
LabStor: A Modular and Extensible Platform for
Developing High-Performance, Customized I/O Stacks

in Userspace
Luke Logan, Jaime Cernuda Garcia, Jay Lofstead*, Xian-He Sun, Anthony Kougkas
Illinois Institute of Technology, Chicago, USA, *Sandia National Laboratories, Albequerque, USA

llogan@hawk.iit.edu, jcernudagarcia@hawk.iit.edu, gflofst@sandia.gov, sun@iit.edu, akougkas@iit.edu

Abstract— Traditionally, I/O systems have been developed within
the confines of a centralized OS kernel. This led to monolithic
and rigid storage systems that are limited by low development
speed, expressiveness, and performance. Various assumptions are
imposed including reliance on the UNIX-file abstraction, the POSIX
standard, and a narrow set of I/O policies. However, this monolithic
design philosophy makes it difficult to develop and deploy new
I/O approaches to satisfy the rapidly-evolving I/O requirements of
modern scientific applications. To this end, we propose LabStor: a
modular and extensible platform for developing high-performance,
customized I/O stacks. Single-purpose I/O modules (e.g, I/O
schedulers) can be developed in the comfort of userspace and released
as plug-ins, while end-users can compose these modules to form
workload- and hardware-specific I/O stacks. Evaluations show that
by switching to a fully modular design, tailored I/O stacks can yield
performance improvements of up to 60% in various applications.

Index Terms—Clouds and Distributed Computing, Programming
Frameworks and System Software

I. INTRODUCTION
HPC systems are increasingly suffering from a storage bandwidth

bottleneck. Compute performance is increasing at a much faster rate
than storage bandwidth. In this environment, new storage technologies
are being deployed that offer much higher bandwidth with low
latency, but the I/O stack through the Linux kernel imposes serious
overheads. Approaches such as demonstrated in pMEMCPY [1]
show it is possible to adapt to the native interfaces and dramatically
increase bandwidth. Unfortunately, these are one-off solutions for
each different technology. To truly achieve all available bandwidth,
the design philosophy of the Linux I/O stack must be reconsidered.

Parallel filesystems (PFS), such as Lustre [2], and other distributed
storage systems (e.g., key-value stores, (No)SQL databases) [3] rely
on native Linux filesystems (e.g., ext4) as their backend on each
storage server. This is because they provide a well-tested, secure, and
familiar interface to a diverse set of storage hardware devices [4],
[5]. However, this reliance imposes limitations [3], [6], [7] on all I/O
operations. Specifically, Linux filesystems suffer from three main
issues regarding I/O system development and performance: a) Severe
performance degradation caused by workload-agnostic policies
(e.g., I/O scheduling, caching); b) Significant software overhead for
low-latency devices [4], [8]–[11] caused by frequent context switching
and data copying [5], [12]; c) Limited expressiveness caused by the
UNIX file and the strong POSIX-compliance (e.g., transactions are
difficult to program using the UNIX file representation [3]) forcing
other data representations to be translated into a file. Since PFS offer
a higher-level view of the data on top of multiple local storage servers,
the I/O stacks used locally on each storage node must be optimized to
improve performance and customizability of the the distributed layer.

This work seeks to re-invision the way that I/O stacks are developed
and deployed in order to provide per-workload and per-hardware
optimizations. To achieve this, we have to overcome several obstacles.
First, the methodologies used to implement I/O systems must be sub-
stantially improved to provide high-velocity development. Developing
within the kernel should be avoided since it is limited in functionality,
does not support upgrades without service interruptions, and is
generally complex and time consuming [13]–[16]. Monolithic design
patterns [17] should also be avoided since it slows development speed,
testing is harder, and code-reuse is limited [18], [19]. All layers of the
I/O stack, including I/O interfaces, must be modular and hence easily
programmable [20]–[26]. Second, wide support for both traditional
and modern storage hardware must be maintained. Development
platforms which support only one type of hardware should be
avoided since they increase assumptions, enforce dependencies, limit
portability, and lower adoption rate [27], [28]. It is unrealistic to expect
re-development of device drivers for all storage mediums current or
future. Third, flexible and tunable access control mechanisms must be
provided. Strict protocols enforced globally and holistically should be
avoided since they have limited guarantees [29]–[31], are not always
required [32]–[34], and impose significant performance costs [10],
[35]. Fourth, high-performance must be ensured. Restricting device
access behind long I/O paths should be avoided as they cause software
overheads [36]–[38], limit expressiveness [26], [39], [40], and dismiss
hardware-specific optimizations [41]–[43]. The ability to directly
access hardware using its native APIs should be provided [32]–
[34], [44], [45]. Fifth, end-users should find it easy to integrate
newly-developed I/O stacks. Requiring the individual deployment of
multiple, independently developed I/O systems through interception
should be avoided, as this requires expertise to resolve conflicts
in symbol resolution, hinders productivity, and invites erroneous
outcomes [18], [46], [47]. Modular and programmable stacks hold
promise to address all these challenges and have tremendous impact
on both the developers and the end users of I/O systems.

To address the limitations of rigid, monolithic designs, we propose
LabStor: a modular, extensible, and high-performance I/O platform
that can be customized and extended to meet the needs of different
environments. LabStor introduces the following contributions:

1) LabMods: single-purpose, self-contained code objects which can
be developed in the comfort of userspace and released as plug-ins.
LabMods can represent any functionality, such as I/O scheduling,
caching, access control, or filesystems, and can provide any
interface, including POSIX, key-value store, SQL, etc.

2) LabStacks: A combination of LabMods made by end-users to

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 ©2022 IEEE



form optimized, situation-specific I/O stacks. They are defined
in a human-readable schema file.

3) LabStor Runtime: The system for deploying, querying,
debugging, upgrading and executing LabStacks. It provides
various utility scripts and a userspace process/thread scheduling
framework for balancing LabStack work with application work.

4) Implementation: LabStor comes equipped with a variety of
LabMods, including Driver LabMods, which enable out-of-the-box
support for developing new I/O stacks for different hardware types.

