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Abstract—Persistent memory (PMEM) devices can achieve
comparable performance to DRAM while providing significantly
more capacity. This has made the technology compelling as
an expansion to main memory. Rethinking PMEM as storage
devices can offer a high performance buffering layer for HPC
applications to temporarily, but safely store data. However,
modern parallel I/O libraries, such as HDF5 and pNetCDF, are
complicated and introduce significant software and metadata
overheads when persisting data to these storage devices, wasting
much of their potential. In this work, we explore the potential
of PMEM as storage through pMEMCPY: a simple, lightweight,
and portable /O library for storing data in persistent memory.
We demonstrate that our approach is up to 2x faster than other
popular parallel I/O libraries under real workloads.

Index Terms—Persistent Memory, Parallel I/0, Libraries,
Memory Management, Storage Management, Memory Mapped
I/0, Data Layout

I. INTRODUCTION

Scientific applications generate massive amounts of data;
however, storage performance lags behind CPU performance
resulting in applications being bottlenecked by I/O both with
other nodes as well as with storage. One approach to alleviate
this problem is to expand the memory capacity of the nodes,
enabling more local processing before requiring communica-
tion. PMEM (e.g., phase change memory and Intel DC Persis-
tent Memory) offers an excellent solution that is cheaper than
DRAM, but offers reasonably similar performance characteris-
tics. This technology has driven considerable work into using
DRAM as a working cache for an expanded PMEM main
memory [1]. As compelling as this case is, it only addresses
the inter-node portion of the bottleneck. For applications where
communication with storage is a more serious concern, using
that same PMEM technology as fast storage (instead of slower
memory) offers a flexible resource that can address multiple
kinds of workloads. For example, various works investigate the
use of storage hierarchies in order to combat the I/O bottle-
neck [2]-[4]. In these works, storage such as PMEM, NVMe,
SSD, and HDD are arranged in a hierarchy based on perfor-
mance and capacity characteristics. Data is initially buffered in
faster storage tiers and then asynchronously flushed to slower
mass storage, which helps avoid costly data stalls. While
there has been considerable work examining the use of node
hosted storage technology with more favorable performance
characteristics than hard drives, the interfaces for PMEM offer

another potential performance gain, but only if the software
uses the devices with these more efficient interfaces.

Due to the DRAM-like performance of PMEM, software
overheads are no longer negligible on the I/O path. For this
reason, researchers have started rethinking the design of
node-local storage stacks [5]-[9], which had previously been
designed for slow storage technologies, such as hard drives.
EXT4/XFS DAX [5] allows applications to directly store data
in PMEM without first copying to DRAM using memory
mapped I/O. SplitFS [6] aims to improve the performance of
DAX by splitting metadata and storage operations between
kernel space and user space respectively, allowing the majority
of I/O operations to avoid the kernel entirely. NOVA [7] is a
log-structured filesystem that aims to exploit the parallelism
and random access properties of PMEM by storing logs per-
inode as opposed to a global log. These works avoid many of
the overheads introduced by the Linux kernel, such as context
switching, splitting/merging, lock contention, and request
reordering. However, improving node-local storage stacks is
not enough. HPC applications typically use parallel I/O (PIO)
libraries on top of node-local storage stacks to persist data.
Fundamental changes in the design of PIO libraries must be
made to gain the full benefits of PMEM for 1I/O.

Various PIO libraries exist, such as ADIOS [10], [11],
HDF5 [12], and pNetCDF [13]. However, these libraries
introduce significant programming burden, software overhead,
and complex configuration spaces. In order to maximize
the performance of these libraries and reduce the user’s
burden, researchers have investigated the use of auto-tuning
to identify optimal parameters specific to the characteristics
of applications and parallel filesystems [14]-[17], with
approaches such as genetic algorithms and Bayesian
optimization. However, at a fundamental level, existing PIO
libraries do not interact with PMEM efficiently, regardless
of how well they are tuned. For example, all existing work
depends on the use of MPI-IO and POSIX, which causes
unnecessary networking communication and data copies that
degrade the performance of I/O to PMEM [18]. Furthermore,
PIO libraries tend to have complicated APIs, requiring many
lines of code to store simple data structures, such as arrays.
A simple memcpy interface is more desirable. PIO libraries
should be designed with awareness of the underlying device
characteristics in mind in addition to being more user-friendly.

