory system. Equally important, the concurrent data
accesses of the application should match the concurrency of
the underlying memory system. Layered matching leads to
improved measurement and analysis of data access delays
and to a more effective and efficient method for obtaining a
balancedmemory systemdesign and optimization.

We believe that the architectural support for layered per-
formance matching methodology is a promising trend, this
work makes a case for this direction. Meanwhile, many inter-
esting open issues need to be addressed, including (1) how to
add labels or identifiers in the server architecture (i.e., labeled
architecture [5], [6]) to differentiate multiple applications or/
and simultaneous multithreading (SMT) in applying
LPM, (2) how to correlate the LPMwith the quality of service
of memory system for a mix of latency-sensitive (soft real-
time) tasks and latency insensitive (throughput) tasks, (3)
how to collect the needed parameters on-linewith small over-
head to apply LPM in existing and future parallel file sys-
tems, (4) how to addminimal support in reconfigurable chips
to implement LPM? (5) how to make OS directly run on a
labeled server to support individual-level or/andgroup-level
LPM, and (6) how to apply LPM in heterogeneous platforms
(e.g., host+accelerators, hybridmemory (DRAM+NVM)).

ACKNOWLEDGMENTS

This work is supported by National Science Foundation of
China (No. 61772497 andNo. 61521092), State Key Laboratory
of Computer Architecture Foundation (No. CARCH2601),
National Key R&D Program of China (No. 2016YFB1000201),
National Science Foundation of US (CCF-1536079, CNS-
1162540 andCCF-0937877).

REFERENCES

[1] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, and
A. Basu, et al., “The gem5 simulator,” ACM SIGARCH Comput.
Archit. News, vol. 39, no. 2, pp. 1–7, 2011.

[2] K. J. Min, D. H. Yoon, D. Sunwoo, and M. Sullivan, “Balancing
DRAM locality and parallelism in shared memory CMP systems,”
in Proc. IEEE Int. Symp.High-Perform. Comput. Archit., 2012, pp. 1–12.

[3] S. Phadke and S. Narayanasamy, “MLP aware heterogeneous
memory system,” in Proc. Des. Autom. Test Eur. Conf. Exhibition,
2011, pp. 1–6.

[4] K. T. Nguyen, “Intel CAT. Intel,” 2018. https://software.intel.
com/en-us/articles/introduction-tocache-allocation-technology.

[5] Y. G. Bao and S. Wang, “Labeled von neumann architecture for
software-defined cloud,” J. Comput. Sci. Technol., vol. 32, no. 2,
pp. 219–223, 2017.

[6] J. Ma, X. Sui, N. Sun, Y. Li, Z. Yu, B. Huang, T. Xu, Z. Yao,
Y. Chen, and H. Wang, “Supporting differentiated services in
computers via Programmable Architecture for Resourcing-on-
Demand (PARD),” in Proc. 20th Int. Conf. Archit. Support Program.
Lang. Operating Syst., 2015, pp. 131–143.

[7] K. A. Yelick, “Ten ways to waste a parallel computer,” in Proc.
36th Annu. Int. Symp. Comput. Archit., 2009, pp. 1–1.

[8] 2019. [Online]. Available: http://www.spec.org/cpu2006/Docs/
429.mcf.html.

[9] J. D. Mccalpin, “Memory bandwidth and machine balance in high
performance computers,” IEEE Tech. Committee Comput. Archit.
Newslett., vol. 2, no. 1925, pp. 1–7, 1995.

[10] S. Thakkar, P. Gifford, and G. Fielland, “The balance multiproces-
sor system,” IEEE Micro, vol. 8, no. 1, pp. 57–69, Feb. 1988.

[11] J. Dongarra, K. London, S. Moore, P. Mucci, and T. Dan, “Using
PAPI for hardware performance monitoring on linux systems”, in
Proc. of the Con. on Linux Clusters. TheHPCRevolution: Urbana, Illi-
nois, USA, 2009.

[12] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, and
J. Mellor-Crummey, et al., “HPCTOOLKIT: Tools for perfor-
mance analysis of optimized parallel programs,” Concurrency
Comput. Practice Experience, vol. 22, no. 6, pp. 685–701, 2009.

[13] M. Burtscher, B. D. Kim, J. Diamond, and J. Mccalpin, “PerfExpert:
An easy-to-use performance diagnosis tool for HPC applications,”
in Proc. ACM/IEEE Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2010, pp. 1–11.