Currently, no framework exists that provides high-velocity
development, hardware diversity, and manageability, while also
providing I/O interface diversity and performance. LabStor’s I/O
stacks and interfaces can be uniquely customized and rapidly
developed to support a wide variety of workloads in both HPC and
Cloud environments, all with the improved I/O performance and
manageability required by modern systems. While this approach may
appear to limit itself to a single node or an exclusive storage system,
consider burst buffers or other fast storage tiers. In many cases, such
as in ORNL’s Summit machine and LLNL’s upcoming El Capitan,
node-local storage system extensions could take advantage of these
designs to maximize overall storage performance. Gestalt machine
designs [48] may use persistent memory as either extended DRAM
or node-local storage on a job-by-job, node-by-node basis. These
hardware deployments could take strong advantage of customized
LabStacks for managing the node-local portion of the storage
hierarchy. In that context, we explore LabStor as an approach to
take best advantage of storage devices in a supercomputer in this
tier. Through the use of a new filesystem and key-value store,
LabStor showcases performance improvements of up to 60% under
different workloads in different environments when compared with
existing approaches. LabStor is not a single I/O stack, rather it is
a comprehensive platform that facilitates the rapid development and
composition of new workload- and hardware-specific I/O stacks.

II. BACKGROUND AND RELATED WORK
In recent years, there has been a growing interest in exploring

changes and improvements to the traditional UNIX I/O stack
motivated by: a) hardware innovation in low-latency storage (e.g.,
NVMe [12] and Persistent Memory (PMEM) [49]) which demand
leaner I/O stacks, and b) the increasingly diverse I/O requirements
of modern workloads which necessitates high-velocity development
and customization of the I/O stack.
A. Shifting I/O from Kernel to Userspace

Traditionally, storage devices are exposed to the users via the OS
kernel, which acts as an authoritative source of trust. Applications
interact indirectly with storage devices using I/O system calls which
involves context switching between user processes and the kernel.
However, this approach generates a rigid software stack [18], [19], [26],
[39], [40] that has been shown to demonstrate significant overheads [4],
[10], [12], [33], [37], [45]. To ease some of the burden from the
kernel, alternative approaches offer shorter paths to the hardware.
Hardware APIs: The Storage Performance Development Kit
(SPDK) [33] is an ©Intel open-source project that provides a set
of tools and libraries for writing userspace storage applications for
NVMe devices. SPDK leverages the NVMe specification to map the
PCI Base Address Register (BAR) into user applications. Similarly,
LightNVM [34] is a userspace driver for OpenChannel SSDs that
enables the programming of the Flash Translation Layer (FTL)
and submission of I/O requests to OpenChannel SSDs entirely in
userspace. DAX [32] is an I/O mechanism that allows development

of PMEM I/O systems in userspace. To get the lowest latency, DAX
treats PMEM devices as byte-addressable memory avoiding normal
filesystem block I/O conventions. By mapping the PMEM devices
into the application address space, DAX allows direct interaction
with PMEM via CPU load/store operations.

B. Developing I/O Stacks in Userspace
The Linux I/O stack is a constantly evolving entity. With every

new update of the kernel new changes and optimizations get
included [13]. Yet, many works have discussed the limitations of the
Linux I/O stack and have proposed modifications to it. For example,
many I/O schedulers have been proposed to better handle specific
workloads [20]–[24]. Some examples include Blk-switch [20] and
Bulk I/O Dispatch (BID) [25]. Typically, developing the Linux I/O
stack requires direct kernel modification and recompilation. This
approach limits the pace of development since custom enhancements
or modifications are hard to install, manage, and share. To mitigate
this, the kernel allows the development of kernel modules (KM),
pieces of code that can be loaded and executed inside the kernel.
There are several types of KMs that allow customization of the I/O
stack such as I/O schedulers, page fault handlers, filesystems, and
char/block device drivers. Filesystems are implemented through the
Virtual Filesystem (VFS) Layer and are then inserted into the kernel.
Yet, kernel programming is complex, difficult to debug and limited
by its complexity [13], [14], [47]. New I/O system development
methodologies have been proposed that leverage the Linux I/O stack
while enabling its development and customization in userspace.
Filesystems in Userspace (FUSE): FUSE [47] enables users to
implement filesystems in userspace through the use of upcalls. When
a user executes an I/O system call, the request is passed to the FUSE
VFS kernel module, which then forwards the I/O request to the
userspace filesystem implementation. This approach enables high-
velocity filesystem development, but incurs a significant performance
sacrifice due to the addition of multiple context switches [13], [14].
Works such as Direct FUSE [16] and XFUSE [14] have proposed
improvements to FUSE to reduce the number of context switches.
However, none of these works allow for development of alternative
representations to files, alternative interfaces to POSIX, and still
inherit the overheads of the kernel I/O stack.
Injecting User Code into the Kernel: Bento [13] is a platform
which enables filesystems to be developed in userspace and
interpreted in the kernel. This enables the use of well-established
kernel functionality such as permission checking and device drivers
while also avoiding FUSE overheads. It also improves manageability
(e.g., support for live upgrades). Bento makes use of a VFS kernel
module that is capable of running pre-compiled Rust-based filesystem
implementations submitted by the user and to which I/O operations
are directed. Thus, the Bento framework drastically improves the
velocity of filesystem development. However, Bento suffers the same
limitations as FUSE, but with less context switching cost.
Microkernels: A microkernel, such as MINIX3 [50] or SeL4 [51],
is a minimalistic kernel architecture where the majority of OS
services are provided as libraries developed in userspace, including
device drivers and I/O systems. This provides enhanced development
speed when compared to monolithic kernels (e.g., Linux), as most
programming is done outside the kernel. However, microkernels are
not used in production computing centers. As of November 2021,
all Top500 supercomputing centers run Linux [52]. This is because
Linux has a massive community of developers and is easily installed



Heterogeneous Interface 
Diversity

High-Velocity High-Perf Secure Upgradable Manageable

Storage types supported Modules that can 
be developed

Development 
Location

Support for 
kernel-bypass

Access control 
approach

Live upgrade 
support

Deployment 
Approach

Support for 
multiplexing I/O 

systemsVFS HDD, SSD, NVMe, PMEM FS Kernel No Every I/O 
operation

No Kernel 
Recompilation

Yes
FUSE HDD, SSD, NVMe, PMEM FS Userspace No Every I/O 

operation
No Plugin Yes

Bento HDD, SSD, NVMe, PMEM FS Userspace No Every I/O 
operation

Yes Plugin Yes
Demikernel NVMe, PMEM Any, but IOSched Userspace Yes Every I/O 

operation
No Plugin No

Microkernel HDD, SSD, NVMe, PMEM Any (FS,SQL,etc.) Userspace Yes Every I/O 
operation

