
Utilizing Persistent Memory in Parallel I/O
Libraries

Luke Logan Jay Lofstead Scott Levy Patrick Widener Xian-He Sun Anthony Kougkas
llogan@hawk.iit.edu, {glofst,sllevy,pwidene}@sandia.gov, {sun,akougkas}@iit.edu

1. Motivation

1. Scientific applications use parallel I/O (PIO)
libraries to read/write data

2. PIO libraries have not adequately adapted to
the emergence of PMEM as a new tier of
storage

3. PIO libraries currently depend on MPI-IO,
POSIX, and filesystems for I/O, which cause
significant performance loss due to data
copying and network communications

4. PIO libraries have complicated APIs that
cause significant burden on programmers to
store basic data structures

2. Proposed Solution
We design and implement a lightweight I/O li-
brary, pMAP:
1. Memory mapping is used to interact with

PMEM as opposed to POSIX and MPI-IO in
order to avoid data copying

2. A simple key-value store API to store data
structures is employed reduce programming
burden

3. We evaluate our solution using realistic
workloads and compare against various PIO
libraries

7. Testbed

Skylake
DRAM 192GB
Cores 24
Threads 48
OS Ubuntu 20.04
Kernel 5.4.0-36

Figure 1: Chameleon Cloud

8. Workload
40GB 3-D domain decomposition problem
Processes read/write same amount of data
pMAP A has MAP_SYNC flag enabled
pMAP B has MAP_SYNC flag disabled

3. Avoiding Data Copying Costs

User

DRAM

PIO Lib
(write) Serialize

PMEM

Transfer
(POSIX)

DRAM

D
D D* D*D*

Typical:

User

PMEM

pMAP
(write)

Serialize
(MMAP)

DRAM

D
D D*

pMAP:

Unnecessary!

Figure 2: Storing a data structure D in PMEM using a typical PIO library vs pMAP

1. To store data structures, PIO libraries must serialize the entire data structure in-memory
and then copy to PMEM

2. pMAP serializes/deserializes data directly from node-local PMEM using memory
mapping and well-known serialization libraries, such as CapnProto

9. PIO Library Write Comparison

0

5

10

15

20

25

30

8 1 6 2 4 3 2 4 8

PROCESSES

ADIOS NetCDF pNetCDF PMAP-A PMAP-B

I/O LIBRARY VS # PROCESSES (WRITES)

0

5

10

15

8 1 6 2 4 3 2 4 8

T
IM

E
(S

)

PROCESSES

Figure 3: Writes

pMAP-A outperforms ADIOS by 15% after 24 procs
pMAP-A outperforms NetCDF and pNetCDF by 2.5x
pMAP-B experiences latency penalty from MAP_SYNC,
causing it to be no better than ADIOS

4. pMAP API
1. #include <pmap/pmap.hpp>
2. pmap::PMEM pmem();
3. pmem.mmap(std::string filename, int comm);
4. pmem.munmap();
5.
6. pmem.store<T>(std::string id, T &data,
7. pmap::SerializerType s = Default);
8. pmem.alloc<T>(std::string id,
9. int ndims, size_t *dims,

10. pmap::SerializerType s = Default);
11. pmem.store<T>(std::string id, T *data,
12. int ndims, size_t *offsets, size_t *dimspp);
13.
14. pmem.load<T>(std::string id);
15. pmem.load<T>(std::string id, T &num);
16. pmem.load<T>(std::string id, T *data,
17. int ndims, size_t *offsets, size_t *dimspp);
18. pmem.load_dims(std::string id,
19. int *ndims, size_t *dim);

Figure 4: pMAP API: storing data structure and arrays of data structures

10. PIO Library Read Comparison

0

5

10

15

20

8 1 6 2 4 3 2 4 8

PROCESSES

ADIOS NetCDF pNetCDF PMAP-A PMAP-B

I/O LIBRARY VS # PROCESSES (READS)

0

1

2

3

4

5

8 1 6 2 4 3 2 4 8

T
IM

E
(S

)

PROCESSES

Figure 5: Reads

pMAP-A outperforms ADIOS by 2x regardless of scale
pMAP-A outperforms NetCDF and pNetCDF by 5x
pMAP-B experiences latency penalty from MAP_SYNC,
causing it to be no better than ADIOS

5. pMAP API Example
1. #include <pmap/pmap.h>
2. int main(int argc, char** argv) {
3. int rank, nprocs;
4. MPI_Init(&argc,&argv);
5. MPI_Comm_rank(MPI_COMM_WORLD, &rank);
6. MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
7. pmap::PMEM pmem;
8. size_t count = 500;
9. size_t off = count*rank;

10. size_t dimsf = count*nprocs;
11. char *path = argv[1];
12.
13. double data[100] = {0};
14. pmem.mmap(path, MPI_COMM_WORLD);
15. pmem.alloc<double>("A", 1, &dimsf);
16. pmem.store<double>(
17. "A", data, 1, &off, &count);
18. MPI_Finalize();
19. }

Figure 6: Writing a 1-D array to PMEM using pMAP; each process writes
500 doubles to the array

6. API Comparison

Lines of Code # Tokens
pMAP 16 132
ADIOS 24 164
NetCDF 26 180
HDF5 42 253

Figure 7: API comparison

We rebuild the examples shown in the above API example using
other PIO libraries, and found pMAP has:

90% fewer tokens than HDF5
36% fewer tokens than NetCDF
25% fewer tokens than ADIOS

pMAP is more compact and user-friendly than other interfaces.

11. Conclusion

1. Memory mapping can improve PIO read/write performance
to PMEM by between 15% - 2x

2. A simple KVS interface for storing data structures can reduce
code size by up to 90% compared to other PIO libraries

https://lukemartinlogan.github.io/professional-website/