[14] Intel, Memory Latency Checker, 2017. https://software.intel.
com/en-us/articles/intelr-memory-latency-checker

[15] S. Borkar and A. A. Chien, “The future of microprocessors,” Com-
mun. ACM, vol. 54, no. 5, pp. 67–77, 2011.

[16] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture optimiza-
tions for exploiting memory-level parallelism,” in Proc. 31st Annu.
Int. Symp. Comput. Archit., 2004, vol. 32, pp. 76–87.

[17] P. J. Denning, “The working set model for program behavior,”
Commun. ACM, vol. 11, no. 5, pp. 323–333, 1968.

[18] P. J. Denning, “The locality principle,” Commun. ACM, vol. 48,
no. 7, pp. 19–24, 2005.

[19] S. Williams, A. Waterman, and D. Patterson, “Roofline: An
insightful visual performance model for multicore architectures,”
Commun. ACM, vol. 52, no. 4, pp. 65–76, 2009.

[20] R. A. Hankins, T. Diep, M. Annavaram, et al., “Scaling and char-
acterizing database workloads: Bridging the gap between research
and practice,” in Proc. 36th Annu. IEEE/ACM Int. Symp. Microarchi-
tecture, 2003, pp. 151–164.

[21] N. Hardavellas, I. Pandis, R. Johnson, et al., “Database servers on
chip multiprocessors: Limitations and opportunities,” in Proc.
Biennial Conf. Innovative Data Syst. Res., 2007, pp. 79–87.

[22] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach. Amsterdam, Netherlands: Elsevier, 2018.

[23] J. Gray and P. Shenoy, “Rules of thumb in data engineering,” in
Proc. Int. Conf. Data Eng., 2000, 2000, vol. 42, pp. 3–10.

[24] J. Hoogeveen, J. K. Lenstra, and B. Veltman, “Preemptive schedul-
ing in a two-stage multiprocessor flow shop is NP-hard,” Eur. J.
Oper. Res., vol. 89, no. 1, 172–175, 1996.

[25] I. Hur and C. Lin, “Memory prefetching using adaptive stream
detection,” in Proc. 39th Annu. IEEE/ACM Int. Symp. Microarchitec-
ture, 2006, pp. 397–408.

[26] G. Kurian, O. Khan, and S. Devadas, “The locality-aware adaptive
cache coherence protocol,” ACM SIGARCH Comput. Archit. News,
vol. 41, no. 3, pp. 523–534, 2013.

2492 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2019

https://software.intel.com/en-us/articles/introduction-tocache-allocation-technology.
https://software.intel.com/en-us/articles/introduction-tocache-allocation-technology.
http://www.spec.org/cpu2006/Docs/429.mcf.html
http://www.spec.org/cpu2006/Docs/429.mcf.html
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker

[27] Y.-H. Liu and X.-H. Sun, “Reevaluating data stall time with the
consideration of data access concurrency,” J. Comput. Sci. Technol.,
vol. 30, no. 2, pp. 227–245, 2015.

[28] K. Luo, J. Gummaraju, and M. Franklin, “Balancing thoughput
and fairness in SMT processors,” in Proc. IEEE Int. Symp. Perform.
Anal. Syst. Softw., 2001, pp. 164–171.

[29] V. Sarkar, W. Harrod, and A. E. Snavely, “Software challenges in
extreme scale systems,” J. Phys.: Conf. Series, vol. 180, no. 1, pp.
1–12, 2009.

[30] J. P. Shen and M. H. Lipasti,Modern Processor Design: Fundamentals
of Superscalar Processors. Long Grove, IL, USA: Waveland Press,
2013.

[31] Y. H. Liu and X. H. Sun, “LPM: Concurrency-driven layered per-
formance matching,” in Proc. Int. Conf. Parallel Process., 2015,
pp. 879–888.

[32] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Auto-
matically characterizing large scale program behavior,” ACM
SIGARCH Comput. Archit. News, vol. 30, no. 5, pp. 45–57, 2002.

[33] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-
temporal memory streaming,” ACM SIGARCH Comput. Archit.
News, vol. 37, pp. 69–80, 2009.

[34] C. D. Spradling, “SPEC CPU2006 benchmark tools,” ACM
SIGARCH Comput. Archit. News, vol. 35, no. 1, pp. 130–134, 2007.