Yes New kernel type Yes
LabStor HDD, SSD, NVMe, PMEM Any (FS,SQL,etc.) Userspace Yes Tunable Yes Plugin Yes

Fig. 1. Comparison of different I/O stack design philosophies

on any machine architecture. To utilize microkernels, HPC centers
would have to uproot their infrastructure and manually determine
the set of modules required for their systems to run, including drivers,
which is both difficult and expensive. For these reasons, maintaining
compatability with Linux is a must.
Semi-Microkernels: Various works, particularly in the networking
domain [17], [53], have proposed combining the micro- and
monolithic- kernel approaches, termed semi-microkernel (SMK).
Applications communicate with the SMK using interprocess-
communication. In these works, the SMK process runs in userspace,
providing critical OS services entirely in userspace. Filesystems as
Processes [54] discusses the performance and security requirements
of developing filesystems while bypassing the kernel. uFS [15],
a SMK filesystem dedicates CPU resources to handle filesystem
threads to optimize latency on NVMes. To the best of our knowledge,
the only work which applies this approach to I/O is uFS, which is
a specific filesystem implementation, not a platform for developing
and managing I/O systems. It does not discuss development of other
layers of the I/O stack, developing alternative representations to files,
or the deployment and upgrading of I/O systems.
Library I/O Stacks: Development of I/O stacks as loadable
libraries directly linked into applications has also been presented.
Demikernel [55], [55] splits I/O operations into a control path and
a data path. Control operations are directed into a protected OS
kernel. The data path is implemented by LibOS, an abstraction over
the interface of the kernel-bypass device, and all I/O and network
operations are handled by it. The same design pattern is followed
by Nova [4] and SplitFS [10]. Another work, Simurgh [56], proposes
a PMEM filesystem which implements all I/O functionality within
a single library while protecting against buggy, but not necessarily
malicious, code. Similarly to the SMK, these works primarily discuss
the implementations of independent I/O systems. They are developed
in isolation and can conflict when deployed simultaneously, cannot
be upgraded while applications are running, are only used for storage
where kernel-bypass accelerators exist, and require users to manage
multiplexing concurrently-deployed library I/O systems.

C. Motivation
In summary, the following observations motivate the design and

implementation of this work. First, there is a clear trade-off between
I/O performance and storage features. Systems that execute I/O
operations in the kernel enjoy the wide support for hardware and
the provided secure enclave at the cost of performance and limited
configurability. On the other hand, systems that execute I/O in
userspace recover some performance and enhance customizability
at the cost of limited hardware support, manual implementations
of security semantics, and often troublesome deployments. Second,
there has been a clear trend directed at the programmability of I/O
systems. With works noting the difficulty of upgrading and debugging
kernel code, leading to potential reduction of innovation and a clear

increase in security issues and bugs from unknown and unpatched
vulnerabilities. Finally, over the last couple decades, there is a growth
in I/O interfaces deviating from the typical UNIX file abstraction
(e.g., POSIX files) including key-value stores, NOSQL databases, log
stores, etc. However, currently all these interfaces remain subservient
to the file abstraction, requiring a translation to a file, and enforcing
these systems to follow the underlying assumptions of the file
interface (i.e., POSIX compliance). The translations and semantic
compliance can lead to significant performance degradation.

To address these issues, LabStor presents a platform for developing
I/O stacks in userspace, which provides high performance, config-
urability, and development velocity, while maintaining the hardware
diversity, manageability and security that comes from kernel-level
I/O stacks. At the same time, LabStor leverages its configurability to
provide users with the ability to untether themselves from the file inter-
faces by implementing their own memory-to-disk data mappings. Fig-
ure 1 showcases a comparison of related work and their design goals.

III. THE LABSTOR PLATFORM

LabStor is an I/O platform designed to provide developers with
the ability to implement highly performant, custom, and modular
I/O stacks entirely in userspace. With LabStor, users can create and
customize all I/O policies (e.g., I/O scheduling), utilize a diverse set of
storage devices (including modern hardware such as PMEM [32] or
NVMe [33], [34]), push updates and new features in the I/O stack with-
out significant service interruption, and maintain security semantics.
Most importantly, all this functionality comes without the cumber-
some, often difficult, kernel programming since LabStor brings the I/O
stack entirely in usespace. In addition, LabStor liberates users from the
restrictive POSIX file interface, allowing alternative representations to
be mapped directly to the hardware by enabling direct access to device
drivers from userspace. LabStor pushes towards full modularization
of the stack by introducing the following: a) the LabStor Module
(LabMod): an object that contains code implementing well-defined
functionality (e.g., device drivers, block I/O layer, page caches, I/O
schedulers, and filesystems). b) the LabStor Stack (LabStack): a set of
rules governing a composition of multiple LabMods that implement
an entire I/O stack. c) the LabStor Runtime: the management and
communication infrastructure to execute and deploy LabStacks.
A. Towards Fully Modular I/O Stacks

Traditional I/O stacks used in HPC have been historically developed
within the kernel, which provides a well-tested, well-documented,
secure and uniform interface to a wide variety of storage hardware.
However, this approach followed monolithic designs that led to frag-
mentation in the storage space in terms of innovation, features, perfor-
mance, and semantic richness. Further, monolithic designs suffer from
a lack of policy decisions (e.g., I/O schedulers), limited expressiveness,
minimal code re-use, and cumbersome development pipelines. Such
problems are exacerbated in distributed I/O stacks where functionality
and/or semantics are often duplicated. For instance, a PFS may have



implemented access control while the underlying storage stack of each
participating node already incorporates such semantics [3]. To alleviate
some of these limitations, recent efforts [13] have demonstrated the
benefit of developing I/O systems outside the boundaries of the kernel.
However, these approaches impose assumptions such as the UNIX
file abstraction and the strict POSIX standard, limiting expressiveness,
policy decisions, and configurability. More effort is required to make it
easier for developers to deliver new features fast, reliably, and portably.

LabStor, as a development platform, promotes the Single
Responsibility Principle where code reusability, scalability, and
speedy development is achieved by loosely coupled components,
organized in smaller code bases, allowing easier debugging, faster
deployments, and interoperability between I/O subsystems. To boost
innovation, LabStor introduces the concept of the LabMod: an
independent, self-contained code object implementing a well-defined,
distinct, single-purpose functionality. LabMods can be independently
developed, maintained, and released as plug-ins. LabMods can be
interchanged, stacked, and incrementally-upgraded.