In this work, we present pMEMCPY: a simple, lightweight,



and portable I/O library for storing data in persistent memory.
Using the Persistent Memory Development Kit (PMDK) [19],
applications have direct access to PMEM while maintaining
consistency guarantees. Users can store data structures with
a simple key-value store interface that adds the minimal
metadata necessary to deserialize the data structures in
addition to avoiding costly network communications and data
copies that other PIO libraries introduce.

Our contribution offers an optimized approach for parallel
I/O library design that can store application data structures
in node-local PMEM directly with minimal overhead using a
simple key-value store interface similar to memcpy. Through
this style of I/O library, users can achieve the best possible
PMEM performance for their storage operations and enjoy
an API much closer to memcpy.

The rest of this paper is organized as follows. First in
Section II is a deeper discussion of background and related
work. Next in Section III we detail the reasoning and design
decisions for our demonstration. Section IV presents a
collection of evaluations comparing this approach against
alternatives. Finally, in Section V we summarize the work.

II. BACKGROUND & RELATED WORK

There are various existing parallel I/O libraries, including
HDF5, ADIOS, and pNetCDF. Furthermore, there are various
libraries and APIs that exist to efficiently interact with
PMEM. However, there has been no published approach, to
our knowledge, that demonstrates how to optimize the 1/O
library for PMEM interfaces and simplify the API to a most
basic memcpy-like approach.

A. Parallel I/0 (PIO) Libraries

HDF5 [12] is a popular PIO library, and is used as
the foundations for other popular PIO libraries, such as
NetCDF4 [20]. HDF5 exposes a hierarchical namespace to
users, where H5Groups are analogous to directories. HDF5
can store primitive types (ints, floats, doubles, etc.), compound
data types (structures), and arrays (H5Datasets) of those types.
Subsets of datasets can be taken using the Hyperslab APIs.
HDFS5 can store datasets using various data layout policies:
contiguous, chunked, and compact. The contiguous layout
stores arrays as a 1-D sequence of data, and is the default
layout for HDF5. The chunked mode divides the array into
fixed-size sub-arrays (i.e., chunks) where the dimensions of
the sub-arrays are user-defined. In chunked mode, HDF5 also
allows for the definition of filters, which are operations to
perform on individual chunks, such as compression [21], [22].
Lastly, if the dataset is less than 64KB, the compact mode
stores the dataset in its corresponding metadata entry. In order
to persist data to storage, HDF5 allows multiple approaches:
MPI Independent I/O, MPI Collective 1/O, and POSIX T/O.
In each of these cases, the final output of HDFS is a single
binary file. Furthermore, HDFS5 introduced a multi-tiered
buffer management system, Hermes [4], that allows users to
manage the complexity of heterogeneous, multi-tiered storage
environments without changing application code. While HDF5

is a feature-rich library that has specific functionality for
buffering and prefetching, it has many limitations. The Neuro-
science community, for example, has noted multiple flaws in
the user-friendliness of this library [23]. HDFS5 stores data in a
single binary file, where metadata is not human readable. This
also makes version control systems less efficient. Furthermore,
HDF5 compound types do not support the nesting of com-
pound types or dynamically sized arrays. Furthermore, MPI-1IO
relies on the underlying filesystem (for Linux, read/write)
APIs in order to store data. However, read/write perform data
copies which introduces unnecessary overhead [18].

An alternative to HDFS and NetCDF4 is the pNetCDF [13]
library. This was developed around the same time as NetCDF4
as an effective demonstration on how to maintain the NetCDF3
compatibility as much as possible while extending for 64-bit
support. While the two libraries “compete”, the reality is
that they co-exist peacefully and are widely supported as a
pair rather than individually. For exmaple, the NCAR PIO
library [24] offers a single API that can switch to use either
NetCDF4 or pNetCDF underneath. As with HDFS, pNetCDF
is designed with MPI-IO as the primary IO interface for
parallel IO and optimized for slow storage devices through
additional work to prepare data to more efficiently be moved
into storage. However, the performance gains of PMEM
shifts the bottleneck of the storage device that afforded such
optimizations without noticeably hurting performance to the
I/O library itself. NVMe devices have had a similar effect [25],
but PMEM offers additional performance exasperating the
performance overhead the software layer imposes.

