
Utilizing Persistent Memory in Parallel I/O Libraries
Luke Logan

Illinois Institute of Technology
Chicago, IL, USA

llogan@hawk.iit.edu

Jay Lofstead
Sandia National Labs

Albuquerque, NM, USA
glofst@sandia.gov

Scott Levy
Sandia National Labs

Albuquerque, NM, USA
sllevy@sandia.gov

Patrick Widener
Sandia National Labs

Albuquerque, NM, USA
pwidene@sandia.gov

Xian-He Sun
Illinois Institute of Technology

Chicago, IL, USA
sun@iit.edu

Anthony Kougkas
Illinois Institute of Technology

Chicago, IL, USA
akougkas@iit.edu

KEYWORDS
PersistentMemory, Libraries,MemoryManagement,MemoryMapped
I/O

1 EXTENDED ABSTRACT
Scientific applications use parallel I/O (PIO) libraries, such as ADIOS [7],
HDF5 [3], and NetCDF [8], to manage the complexity of reading and
writing mass amounts of data to storage efficiently. A common and
effective approach to improving I/O performance is multi-tiering,
which utilizes fast storage to absorb writes and store data expected
to be accessed in the near future. However, PIO libraries have not
adequately adapted to the emergence of persistent memory (PMEM)
as a new tier of storage, which provides comparable performance to
DRAM and the ability to be accessed directly using CPU load/stores.
Existing research on utilizing PMEM as fast storage [1, 4, 10, 11],
mainly focuses on redesigning single-node filesystems to reduce the
software overhead incurred by traditional storage stacks designed
for slower storage media. While PIO libraries currently depend on
single-node filesystems to read and persist data, simply improving
the performance of these filesystems is not sufficient to gain the
full benefits of PMEM. At a fundamental level, the MPI-IO and
POSIX interfaces typically used by PIO libraries to interact with
storage cause significant overhead due to unnecessary network
communication and data copying when PMEM is available. For
example, persisting an in-memory data structure to storage using
POSIX requires it to be serialized into another in-memory buffer
and then copied to PMEM as opposed to simply serializing the data
directly into PMEM, resulting in an unneeded copy of the entire
data structure, wasting both precious space and performance. PIO
libraries must adapt in order to realize the full potential of
PMEM as fast storage. In addition, PIO libraries tend to introduce
complex APIs and configuration spaces that cause significant bur-
den on programmers to store basic data structures, such as integer
arrays. In many cases, more simplistic interfaces, such as key-value
stores, are preferable.

In this work, we explore the use of memory mapping as an alter-
native to POSIX and MPI-IO for interacting with PMEM through
pMAP: a lightweight I/O library with a simplistic key-value store
interface. We demonstrate that our approach can yield up to 2x
improvement in performance over other popular PIO libraries by
eliminating unnecessary data copies and network communications.

PFS

 Node 0

PMEM
DRAM

...

Node 1

PMEM
DRAM

Node N

PMEM
DRAM

Shared Burst Buffer

Figure 1: Basic Machine Architecture

1. #include <pmap/pmap.hpp>
2. pmap::PMEM pmem;
3. pmem.mmap(std::string filename, int comm);
4. pmem.munmap();
5.
6. pmem.store<T>(std::string id, T &data);
7. pmem.alloc<T>(std::string id,
8. int ndims, size_t *dims);
9. pmem.store<T>(std::string id, T *data,

10. int ndims, size_t *offsets, size_t *dimspp);
11.
12. pmem.load<T>(std::string id);
13. pmem.load<T>(std::string id, T &num);
14. pmem.load<T>(std::string id, T *data,
15. int ndims, size_t *offsets, size_t *dimspp);
16. pmem.load_dims(std::string id,
17. int *ndims, size_t *dim);