Fundamentally, LabMods are comprised of four elements: type,
operation, state, and connector. The type is the set of APIs the LabMod
implements. The operation takes a well-defined input, processes the
input, and produces a well-defined output. State is internal data stored
within the LabMod required for the operation’s success. Lastly, the
connector exposes the LabMod operation to applications. Connectors
and operators can live in two separate address spaces, in the same
address space, or even in kernel space. For example, a client may call
a POSIX LabMod and use its connector to pass a POSIX I/O request
as input to a filesystem operation. The operation then converts the I/O
request to one or more block I/O requests by allocating disk blocks
using the allocator stored in the filesystem’s state. The filesystem
then outputs the block I/O requests to the next LabMod in a stack
(e.g., I/O scheduler, page cache, compression).

LabMods provide developers full creative freedom over their
functionality and interface. For example, LabMods can be built for
filesystems, (No)SQL databases, I/O schedulers, compression, drivers,
etc. However, to enable the LabMod properties of upgradeability, stack-
ability, and interchangeability, developers must implement specific
APIs. For instance, to enable live upgrades, LabMods must implement
the StateUpdate API, which copies state from the old LabMod
into the new. As another example, to capture performance coun-
ters of LabMods, developers must implement the EstProcess-
ingTime and EstTotalTime APIs. While high development
speed is important, providing developers with the ability to test, probe
and debug their code in an easy manner is just as important. LabStor
provides a debugging mode that allows LabMods to be run in isolation
and supports existing tools such as GDB or Valgrind to fully test their
individual LabMods before deploying them in production. Lastly,
LabStor comes equipped with various LabMods for interacting with
storage and managing the complexities of multiplexing I/O systems.
Driver LabMods: To minimize kernel programming while maintain-
ing compatibility with a wide variety of storage, LabStor provides an
enhanced, extensible alternative to Linux’s VFS and block layer for
interacting with storage devices entirely in userspace. Unlike the Linux
block layer, which is limited to the block device abstraction [20], Lab-
Stor provides users and developers a comprehensive menu of storage
hardware APIs through the use of Driver LabMods. This includes
LabMods which expose the Linux kernel’s multi-queue device driver
hardware queues directly to developers, bypassing several layers of the
kernel stack, in addition to various LabMods supporting userspace I/O

mechanisms (e.g., SPDK, DAX), which may provide APIs other than
block (e.g., zoned namespace and queues). From these fundamental
LabMods, all other layers of an I/O stack (e.g., scheduling, caching,
etc.,) now become programmable in userspace. Additionally, as
LabStor runs primarily in userspace, LabMods can utilize well-
established libraries, including data structure libraries (e.g., Boost) and
machine learning libraries (e.g. mlpack [57]). This allows developers
to make use of an extensive pre-exisitng code base that is already well
tested and documented. For example, time series analysis can be used
to predict characteristics of future I/O requests to reduce seek penalties
on HDDs or decide which pages to evict from the page cache.
Management LabMods: One design goal of LabStor is to provide
an expressive and manageable I/O platform. Users should be able to ex-
press their I/O requirements through the API that best fits their design
(i.e., file, key-value, SQL). This is achieved through the concept of a
Generic LabMod which exposes an I/O interface (e.g., Generic Filesys-
tem receives POSIX calls). Generic LabMods are in charge of creating
I/O requests and forwarding them to the appropriate I/O system that
implements these calls. Generic LabMods are loaded into clients using
LD_PRELOAD, enabling seamless support for legacy applications
and the development of new I/O interfaces. To multiplex I/O systems
without user intervention or code changes, Generic LabMods manage
state that is common among I/O systems of a particular type, similar to
the VFS. LabStor currently provides two Generic LabMods: a) Gener-
icFS, which manages the allocation of file descriptors and the routing
of I/O requests to the proper filesystem (FS) implementation, and b)
GenericKVS, which only does the latter for key-value stores (KVS).
B. Towards Composable I/O Services

Modern scientific computing consists of a wide variety of work-
loads such as simulation, data analytics, and machine learning applica-
tions, with many distinct and often conflicting I/O requirements [58].
It is unrealistic to expect a single static I/O stack to efficiently satisfy
this variety of I/O requirements, including semantics and targeted per-
formance characteristics. A software defined storage approach brings
hope to a new era of performant I/O systems tailored to match the I/O
demands of large-scale scientific applications. To this end, LabStor
introduces LabStacks: a user-defined combination of compatible Lab-
Mods into a single I/O system. LabStor provides common capabilities
such as device drivers, I/O schedulers, caching, and filesystems as
building blocks in the form of LabMods, while introducing new and
exotic ideas, such as configurable consistency or ML-driven cache
eviction algorithms. Using LabStacks, users can construct customized,
workload-specific, and hardware-optimized I/O services. For example,
an application which generates large amounts of compressible data
(e.g., VPIC [59]) to an NVMe could benefit from a LabStack which
contains a compression LabMod and SPDK Driver LabMod.

LabStacks are defined in a specification file which includes the
following attributes: a) a mount point, which is a human-readable path
(e.g., /home/user); b) a set of governing rules, such as priority hints and
execution method; and c) a DAG of LabMods, where each vertex con-
tains the LabMod name, LabMod UUID, attributes for initialization,
and a set of other outputs (e.g. other LabMods), represented as a list of
LabMod UUIDs and LabStack mount points. The LabMod UUID is
a human-readable name which represents a unique instance of a Lab-
Mod. The execution method determines whether the Labstack DAG
is executed synchronously (directly in the client application) or asyn-
chronously (divided among threads, allowing stages to be pipelined).

LabStacks can be initialized on a mount point like any other I/O
stack. To do so, users register their LabStacks within a LabStack



Namespace by simply passing the specification file to the (overloaded)
mount command. First, mount will ensure that all LabMods
in the DAG are instantiated by populating a Module Registry, a
key-value store where keys are LabMod UUIDs and values are the
LabMod instances. A LabMod is only instantiated if its UUID did
not exist in the registry. Next, the set of rules are parsed to properly
configure the runtime of the LabStor platform. Lastly, a validation
step is performed to verify that the LabMods are compatible
and then the LabStack is inducted into the LabStack Namespace.
LabStack DAGs can be modified dynamically after mounting via the
modify.stack command, which enables the insertion/removal
of vertices. LabMod instances in the Module Registry can also be
hot swapped live via modify.mods. For example, swapping one
LabMod I/O scheduler for another.