ADIOS is an alternative PIO library to HDF5, NetCDF
and pNetCDF. ADIOS aims to encompass various I/O trans-
port mechanisms (e.g., MPI-IO, POSIX, HDF5, and netCDF)
under a simplified interface that is easily configurable and
requires little change to application code to change which
implementation is used. The original design of ADIOS was
based on trying to reduce the code complexity of HDFS5
and acknowledge that some of the performance optimizations
employed by HDF5 and other libraries that use similar PIO
techniques ultimately do not scale for writing or reading as
well as hoped [26]. One approach ADIOS uses to address
the performance gap is to use its own BP format whenever
possible. BP offers delayed consistency, lightweight data char-
acterization, and data resilience. Unlike HDF5, ADIOS stores
data in the same format as it was produced on a process-by-
process basis rather than constructing a global linearization
of complex datastructures. For example, a 3D domain decom-
position is stored as a single item in HDF5 with all three
dimensions across all processes being linearized through a
data rearrangement phase prior to hitting storage. This has the
advantage of eliminating any potential artifacts from unusual
process decompositions. ADIOS has each process write the
data it owns with no coordination with other processes. This
eliminates the data rearrangement phase, which can improving
performance greatly. In particular, large 3D domain decompo-
sitions see radical performance improvements for both writing
and reading [26]. ADIOS also supports transparent and custom



operators, similar to HDF5. Recently, ADIOS2 [10] was re-
leased, which provides a C++ interface that is more simplistic
and extensible than that of the original ADIOS. Their recent
revision includes a key-value store API for storing data. How-
ever, ADIOS?2 suffers from the same drawbacks as the original
when it comes to PMEM as it is storage device agnostic.

A more recent effort, Proactive Data Containers [27] offers
a similar key-value store approach for data management.
However, it is also designed to assume storage devices, such
as SSDs with an assumption that non-volatile memory devices
will have compatible interfaces to get the full performance
benefits.

One system recognizing the need for a different interface
to non-volatile memory is DStore [28]. However, DStore is
intended as a way to store a log for an in-DRAM key-
value store. Unlike other attempts to optimize key-value stores
with PMEM, such as MongoDB-PMEM [29] and PMEM-
RocksDB [30], DStore uses PMEM to store the logs rather
than as the main store offering greater performance while still
offering predictable consistency.

In all cases, effectively using PMEM using efficient in-
terfaces is a relatively new endeavour that popular HPC 1/O
libraries have yet to embrace. While some progress has been
made in the scale-out space, the recent DStore paper demon-
strates that a simple “switch to the PMDK interface” may not
be the most efficient nor optimal approach for achieving both
performance and price/performance.

B. Accessing PMEM

PMEM can be exposed like any other storage device.
Application developers can use traditional filesystem APIs
such as POSIX, stdlib, and iostream in order to store data
in PMEM. However, these interfaces introduce significant
software overheads. For example, these interfaces will cause
unnecessary data copies and memory allocations to occur.
To avoid this, applications can access PMEM directly using
memory mapped I/O (MMIO) and DAX. However, managing
memory-mapped regions requires application developers
to provide their own memory allocation functions and
concurrency control mechanisms, which can cause data
consistency and reliability concerns.

The Persistent Memory Development Kit (PMDK) [19]
is a collection of libraries and tools for managing PMEM
devices. It provides low-level primitives for interacting with
PMEM and a transactional object store that utilizes memory
mapping in order to interface with PMEM devices. What this
really means is that PMEM is mapped directly in the memory
space for a process enabling direct access. Unlike MPI-IO
and POSIX I/0O, this approach allows applications direct,
zero-copy access to PMEM while providing consistency
guarantees. PMDK provides optimized memory allocation
functions, persistent locks, basic data structures (e.g., thread-
safe lists), and transactions. This allows applications to
have efficient and safe access to PMEM while reducing the
complexity of managing memory-mapped files.