[35] X.-H. Sun and L. M. Ni, “Another view on parallel speedup,” in
Proc. ACM/IEEE Conf. Supercomput., 1990, pp. 324–333.

[36] X.-H. Sun and D. Wang, “APC: A performance metric of memory
systems,” ACM SIGMETRICS Perform. Eval. Rev., vol. 40, no. 2,
pp. 125–130, 2012.

[37] X.-H. Sun and D. Wang, “Concurrent average memory access
time,” Comput., vol. 47, no. 5, pp. 74–80, 2014.

[38] K. Van Craeynest , A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through Performance
Impact Estimation (PIE),” ACM SIGARCH Comput. Archit. News,
vol. 40, no. 3, pp. 213–224, 2012.

[39] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17, 2006.

[40] R. R. Curtin, J. R. Cline, N. P. Slagle, W. B. March, P. Ram,
N. A. Mehta, et al., “MLPack: A scalable C++ machine learning
library,” J. Mach. Learn. Res., vol. 14, no. 1, pp. 801–805, 2012.

[41] J. Dongarra, M. A. Heroux, and P. Luszczek, “High-performance
conjugate-gradient benchmark: A new metric for ranking high-
performance computing systems,” Int. J. High Perform. Comput.
Appl., vol. 30, no. 1, pp. 9505–9511, 2015.

[42] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,
R. Rabenseifner, et al., “The HPC Challenge (HPCC) benchmark
suite,” in Proc. ACM/IEEE Conf. High Perform. Netw. Comput., 2006,
Art. no. 213.

[43] C. Bienia, S. Kumar, J. P. Singh, K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proc.
Int. Conf. Parallel Archit. Compilation Techn., pp. 72–81, vol. 43,
2008.

[44] Graph500: 2019. [Online]. Available: http://www.graph500.org/
[45] L. Wang, S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, et al.,

“BigDataBench: A big data benchmark suite from Internet serv-
ices,” in Proc. 20th IEEE Int. Symp. High Perform. Comput. Archit.,
2014, pp. 488–499.

[46] D. Wang and X. Sun, “APC: A novel memory metric and measure-
ment methodology for modern memory system,” IEEE Trans.
Comput., vol. 63, no. 7, pp. 1626–1639, Jul. 2014.

[47] Y. Wu, Y.-J. Chen, T.-S. Chen, Q. Guo, and L. Zhang, “An elastic
architecture adaptable to various application scenarios,” J. Com-
put. Sci. Technol., vol. 29, no. 2, pp. 227–238, 2014.

[48] W. A. Wulf and S. A. Mckee, “Hitting the memory wall: Implica-
tions of the obvious,” ACM SIGARCH Comput. Archit. News,
vol. 23, no. 1, pp. 20–24, 1995.

[49] M. Zhu, L. Xiao, L. Ruan, and Q. Hao, “DeepComp: Towards a
balanced system design for high performance computer systems,”
Frontiers Comput. Sci., vol. 4, no. 4, pp. 475–479, 2010.

Yuhang Liu received the PhD degree in com-
puter science from Beihang University, Beijing,
China. He is an associate professor in Institute of
Computing Technology (ICT), Chinese Academy
of Sciences (CAS). He has been a postdoctoral
researcher with the Computer Science Depart-
ment of Illinois Institute of Technology (IIT),
Chicago. He is a member of CCF, ACM and
IEEE. His research interests include high perfor-
mance computing, computer architecture, data
intensive computing and memory performance

optimization. He is currently working on multi-core memory scheduling,
partitioning and prefetching area to improve multi-core memory access
bandwidth utilization and minimize access latency.

Xian-He Sun is a distinguished professor of com-
puter science at IIT. He is the director of the Scal-
able Computing Software laboratory at IIT, an
IEEE fellow, the past chairman of the Computer
Science Department of IIT, and is a guest faculty
in the mathematics and computer science divi-
sion at the Argonne National Laboratory. Before
joining IIT, he worked at DoE Ames National Lab-
oratory, at ICASE, NASA Langley Research Cen-
ter, and at Louisiana State University, Baton
Rouge. His research interests include parallel

and distributed processing, memory and I/O systems, software systems,
and performance evaluation and optimization.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LIU AND SUN: LPM: A SYSTEMATIC METHODOLOGY FOR CONCURRENT DATA ACCESS PATTERN OPTIMIZATION FROM A... 2493

http://www.graph500.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