LabStacks bring many benefits into the complex space of data man-
agement, as shown in the below examples. Any I/O stack is a path (or a
projection) to the contents kept in storage. As a result, one can generate
multiple views of the same data by deploying several LabStacks on
top of the same device. This leads to a plethora of useful features.
Tunable Access Control: I/O stacks are responsible for providing
data access control mechanisms. Traditionally, this has been achieved
with user groups and globally-applied permission checks. Modern
research has shown the benefits of tunable access control where data
is exposed based on varying degrees of sensitivity. However, this is
difficult to implement in a monolithic design and is typically offered
as a non-negotiable feature. With LabStor’s modular approach, one
can deploy multiple LabStacks over the same content, each with
varying degrees of access. Permission LabMods inside the stack can
implement islands of data that are viewable by different actors. Not
only is this easily implemented, but it can also dynamically change
if the operator of the I/O service chooses so.
Interface Convergence: A growing theme in recent years is the
hyper-convergence between different I/O interfaces [60], [61]. Modern
workloads demand the support for multiple data access interfaces
which puts pressure to system developers to widen the support for
diverse APIs. This has led to two distinct approaches. Either the
user must adapt their code to the provided interface or translation
middleware layers are employed, elongating the data path and
imposing additional software overheads. In LabStor, data can be
accessed by seamlessly multiplexing LabStacks. For example one with
POSIX interface and another with get/put/delete over the same content.
Dynamic Semantics Imposition: Application I/O patterns can be
highly variable [62]–[65], requiring live changes to the I/O stack
to maximize performance. However, this requirement is limited by
the rigidity of traditional I/O stacks. LabStacks enable the ability to
dynamically impose new semantics into the I/O stack by allowing
LabMods to be inserted/removed while applications are still running.
For instance, a compression LabMod can be added to a LabStack
for a period of time, or an I/O scheduler can be swapped for another
depending on the current I/O traffic.
Active Storage: Offloading data-intensive tasks to storage has been
shown to benefit the end user both in terms of performance and
ease-of-use [59], [64]. For example, instead of applications manually
employing compression before persisting data, a LabStack could
contain a Compression LabMod which transparently compresses the
data before writing to storage. Compression happens asynchronously
and in batches which further boosts performance.
Decentralized I/O System Designs: Various works [4], [10], [35]
have demonstrated the benefits of eliminating centralized authorities

Client 

LabStor
KO

LabStor Runtime

IPC Manager

Worker 1 Worker 3

Private

Work Orchestrator

KernelApp1

IPC Manager Client
Admin

Worker 2

Module
Manager

Runtime
Admin

Module
Manager

Namespace

1. Upgrade check

2. Process wreap

1. Upgrade check

Names..
Namespace

Module
Manager

upgrades

A

A

A

IPC
Mngr

in-kernel

spawn()

1. Get 
LabMod

2. LabMod Enqueues

3. Get LabMod4. Process.

LabStor Runtime

Kernel

LabStor Kernel
 Ops Manager

Kernel 
IPC

NVMe HDD

IPC 
Manager

Worker

LRU Cache

Worker

NoOp Sched.

App1
LabStor Client

 LibraryIPC Generic 
LabMod

App2
LabStor Client

 Library IPCGeneric 
LabMod

Namespace

App1
LabStack

App2
LabStack

Module Manager

ModulesUpgrade 
Manager

Client 
Admin

Worker

LabFS

Work Orchestrator

Worker

LabKVS

Worker

NVMe Driver

Request Update

Submit 
Update

Execute 
Update

I/O Data Path

Manage 
Workers

Stablish
Comms

In-Kernel
Management

Load LabMod

Re
qu

es
t

La
bM

od

Fig. 2. Component Diagram

from the I/O path for latency-sensitive I/O requests. One approach
is to decouple metadata and data operations, enabling security for
metadata and increased performance for data operations. In LabStor
this can be done by using two separate LabStacks: one for metadata
that asynchronously executes in a separate runtime, and another
for data that synchronously executes at the client using Driver
LabMods such as SPDK. State required for the data operations (e.g.,
block allocations) can be stored in shared memory between the two
LabStacks. Fully decentralized designs execute both metadata and data
LabStacks client-side, improving latency (but at a cost to security).

C. A Powerful Alternative to the Linux Stack
The LabStor Runtime is the primary warehouse and execution en-

gine of LabStacks. It runs in a separate address space from the clients
in order to provide security and high-performance. The Runtime is
also responsible for the loading, storage, execution and upgrading of
LabStacks and LabMods. Figure 2 demonstrates the architecture of
the Runtime which consists of the following components:
Kernel Operations (KO) Manager: to achieve extensive hardware
support and manage all in-kernel operations, the KO Manager
is implemented as a Linux kernel module which manages the
deployment of Driver LabMods and the communication with them.
Inter-Process Communication (IPC) Manager: to communicate
between the Client Library, Runtime and LabMods, the IPC Manager
provides a highly-performant and secure infrastructure based on
shared memory and a queuing system. The LabStor client initially
connects to the LabStor Runtime through a UNIX domain socket,
providing process credentials to the LabStor Runtime, which can
be used for authentication. Similarly, the IPC Manager connects to
the Kernel Operations Manager through a netlink socket.
Module Manager: to enable live upgrades, deployment, and query-
ing of LabMods, the Module Manager maintains a Module Registry
(a hashmap in shared memory) that holds all instantiated LabMods
and their entrypoints. It also holds a queue, where requests for module
upgrades are stored. The Module Manager implements several
protocols including centralized and decentralized upgrade which are
executed when invoked by the admin thread to process upgrades.



LabStack Namespace: to create, hold and multiplex LabStacks, the
Namespace maintains a semantic shared-memory key-value store
that holds LabStack as DAGs.
Workers: to provide security and reduce overhead caused by context
switching, clients can send requests to workers which execute in
a separate address space from the client. Workers receive requests
by polling request queues and process the requests by querying
the LabStack Namespace and Module Manager for the required
LabMods. Workers execute either in the Runtime (using pthreads), in
kernel space (using kthreads), or directly in the client thread. Workers
also periodically monitor LabMods to get get performance metrics,
useful to work orchestration policies.
Work Orchestrator: to ensure high performance and resource
utilization, the Work Orchestrator manages the assignment of request
queues to workers and the assignment of workers and application
processes to CPU cores. In order to manage workers executing
in-kernel, the orchestrator communicates with the LabStor Kernel
Module to spawn, freeze, and terminate kernel threads.