Node 0 Node 1 Node N
DRAM DRAM DRAM
PMEM PMEM PMEM

|
| Shared Burst Buffer |
|

| PFS |

Fig. 1. Basic Machine Architecture

C. New Filesystems

In the Introduction, we covered many of the newer
generation storage systems written from the ground up to
take advantage of solid state, node local storage. However,
these have all been written for NVMe devices, at best, and
still assume a more traditional device interface. One major
exception to this is DAOS [31]. The original design of
DAOS [32] was to offer a new storage architecture, but still
assuming non-PMEM storage devices. The current DAOS
generations have been reimagined using Intel Optane PMEM
devices as a core component. Using these devices, DAOS
was able to achieve top marks on the 10500 list at sc19 [33].
More recent conversations with the DAOS team about Optane
and DAOS or other storage use recommended at most 1% of
the capacity using the PMEM devices as a way to ensure top
performance for the most critical operations while keeping
costs from spiraling out of control [34]. This makes DAOS
a good potential candidate for using PMEM as a storage
device, but it does not address the I/O library layer entirely.
The plug-ins for HDF5 for speaking directly with DAOS and
the DAOS native APIs may offer better support. However, the
interfaces are still complex and focused on a container-like
structure with POSIX-structures layered on top.

III. DESIGN & IMPLEMENTATION

This work offers pMEMCPY, a simplistic and portable I/O
library for managing node-local PMEM. Our design assumes
that the compute nodes running the application also contain
PMEM. Data structures in memory are stored directly on
PMEM without extra metadata, context switching, or data
copies beyond what is necessary to reload the data during a
different application run or for an analysis job. Our assumed,
basic machine architecture is illustrated in Figure 1.

API: pMEMCPY exposes a key-value interface for storing
and loading data from PMEM. Users can store primitive types,
structured types, and arrays of these types using the templated
load/store APIs. The C++ API is shown in Figure 2. In Fig-
ure 3, we demonstrate the usage of pMEMCPY for writing a 1-
D array of data in parallel. In the example, each process writes
100 doubles to non-overlapping offsets in the array directly to
PMEM. alloc is used to specify the final dimensions of the ar-
ray, and store is used to persist pieces of the array generated by
each process. In Figure 4, we show the equivalent HDF5 code.



1. #include <pmemcpy/pmemcpy.hpp>

2. pmemcpy: :PMEM pmem;

3. pmem.mmap(std::string filename, int comm);
4. pmem.munmap();

5.

6. pmem.store<T>(std::string id, T &data);

7. pmem.alloc<T>(std::string id,

8. int ndims, size t *dims);

9. pmem.store<T>(std::string id, T *data,

10. int ndims, size t *offsets, size t *dimspp);
11.

12. pmem.load<T>(std::string id);
13. pmem.load<T>(std::string id, T &num);
14. pmem.load<T>(std::string id, T *data,

15. int ndims, size t *offsets, size t *dimspp);
16. pmem.load dims(std::string id,
17. int *ndims, size t *dim);

Fig. 2. pMEMCPY API

1. #include <pmemcpy/pmemcpy.h>

2. int main(int argc, char** argv) {

3. int rank, nprocs;

4, MPI Init(&argc,&argv);

5. MPI_Comm_rank(MPI_COMM_WORLD, &rank);
6. MPI Comm size(MPI COMM WORLD, &nprocs);
7. pmemcpy: :PMEM pmem;

8. size t count = 100;

9. size t off = 100*rank;
10. size t dimsf = 100*nprocs;
11. char *path = argv[1];
12.
13. double data[100] = {0};
14. pmem.mmap (path, MPI_COMM WORLD) ;
15. pmem.alloc<double>("A", 1, &dimsf);
16. pmem.store<double>("A", data, 1, &off, &count);
17. MPI Finalize();
18. }

Fig. 3. pMEMCPY API Usage Example

HDFS5 requires a user to create and free dataspace and dataset
objects in addition to subsetting the dataset, and each of these
interfaces contain many parameters. The dataspace defines the
dimensions of the array, and the dataset represents the array
within HDF5. The HDF5 version is 42 lines of code and 253
tokens, whereas our code is 16 lines and 132 tokens, which is
a 92% reduction in the number of tokens. (Note, the number of
lines calculation discounts lines where there is no code.) Sim-
ilar to HDF5, NetCDF and pNetCDF requires users to define
and allocate the dimensions of the array using special APIs,
which adds unnecessary complexity. While ADIOS simplifies
this, it still requires the user to store the dimensions of the ar-
ray separately and then associate those variables with the array.
pPMEMCPY automatically stores the dimensions of the array
and the per-process subarrays in the store API by appending
“#dims” to the id; dimensions can be queried using load_dims.
In Figure 5, we show the equivalent ADIOS code, which is 24
lines and 164 tokens. Overall, we see that pMEMCPY provides
a more simplified and compact API than other libraries.
Data Transfer and Serialization: Unlike ADIOS,
NetCDF, and pNetCDF which depend on POSIX and MPI-
10, pMEMCPY uses memory mapping and independent I/O to