Figure 2: pMAP API

2 DESIGN
pMAP is designed for systems where each node performing I/O
contains a local PMEM device, which is depicted in Figure 1, and
provides a key-value interface, depicted in Figure 2. In Figure 3
(on the poster), we show an example of pMAP where each process
writes 500 doubles to a 1-D array. The pMAP implementation is
16 lines of code (LOC) and 132 tokens. We also implement the ex-
ample in HDF5, NetCDF, pNetCDF, and ADIOS (not shown due to
space). The equivalent HDF5 code requires the creation of multiple
property lists, dataspaces, and datasets, forcing users to learn many
specialized APIs that contain many parameters. The equivalent
HDF5 code for this simple task is 42 LOC and 253 tokens, a 2.62x
increase in LOC and 92% increase in the number of tokens. (Note,

LOC ignores lines without significant code.) While NetCDF and
pNetCDF reduce code volume significantly compared to HDF5, they
still require specialized APIs to allocate array dimensions, adding
complexity. While specialized APIs aren’t needed to allocate di-
mensions in ADIOS, users must manually create variable names
for each dimension and then associate them with the array being
stored, whereas pMAP simply stores the array dimensions in the al-
loc function. The equivalent ADIOS code is 24 LOC and 164 tokens.
Overall, pMAP provides a more compact, user-friendly interface
than other representative PIO libraries.

pMAP utilizes memorymapping (mmap) to interface with PMEM
as opposed toMPI-IO and POSIX. Typically, PIO libraries depending
on POSIX or MPI-IO must first serialize data to an in-memory buffer
and then copy the serialized data to PMEM. Conversely, to load data
from PMEM, they must first copy the serialized data from PMEM
to an in-memory buffer, and then deserialize the data into another
in-memory buffer. However, pMAP serializes data directly to an
mmapped file using serialization libraries, such as BP4 [7]. For reads,
data is deserialized directly from PMEM to an in-memory buffer.
This avoids an entire copy of the data structure caused by the POSIX
and MPI-IO interfaces. In addition, pMAP makes the MAP_SYNC
flag optional when memory mapping the PMEM. This flag prevents
the filesystem from silently relocating mapped blocks of the file
and guarantees that the metadata regarding block allocations are
consistent, which helps improve crash consistency. However, this
can cause severe performance degradation, as metadata flushes are
much more frequent. The user can choose to enable this depending
on their security needs. Lastly, to persist data tomass storage, pMAP
will trigger a burst buffer, such as DataWarp, to asynchronously
migrate the data in PMEM to permanent storage.

3 EVALUATIONS
Testbed: Tests were conducted on a Compute Skylake node in
Chameleon Cloud [2], which are equipped with 192GB of RAM
and 2x Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz, for a total of
24 cores/48 threads. The OS used was Ubuntu 20.04 with kernel
5.4.0-36.

Emulating PMEM: To emulate PMEM, we use the approach
presented in Strata [4]. We utilize Linux’s PMEM emulator to treat
60GB of DRAM as PMEM and format it with DAX-enabled EXT4.
We assume that PMEM has a read latency of 300ns, write latency of
125ns, read bandwidth of 30GB/s, and write bandwidth of 8GB/s [9].

Workload: In these tests, we compare the performance of pMAP
and other PIO libraries using an emulation of the S3D combustion
code [5, 6]. First, a 40GB 3-D rectangle is generated and persisted to
PMEM. Each process persists an equivalently-sized portion of the
rectangle. Next, an analysis code reads the 40GB rectangle back into
memory. Each process reads the exact same portion of the rectangle
that was originally written. Between 8 and 48 processes are used.
We compare the performance of pMAP with ADIOS, NetCDF, and
pNetCDF on a single Skylake node. Only a single node is used for
the evaluations as pMAP stores all data in node-local PMEM, which
requires no inter-node communications, making it scale linearly
with an increase in nodes. We measure the time difference between
when a file is opened and when it is closed. Each experiment is
conducted 3 times, and the average time is shown. We show the

performance of pMAP with (pMAP-B) and without (pMAP-A) the
MAP_SYNC flag enabled.