1) Efficient and Secure Inter-LabMod Communication: To enable
zero-copy, high-performance communication between LabMods,
LabStor relies on shared memory. However, one consequence of this
design is that faulty and malicious processes have more potential
to cause harm to other running processes due to the nature of shared
memory. Care must be taken into providing privilege to only the
processes that need visibility to the shared memory. In addition,
memory needs to be shared between kernel and user space, which
requires specialized memory sharing techniques that are not provided
by higher-level shared-memory libraries, such as Boost.

To provide these shared memory capabilities, a novel shared
memory LabMod (ShMemMod) is provided by LabStor, which
uses vmalloc for allocating regions of shared memory and
remap_pfn_range for mapping the allocated regions into a
user’s address space. The memory can only be mapped by specific
processes which have been granted access to the memory by the
LabStor Runtime, enabling both high-performance and security, even
among processes launched by the same user.

Another communication primitive used by the IPC manager are
Queue Pairs (QPs). They can be stored in shared-memory or private
memory. QPs have a number of properties. Primary queues
are the queues where clients initiate requests. Intermediate
queues hold requests spawned as a result of another request.
Typically, primary queues are stored in shared memory and
intermediate queues are stored in private memory. In addition to this,
queues can be marked as ordered or unordered. Ordered queues must
be processed in sequence on a single worker. Unordered queues can
be processed by multiple workers.

2) Live Upgradable and Hot-Pluggable LabMods: To support the
ability to upgrade and hot-plug LabMods without service interruption,
the Module Manager implements two live upgrade protocols:
centralized and decentralized. This is because LabMod operators
can exist either in the Runtime’s address space or in the client’s
address space. Due to space, we only detail the centralized case. The
centralized protocol updates the Runtime, whereas the decentralized
updates all running clients. In both cases, an upgrade request is
submitted to the Module Manager using the modify.mods. The
upgrade request contains the LabMod name to upgrade, a path to
the updated code, and the upgrade type.
Centralized Upgrade: An upgrade request is initially placed in the
upgrade queue in the Module Manager. The Runtime Admin

will periodically (every tms, configurable by the user) poll for updates.
If there are any, the Module Manager will mark all of the primary
queues as UPDATE_PENDING. Eventually, workers processing
primary queues will acknowledge the UPDATE_PENDING state
by setting the flag UPDATE_ACKED. Intermediate queues will
continue processing until all events have been completed. When all
primary queues have been paused and all intermediate requests have
completed, the Module Manager will process all upgrades. For each
upgrade, it will traverse every LabMod in the Module Registry and
call the StateUpdate API for each LabMod of this type, which
transfers the state from the old LabMod to the new. StateUpdate
can be modified by developers to tailor the upgrade process to their
needs. After all upgrades have been processed, the Module Manager
will unmark all the primary queues and requests will begin flowing
through the system again.

3) Crash Recovery: To provide security and resource management
capabilities, LabStacks have the option to execute within the the Lab-
Stor Runtime. However, as LabStacks can contain untrusted and poten-
tially buggy code, there is potential for the Runtime to crash. Without
proper management, crashes such as this can cause severe setbacks,
as potentially long-running applications would have to be restarted.
To prevent this, the LabStor Runtime can be restarted and repaired
while applications continue to run. To communicate with the Runtime,
clients place requests in request queues and poll for completion using
Wait. If the LabStor Runtime crashes, Wait will eventually detect
that the Runtime is offline and wait for it to be restarted by the adminis-
trator (for a configurable period of time). If restarted, the LabStor client
library in each process will iterate over the LabStack Namespace, in-
voke the StateRepair API in each LabMod, and then continue.

4) Load Balancing & Scheduling: The Work Orchestrator (WO)
is a userspace process and thread scheduling framework, similar to the
concept of FlexSC [66]. FlexSC proposes a specific policy to dedicate
CPU cores to handle latency-sensitive system call work to avoid
context switching, whereas LabStor provides a general framework
to make different policies. LabStor WOs typically should make two
considerations. First, LabStacks can generate both latency-sensitive
and compute-intensive requests, requiring intelligent division of
labor. In addition the I/O traffic on systems can be dynamic (e.g.,
checkpoint-restart workloads), requiring intelligent scaling of CPU
resources to provide efficient resource utilization. To manage both
of these challenges, the WO defines a rebalance operation,
which takes as input n queues and m workers. This operation is
called in two cases: first, when a new client connects; and second,
every t ms, configurable by the user. To decommission a worker,
the WO reassigns all request queues from the worker. Workers can
be oversubscribed to a core by placing request queues on workers
pinned to the same core. When a worker hasn’t processed a request
for a period of time (in µs, also configurable), the worker will yield
to avoid busy waiting for an entire WO epoch. Load balancing
queues has a long and deep history of research dating back more
than 30 years, and many algorithms have been proposed (e.g.,
Markov Chains [67] and supermarket model [68]) for solving the
rebalance problem. For this reason, the WO is also modular.

LabStor currently provides a dynamic work orchestration policy,
which aims to minimize the number of workers and context switches,
while keeping performance loss under a configurable threshold and
optimizing for latency-sensitive requests. First, rebalance divides the
queues into two groups based on the maximum expected processing
time of the request (EstProcessingTime API in the LabMod)



and the number of queued requests: latency-sensitive queues (LQs)
and computational queues (CQs). The queues are then partitioned
among workers, where LQs are placed on a subset of workers, and
CQs on another subset. With this partitioning, a modified Knapsack
problem is solved where multiple sacks (the workers) aim to fit
all items (the queues) such that each sack has equal weight (total
estimated processing time of the queue). The partitioning with the
fewest number of workers within the threshold is selected. Workers
processing latency-sensitive requests are dedicated to CPU cores in
order to avoid interference caused by context switching.