1. #include <hdf5.h>

2. int main (int argc, char **argv) {

3 int nprocs, rank;

4, MPI Init(&argc, &argv);

5. MPI Comm size(MPI COMM WORLD, &nprocs);
6 MPI_Comm_rank(MPI_COMM WORLD, &rank);
7 hid t file id, dset id;

8. hid t filespace, memspace;

9. hsize t count = 100;
10. hsize t offset = rank*100;

11. hsize t dimsf = nprocs*100;

12. hid t plist id;

13. herr t status;

14. char *path = argv[1l];
15. int data[100];

17. plist id = H5Pcreate(H5P_FILE ACCESS);
18. H5Pset fapl mpio(plist id,

19. MPI COMM_WORLD, MPI INFO NULL);

20. file id = H5Fcreate(path,

21. H5F ACC_TRUNC, H5P_DEFAULT, plist_id);
22. H5Pclose(plist id);

23

24, filespace = H5Screate simple(l, &dimsf, NULL);
25. dset id = H5Dcreate(file_id, "dataset",

26. H5T NATIVE INT, filespace, H5P DEFAULT,

27. H5P_DEFAULT, H5P_DEFAULT);

28. H5Sclose(filespace);

29. memspace = H5Screate simple(1l, &count, NULL);
30. filespace = H5Dget space(dset id);

31. H5Sselect hyperslab(filespace,

32. H5S SELECT SET, &offset,
33. NULL, &count, NULL);
34,

35. plist id = H5Pcreate(H5P_DATASET XFER);
36. status = H5Dwrite(dset id, H5T NATIVE INT,
37. memspace, filespace, plist id, data);

39. H5Dclose(dset id);
40. H5Sclose(filespace);
41. H5Sclose(memspace) ;
42, H5Pclose(plist id);
43. H5Fclose(file id);
44, MPI Finalize();

45, return 0;

Fig. 4. Equivalent HDF5 Example

store data in the node-local PMEM, which avoids unnecessary
data copies, network/inter-process communications, and
kernel interventions. When storing a data structure in PMEM,
pPMEMCPY serializes the data using well-known, portable
serialization libraries, such as BP4 [10], CapnProto [35], and
cereal [36]. By default, the BP4 serialization (same as ADIOS)
is used; however, other serialization tools can be added, and
serialization can be completely disabled. Unlike similar work
which serializes data structures into an in-memory buffer
and then copies to PMEM, pMEMCPY can serialize the
data directly into PMEM without first placing it in DRAM,
avoiding a significant data copying cost. Furthermore, we
allow users to configure whether or not the MAP_SYNC
flag is enabled when storing serialized data structures in a
region of PMEM. The MAP_SYNC flag guarantees that,
after a crash, a block that has been mapped into memory
with write permissions will still be at the same offset within



1. #include <adios.h>

2. int main(int argc, char **argv) {

3 int rank, nprocs;

4 MPI Init(&argc, &argv);

5. MPI Comm size(MPI COMM WORLD, &nprocs);
6. MPI Comm_rank(MPI_COMM WORLD, &rank);
7 char *path = argv[1l];
8 char *config = argv[2];
9 double data[100];

10. int64_t adios_handle;

11. size t count = 100;

12. size t offset = 100*rank;

13. size t dimsf = 100*nprocs;

14.

15. adios_init(config, MPI_COMM_WORLD) ;
16. adios open (&adios handle, "dataset",
17. path, "w", MPI COMM WORLD);

18. adios write
19. adios write
20. adios write
21. adios write

(adios handle, "count", &count);
(adios _handle, "dimsf", &dimsf);
(adios handle, "offset", &offset);
(adios_handle, "A", data);

22. adios close (adios handle);
23. adios_finalize (rank);

24, MPI Finalize ();

25. return 0;

26. }

Fig. 5. Equivalent ADIOS Example. Note, there is a separate ADIOS config
file that defines “A” in terms of count, off, and dimsf.

the file [37]. While this improves crash consistency, this can
introduce significant latency penalties that severely degrade
performance, as shown in our evaluations. After serialization,
a burst buffer, such as DataWarp [38], will then be triggered
to asynchronously flush the buffered data to mass storage.
The data will be stored in the same format as it was produced,
similar to ADIOS, which avoids the network and inter-process
communication required to restructure the data.

