\ Utilizing Persistent Memory in Parallel 1/0
\\' SCALABLE COMPUTING Libraries ILLINOIS INSTITUTE

S O FTWARE LAB O RATO RY Luke Logan Jay Lofstead Scott Levy Patrick Widener Xian-He Sun Anthony Kougkas O F T E C H N O LOGY

llogan@hawk.iit.edu, {glofst,sllevy,pwidene}@sandia.gov, {sun,akougkas}@iit.edu

3. Avoiding Data Copying Costs 4. pMAP API 5. pMAP API Example

1. Motivation

Scientific applications use parallel 1/0 (PIO) . PIO Lib o Transfer L. #inc}lljde <pmap/pmz?1p .hpp> % #1nclude fpmap/pmap.ﬂ> .
libraries to read/write data TYP|03|- User — : —Serialize—— 2. pmap::PMEM pmem(); - 1nt main(int argc, char® argv) {
o D | (write) (POSIX) 3. pmem.mmap(std::string filename, int comm); 3. int rank, nprocs;
PlO libraries have not adequately adapted to \ 4. pmem.munmap () : 4 MPI Init(&argc,&argv):
the emergence of PMEM as a new tier of D D* D* D* 5. 5. MPI Comm rank(MPI COMM WORLD, &rank);
storage DRAM D PMEM 6. pmem. sto re<T>(Std: gt ring ld, T &data’ 6. MPI_Comm_Size(MPI_COMM_WORLD, &nDFOCS) ,
P10 libraries currently depend on MPI-10, U | 7. pmap: :SerializerType s = Default); ; pmap: : PMEM pmfm;@@'
POSIX, and filesystems for /0O, which cause nnecessary: 8. pmgm.allqc<T>(§td: :Str]:'ng 1d, 9. 2;;2{ g$¥n£ EOint:krank-
significant performance loss due to data 9. int ndlms,. size t *dims, 10' cize t dimsf = count*an"OCS'
copying and network communications pDMAP Serializel 10. pmap: :SerializerType s = Defau}(t) ; = char *path = argvll]: ;
. . pPMAP: User —— R e 11. pmem.store<T>(std::string id, T *data, 5
P10 libraries have complicated APls that D | (write) (MMAP) 12. int ndims, size t *offsets, size t *dimspp); '
cause significant burden on programmers to /) D>\ 13 - — 13. double data[l00] = {0};
\ store basic data structures | 14. pmem.load<T>(std::string id): 14. pmem.mmap (path, MPIFCE)MM_WORLP) o
DRAM PMEM . . 15. pmem.alloc<double>("A", 1, &dimsT);
15. pmem. load<T>(std::string 1d, T &num); 16 t <double>(
2. Proposed Solution ectring i * - PMen. store=double
. P 16. pmem.-l.Oad<T>(Std. 1St ring id, T *data, 17. "A" data, 1, &off, &count):
We design and implement a lightweight |/O li Figure 2: Storing a data structure D in PMEM using a typical PIO library vs pMAP 17. int ndims{ size t *Off56t§ , Size t *dimspp); 18. MPI F’inalizé() :
brary, pMAP: L o _ | 18. pmem. load dims(std::string 1id, 19. } -
: | To store data structures, PlO libraries must serialize the entire data structure in-memory 19. int *ndims, size t *dim);
Memory mapping is used to interact with and then copy to PMEM Figure 6: Writing a 1-D array to PMEM using pMAP; each process writes
PMEM as opposed to POSIX and MPI-IO in pPMAP serializes/deserializes data directly from node-local PMEM using memory Figure 4: pMAP API: storing data structure and arrays of data structures 500 doubles to the array
order to avoid data copying k mapping and well-known serialization libraries, such as CapnProto \ |
A simple key-value store API to store data
structures is employed reduce programming 9. PIO Library Write Comparison 10. PIO Library Read Comparison 6. APl Comparison
burden
lvivsrrak:i:ds and compare against various P10 —e— ADIOS NetCDF oNetCDF PMAP-A PMAP-B —e— ADIOS NetCDF oNetCDF PMAP-A PMAP-B OMAP
30 . ADIOS
. Testbe :
15 ,.\\\) O NetCDF
Sk lake — — 4 0\‘_‘\ 15
y @ 10 — ¢ 90 D et HDF5
DRAM 192GB o 5 —= 3 -
Cores 24 2 : 10 —~ o — % | 2 9 Figure 7: APl comparison
— . =) Y SR —— " o We rebuild the examples shown in the above AP| example using
Threads 48 0))) X ’ other PIO libraries, and found pMAP has:
0
0S Ubuntu 20.04 8 16 24 392 A48 8 16 24 39 48 g 16 24 32 A8 g 16 94 39 418 90; fewer tokens than HDF5
36% fewer tokens than NetCDF
Kernel 5.4.0-36 # PROCESSES
PROCESSES # PROCESSES # PROCESSES 25% fewer tokens than ADIOS
Figure 1: Chameleon Cloud Figure 3: Writes Figure 5: Reads PMAP is more compact and user-friendly than other interfaces.
8. Workload pMAP-A outperforms ADIOS by 15% after 24 procs pPMAP-A outperforms ADIOS by 2x regardless of scale \) |
| N pMAP-A outperforms NetCDF and pNetCDF by 2.5x pPMAP-A outperforms NetCDF and pNetCDF by 5x 11. Conclusion
40GB 3-D domain decomposition problem pMAP-B experiences latency penalty from MAP_SYNC, pPMAP-B experiences latency penalty from MAP_SYNC,
Processes read /write same amount of data causing it to be no better than ADIOS causing it to be no better than ADIOS Memory mapping can imgrove PIO read/write performance
oMAP A has MAP_SYNC flag enabled to PMEM by between 15% - 2x
oMAP B has MAP_SYNC flag disabled ‘ S) A simple KVS interface for storing data structures can reduce
- code size by up to 90% compared to other PIO libraries

https://lukemartinlogan.github.io/professional-website/