D. Deployment Model

Installing LabStor: LabStor can be downloaded from github (
https://github.com/scs-lab/labstor ) and compiled/installed using
CMake. After compilation, a kernel module (the LabStor Kernel
Ops Manager), the LabStor Runtime, various utility commands
(mount.stack, modify.stack, etc.), and a series of LabMods (libraries)
are presented to the user. The kernel module is inserted into the kernel
using insmod. After this, the Runtime needs to be started. Trusted
users can modify the Runtime configuration YAML, which contains in-
formation such as LabMod locations and work orchestration policies.
Installing LabMods: Once developed, users can install LabMods
into LabMod repos, which are directories searched by the Runtime
to determine the set of available LabMods. Repos can be defined
in the LabStor configuration file and adjusted during runtime using
the mount.repo and unmount.repo commands. These
commands are unprivileged and can be executed by any user. A
configurable maximum number of repos per-user is defined in the
LabStor configuration file. A LabMod repo which is owned by
the same user as the LabStor Runtime is considered trustworthy by
default. Untrusted LabMods (which could potentially contain buggy
or malicious code) can still be employed and debugged; however,
the execution of these LabMods must be in a separate address space
from the Runtime in order to ensure security.
Mounting LabStacks: After installing the LabMod repos, users
can define LabStacks. LabStacks are defined as YAML files, which
contain a DAG of LabMods and a set of governing rules, including
a set of users which have authority to modify the LabStack. To
mount the LabStack, users can call mount.stack. While access
control is provided primarily by the LabMod implementation,
LabStor provides mechanisms to prevent untrusted users from unduly
modifying or executing other LabStacks. The maximum length of
a LabStack is configurable.
Modifying LabStacks and Upgrading LabMods: After mounting,
a LabStack can be modified dynamically by uploading an updated
YAML file of the LabStack, where the differences between the
original and updated LabStacks will be applied. Code upgrades for
LabMods can be speicified by adding an upgrade request to the
desired LabMod in the LabMod DAG. LabStack modifications and
upgrades can be rejected for unprivileged users during mounting.
Application-Side: In order for applications to interact with LabStacks,
LabStor provides a client library which is used to communicate with
the Runtime to mount, modify, query, and execute LabStacks.

E. Use Cases

The current release of LabStor provides example LabMod
implementations of both a filesystem and a key value store,
respectively called LabFS and LabKVS. Developers can implement
the same APIs to create their own.

An Example POSIX Filesystem: Many legacy applications depend
on POSIX. For compatability, LabStor provides LabFS, a POSIX-
compliant filesystem. LabFS is a log-structured, crash-consistent
filesystem which provides specific optimizations for NVMe and
PMEM and provenance tracking. It uses a scalable per-worker block
allocator, which evenly divides device blocks among the pool of
workers, initially defined in the Runtime configuration. Workers
can steal from one another if more space is needed. If the number
of workers decreases, free blocks of the decommissioned workers
are assigned to running workers. If new workers are added, they
will steal a (configruable) number of blocks from the other workers.
LabFS uses a per-worker log for tracking metadata operations (file
creations, etc.). As opposed to storing inodes and bitmaps on-disk as
traditional FSes do, LabFS only stores the log and reconstructs inodes
in-memory by traversing the log. All inodes are stored in a hashmap to
maximize scalability. In addition, LabFS can be configured to bypass
the Runtime for metadata and data operations to further reduce latency.
An Example Key-Value Store: LabKVS is similarly designed to
LabFS; however, LabKVS implements a put/get/remove API, which
creates keys and stores data using a single syscall, as opposed to the
three (open-modify-close) required by POSIX.
A real deployment use case: a custom file system stack: Figure 3
showcases a real use case of LabStor. In this example, a series of
asynchronous LabStacks implementing full file system I/O stack are
deployed on a machine. The example makes use of the GenericFS
and the LabFS labMods, but the same logic could apply for other
file system implementations.

Initially, various LabStacks, including “fs::/b”, have been mounted
in the LabStack Namespace (shown in Figure 3). A client app is
then launched with the GenericFS LabMod to intercept POSIX
calls. The GenericFS LabMod can be LD PRELOADed. The client
first connects to the Runtime using the LabStor Client Library and
IPC Manager. Eventually, the app calls open() to create the
file “fs::/b/hi.txt”, which is intercepted by GenericFS. GenericFS
determines the LabStack corresponding to this path by querying
the LabStack Namespace. First, it checks if “fs::/b/hi.txt” is in the
Namespace. Since it is not, it checks if the parent directory (“fs::/b”) is.
Since it is (s id: 2), GenericFS loads the LabStack DAG and allocates
a file descriptor (fd). GenericFS then queries the Module Registry
for the first LabMod in the DAG (LabFS) and calls its connector.
The connector constructs a request containing the fd, path remainder
(“/hi.txt”), LabMod ID (1), and LabStack ID (2); queries the IPC
Manager for a queue pair (QP, qid: 1); places the request in the
submission queue (SQ); and then synchronously waits for the request
to complete by polling the completion queue (CQ). Eventually, Worker
1, which had been assigned this queue by the Work Orchestrator,
polls the I/O request from the SQ. The worker loads LabFS from
the Module Registry and passes the I/O request and QP to its operator.
The LabFS operator processes the open, which creates an inode
and then places a completion request in the CQ. The client receives
this completion request, internally stores the mapping between fd
1 and LabStack 2 in a table, and then returns the fd back to the app.

After the open, the client writes 4KB of data to fd 1. GenericFS
intercepts the write, checks its internal fd table, and determines that
LabStack 2 should execute the command. The LabStack is loaded
from the Namespace and the first LabMod in the DAG is loaded
from the Module Registry. The LabMod’s connector is called, which
constructs a POSIX I/O request and places it in a queue pair (QP).
Within the Runtime, Worker 1 polls this request, loads LabFS from



Fig. 3. LabStack Example

the Module Registry, and passes the I/O request to its operator. The
operator then performs block allocation and forwards a block I/O
request to the next stage in the DAG. This is done by quering the
LabStack Namespace for the LabStack DAG; determining the next
set of LabMods to forward the request to (only the LRU LabMod
in this case); constructing Block I/O requests destined for the next
LabMod; loading a QP from the IPC Manager; and then placing the
requests in the QP. The LabFS operator will asynchronously poll
for the completion of the LRU request, allowing Worker 1 to continue
processing other requests, without stalling for the LRU event to
complete. This pattern of asynchronous message passing and polling
continues until all events have completed.