Data Layout: By default, pMEMCPY stores all application
data in a single file similar to ADIOS, NetCDF, and
pNetCDF. However, pMEMCPY uses the PMDK [19] to
manage PMEM, which provides direct access to PMEM in
addition to data consistency guarantees, concurrency control,
and memory allocation policies. Metadata is stored in a flat
namespace using a hashtable with chaining. This utilizes
the high parallelism and random access characteristics of
PMEM. Alternatively, unlike ADIOS, NetCDF, and pNetCDF,
PMEMCPY can layout data hierarchically using the PMEM’s
filesystem. In this approach, instead of writing to a single
file, pMEMCPY stores the data structures in a directory and
creates a file for each variable. Whenever a “/” is used in the id
of the variable, a directory is created if it didn’t already exist.

IV. EVALUATIONS

Testbed: All tests were conducted in Chameleon Cloud
using a Compute Skylake node. Compute Skylake nodes
come with 192GB of RAM and 2x Intel(R) Xeon(R) Gold
6126 CPU @ 2.60GHz, for a total of 24 cores/48 threads.
The OS used was Ubuntu 20.04 with kernel 5.4.0-70-generic.
We used openmpi 3.1.6.

Emulating PMEM: Since we do not have access to
PMEM, we emulate it using the approach presented in the
Strata PMEM filesystem paper [8]. We utilize Linux’s PMEM

emulator to treat 80GB of DRAM as PMEM and format the
resulting PMEM device using EXT4 with DAX enabled. We
assume that PMEM has a read latency of 300ns, write latency
of 125ns, read bandwidth of 30GB/s, and write bandwidth
of 8GB/s [39]. We benchmarked DRAM bandwidth and
latency using Intel’s MLC [40] and use nanosecond-accurate
monotonic timers to add the additional latency and bandwidth
constraints.

A. Real-App Evaluation

In this test, we demonstrate the performance impact
of pMEMCPY over other popular PIO libraries using real
workloads. In this evaluation, we use two workloads that were
obtained through the help of scientists [26]. The first workload
is a write-only 3-D domain decomposition problem where
each process writes a rectangular region of data to storage.
The second workload is a read-only workload that reads the
regions from storage. For both tests, we use between 8 and
48 processes. This model represents a large memory regular
stencil code common in compute models today. One example
is the S3D combustion code [41] that was the inspiration for
this configuration. This model has been previously used [26]
to demonstrate potential /O performance. In the write-only
case, we generate 10 3-D rectangles. For each test, a total of
40GB of data is generated and the 40GB is divided equally
among the processes. Each element in the rectangle is a
double precision floating point value (8 bytes). The read
workload is completely symmetrical to the write workload,
where each process reads the same data that had been written.
We measure the wall-clock time from the point at which the
file is opened/mmapped to when the it is closed. We perform
the I/0 using ADIOS, NetCDF-4, pNetCDF, and pMEMCPY
and compare the runtime between the different approaches.
For NetCDF-4, we make sure to call nc_def var_fill() with
NC_NOFILL in order to prevent it from initializing variables
with a default value, which causes significant overhead for
write workloads. For pMEMCPY, we use BP4 serialization
with the PMDK hashtable layout. We run each experiment
3 times and take the average of the runs. We only used a
single node for this evaluation since pMEMCPY requires no
network communication in order to store the data in local
PMEM, and should therefore scale linearly with an increase
in the number of nodes. The per-node data can be written
to permanent storage asynchronously to mass storage using a
burst buffer technology, as mentioned in Section III.