Results: The results of the experiments are shown in the poster
in Figures 4 and 5. We find that pMAP outperforms NetCDF and
pNetCDF dramatically, as much as 5x, in both the write and read
workloads. This is because NetCDF and pNetCDF forces the 3-D
rectangle to be stored logically as an array, requiring the data to
be shuffled, incurring significant and avoidable communication
and data copying costs. ADIOS and pMAP store data without any
shuffling in local storage, which eliminates the communication
cost and most data copying costs seen in NetCDF and pNetCDF.
While ADIOS makes significant improvements over NetCDF and
pNetCDF, pMAP outperforms it by 15% in the write workload and
2x in the read workload when the MAP_SYNC flag is disabled. This
is because pMAP (de)serializes data directly to/from the PMEM,
avoiding an entire copy of the rectangle. However, when enabled,
MAP_SYNC causes a flurry of metadata requests, eliminating the
performance benefits of memory mapping entirely, and potentially
causing performance to be worse than simply using POSIX. Overall,
we see that pMAP can perform at least 15% better for writes and 2x
better for reads depending on its configuration.

4 CONCLUSION
Persistent memory (PMEM) has caused a revolution in the design
of storage stacks. Much research has been conducted on optimizing
filesystems for accessing PMEM, significantly reducing the over-
heads imposed by traditional I/O stacks. However, parallel I/O (PIO)
libraries have yet to adapt to the emergence of this technology,
resulting in severe performance loss on systems where PMEM is
available. Existing PIO libraries simply rely on MPI-IO and POSIX
in order to interact with storage, incurring significant overhead
due to unnecessary data copying and network communication. In
this work, we design pMAP: a simple I/O library that efficiently
utilizes PMEM to read and persist data with memory mapping. We
compared pMAP with multiple PIO libraries and found that our
approach yields improvements of up to 15% for writes and 2x for
reads.

REFERENCES
[1] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj

Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System software for persistent
memory. In Proceedings of the Ninth European Conference on Computer Systems.
1–15.

[2] Kate Keahey, JasonAnderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione,
Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock, Joe Mambretti,
Alexander Barnes, François Halbach, Alex Rocha, and Joe Stubbs. 2020. Lessons
Learned from the Chameleon Testbed. In Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC ’20). USENIX Association.

[3] Quincey Koziol, Dana Robinson, et al. 2018. HDF5. Technical Report. Lawrence
Berkeley National Lab.(LBNL), Berkeley, CA (United States).

[4] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel,
and Thomas Anderson. 2017. Strata: A cross media file system. In Proceedings of
the 26th Symposium on Operating Systems Principles. 460–477.

[5] David Lignell, C Yoo, Jacqueline Chen, Ramanan Sankaran, and M Fahey. 2007.
S3D: Petascale combustion science, performance, and optimization. In Proceedings
of the Cray Scaling Workshop, Oak Ridge National Laboratory, TN.

[6] Jay Lofstead, Milo Polte, Garth Gibson, Scott Klasky, Karsten Schwan, Ron Old-
field, Matthew Wolf, and Qing Liu. 2011. Six degrees of scientific data: Reading
patterns for extreme scale science io. In Proceedings of the 20th international
symposium on High performance distributed computing. 49–60.

[7] Jay F Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and Chen Jin.
2008. Flexible IO and integration for scientific codes through the adaptable IO

2

system (ADIOS). In Proceedings of the 6th international workshop on Challenges of
large applications in distributed environments. 15–24.

[8] Russ Rew and Glenn Davis. 1990. NetCDF: an interface for scientific data access.
IEEE computer graphics and applications 10, 4 (1990), 76–82.

[9] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons
Kemper. 2019. Persistent memory I/O primitives. In Proceedings of the 15th
International Workshop on Data Management on New Hardware. 1–7.

[10] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam, Venkatanathan
Varadarajan, Prashant Saxena, and Michael M Swift. 2014. Aerie: Flexible file-
system interfaces to storage-class memory. In Proceedings of the Ninth European
Conference on Computer Systems. 1–14.

[11] Jian Xu and Steven Swanson. 2016. {NOVA}: A log-structured file system for
hybrid volatile/non-volatile main memories. In 14th {USENIX} Conference on
File and Storage Technologies ({FAST} 16). 323–338.

3

	1 Extended Abstract
	2 Design
	3 Evaluations
	4 Conclusion
	References