The results of the experiment are shown in Figures 6 and 7.
From these figures, we see the effects of concurrency due to
the CPU and PMEM wear off after 24 cores in the write case
and for most of the reads, with the exception of PMCPY-B
and NetCDF4. This makes sense considering the node has 24
physical CPU cores in total. For NetCDF, the performance
differences were largely due to differences in the dimensions
of the cube being read for the different process counts. For
PMCPY-B, this was because the metadata updates were
parallelized, which caused fewer stalls. Overall, we see that
pPMEMCPY outperforms ADIOS, NetCDF, and pNetCDF
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Fig. 6. Performance of writing a 40GB 3-D domain to PMEM for a varying
number of processes. PMCPY-A has MAP_SYNC disabled, whereas PMCPY-
B has it enabled. Each process writes an equal amount of data. pMEMCPY is
2.5x faster than pNetCDF and NetCDF by avoiding network communications
and data copying costs. At 24 cores, pMEMCPY is faster than ADIOS by
15% when MAP_SYNC is disabled, and slightly slower when MAP_SYNC
is enabled. Note, the left figure is a zoomed in version of the right figure.

in both workloads when MAP_SYNC is disabled. This is
because pMEMCPY avoids unnecessary communications and
data copies that other PIO libraries introduce. In the case of
writes, all other PIO libraries first generate the cube in DRAM,
serialize the cube into another DRAM buffer, and then copy
the serialized cube to the PMEM whereas pMEMCPY
generates the cube in DRAM and then serializes the cube
directly into the PMEM, avoiding an entire copy of the cube.
From these figures, we see ADIOS performs far better than
NetCDF and pNetCDF in both read and write performance.
This is because, similar to pMEMCPY, ADIOS stores data
in the same format as it was produced, which avoids costly
network communications and data copies during the write
phase. Furthermore, since the workload is symmetrical,
ADIOS does not need to realign any data, which mitigates
data shuffling costs in the read phase. However, pNetCDF
and NetCDF store data contiguously, which requires data to
be shuffled during both reads and writes, incurring significant
overhead. While ADIOS performs much better than pNetCDF
and NetCDF, it still introduces data copying overheads that
pPMEMCPY avoids, causing its performance to be suboptimal.
For example, in the case of reads, ADIOS requires the
serialized data to be copied from PMEM into DRAM and
then deserialized into another DRAM buffer. pMEMCPY
deserializes the data directly from PMEM, avoiding the initial
copy from PMEM to DRAM. Within pMEMCPY, we see that
the choice of flags has a significant impact on performance.
When MAP_SYNC is enabled, the performance benefit of
serializing/deserializing directly from PMEM is completely
lost, and can even cause performance to be worse than simply
using POSIX read()/write(). Overall, we see that pMEMCPY
can perform at least 15% better for writes and 2x better for
reads depending on the level of security the user requires.

B. Discussion

While standard I/O libraries offer a familiar interface, that
can come at a cost. ADIOS, with the design break from the
previous generation demonstrates better performance, but is

I/0 LIBRARY VS # PROCESSES (READS)

—4&— ADIOS NetCDF pNetCDF PMCPY-A === PMCPY-B
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# PROCESSES # PROCESSES
Fig. 7. Performance of reading a 40GB 3-D domain from PMEM for a

varying number of processes. PMCPY-A has MAP_SYNC disabled, whereas
PMCPY-B has it enabled. Each process reads an equal amount of data.
pPMEMCPY is 5x faster than pNetCDF and NetCDF by avoiding network
communications and data copying costs. pMEMCPY is 2x faster than ADIOS
when MAP_SYNC is disabled. When enabled, pMEMCPY performs no better
than ADIOS. Note, the left figure is a zoomed in version of the right figure.

still not optimal by a margin of 15% - 100%. Only by using an
approach such as the one we demonstrate in pMEMCPY can
the full potential of PMEM as a storage device be achieved.

V. CONCLUSIONS

Persistent memory (PMEM) is an extraordinarily fast
persistent storage device typically thought of as an extension
of DRAM main memory. However, using PMEM for storage
requires revisiting the design of parallel I/O (PIO) libraries.
With PMEM being integrated into compute nodes, PIO
libraries should take full advantage of the characteristics of
these devices. However, popular libraries, such as HDFS,
ADIOS, and pNetCDF, introduce significant overheads when
applications store and load data. Furthermore, they introduce
complex interfaces and parameters that add unnecessary
burden on programmers. In this paper, we introduced
pMEMCPY: a simple, lightweight, and portable I/O library
for storing data in persistent memory. We compared our design
with ADIOS, NetCDF-4, and pNetCDF, and found that write
speeds improved at least 15% and reads improved up to 2x.
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