F. Implementation Details
LabStor is implemented in 18K lines of C/C++ code and has been

tested on kernel 5.4. LabStor uses pthreads to create and pin threads.
LabStor comes equipped with a full I/O stack, including LabMods
for page caching (LRU), tunable consistency guarantees, permissions
checking, compression, I/O scheduling policies, and I/O systems
(LabFS & LabKVS).
Security: Currently, our prototype enforces security by allowing only
authorized root users to modify LabMods and LabStacks, similar
to how mount commands are managed in Linux.
Fork/Clone/Execve: To maintain compliance with POSIX,
GenericFS intercepts the clone and execve system calls.
Both intialize new adress spaces and require open file descriptors (fd)
to be shared after the creation of a new address space. When called, the
IPC Manager will disconnect from the LabStor Runtime, re-connect
to establish new shared-memory queue pairs, and then send a message
to the LabStor Runtime requesting that all file descriptors from the
parent process be copied to the newly created process. fork is
implemented on top of clone. For execve, open fd state is
copied to the LabStor Runtime and is reloaded upon completion.
Kernel Driver LabMod: Most of Linux’s storage drivers (e.g., HDD,
SATA SSD, NVMe) follow the Multi-Queue (MQ) I/O path. LabStor
exposes these drivers through three APIs: submit_io_to_hctx,
which submits an I/O request directly to a hardware dispatch queue,
submit_io_blk, which submits an I/O request using the standard
Linux block layer, and poll_completions, which polls for
I/O completion events on poll-based storage devices (e.g., NVMe).
For MQ device drivers, blk_mq_alloc_request_hctx
and blk_mq_try_issue_directly are used to place I/O
requests directly in the hardware dispatch queues (hctx) of the driver.

These functions are maintained by the Linux community, and have
been present since kernel 4.8 in 2016 [69]. For non-MQ device
drivers (e.g., PMEM drivers), we use the submit_bio function.
Kernel Modifications: LabStor currently re-implements the function
blk_mq_try_issue_directly (amounting to 215 LOC) to
avoid kernel recompilation, as this function is not public. This could
be fixed by either making this function public or extending the bio
structure to designate the hctx where a request should be placed.
Either method would require minimal code change (roughly 5 LOC).

G. Discussion and Considerations

LabStor limitations: LabStor filesystems cannot be used for booting
the main OS; only kernel-level filesystems can be used for this. The
current prototype of LabStor does not provide support for networking,
although it can be extended to do so. Labstor is intended to avoid
compiling a custom kernel, although our code has only been tested
on kernel 5.4, and may result in compilation issues on other kernels.
LabStor is also designed with the assumption that the machine is
many-core (>2 cores) and has a 64-bit address space.
Re-implementation Overhead: Within LabStor, developers can
choose to re-architect the entire I/O stack to achieve much higher
performance than the traditional kernel stack. However, for situations
where it is more desireable to rely on the already-tested policies
provided by the kernel, LabMods built on top of kernel APIs such
as I/O uring can be used to inherit some of the kernel’s functionality.
Applicability outside HPC: In this paper, we explore the benefits
of LabStor in the context HPC. However, our approach also has
impacts to multi-tenant clouds and virtual machines. One future
work could be to apply LabStor as an I/O hypervisor to avoid
repetition of the I/O path in a VM while also maintaining isolation
guarantees. Additionally, within LabStor, new I/O scheduling and
work orchestration policies can be implemented, which factor the
I/O behavior of running applications, service-level objectives, and
core oversubscription in their scheduling decisions.

IV. EVALUATIONS
Testbed: We ran all of our experiments in Chameleon [70] using the
storage hierarchy appliance, equipped with NVMe (Intel P3700; 2TB),
SSD (Intel SSDSC2BX01; 1.6TB) HDD (Seagate ST600MP0005;
600GB), and 512 GiB of RAM. It contains 2xIntel(R) Xeon(R) CPU
E5-2670 v3 @ 2.30GHz for a total of 24 cores and 48 threads.
Software: We use Ubuntu 20.04 with kernel 5.4. To emulate PMEM,
we modify the OS bootloader [43]. For synthetic benchmarks we
use FIO 3.28 and FxMark [71]. For non-synthetic evaluations, we
use LABIOS [60] as an object store and FileBench-1.4.9.1 [72]
for generating I/O traffic. We present the average of 5 runs. For the
following evaluations, we define the following LabStacks: a) Lab-All:
permissions checks, LRU cache, NoOp sched, Kernel Driver,
async exec mode. b) Lab-Min: removes permissions. c) Lab-D:
remove permissions, sync exec mode.
A. Internal Evaluations

I/O Stack Anatomy: To understand the impact software has on I/O
operations and quantify the overheads imposed by the filesystem
implementation, we run a test where we read/write 4KB of data
from/to an NVMe drive using LabFS. We capture the amount of time
spent in different LabMods on the data path. A LabStack, resembling
that of a traditional I/O stack, is configured to use LabFS, permissions
checking, No-Op I/O scheduling, LRU Page Cache, and the Kernel
Driver LabMod. The LabStor Runtime uses a single worker to process



(a) 4KB write NVMe (b) 4KB read NVMe

Fig. 4. I/O stack anatomy

the request. Overall, it can be seen from Figure 4(a) I/O takes the most
time as expected. Software amounts to 34% of the overall time. The
page cache takes 17% of time due to data copying. Next, inter-process
communication using shared memory takes 8.4% of time. Since the
Runtime is on a separate core, the request needs to be fetched from
another core’s cache or directly from DRAM, both of which are expen-
sive. Filesystem metadata management and permissions checking each
take 3% of time due to memory allocations and data structure manip-
ulations (block allocation, logging block in inodes, querying the inode
hashmap). The No-Op I/O scheduler only amounts to about .5% of I/O
time, as it only keys a request to a hardware queue. Lastly, the driver
amounts to approximately 1% of I/O time. The results are similar for
reads. Overall, it is apparent that for each feature added to the I/O path,
a performance penalty is paid. While certain penalties (e.g., caching)
can be bypassed in a typical I/O stack, certain costs are applied
uniformly to all I/O operations and are non-negotiable. Maintaining
security semantics, for example, requires overheads of 3% for per-
missions checking and 8.4% for ensuring applications cannot directly
modify metadata, protecting it behind costly IPCs. Providing more
flexibility on the I/O path can result in significant performance gains.

TABLE I
LABMOD LIVE UPGRADE PERFORMANCE IN SECONDS

#Upgrades 0 256 512 1024
Centralized 29.08 30.21 32.536 34.338
Decentralized 29.08 30.51 33.56 35.81

Live Upgrade: In this evaluation, we measure the amount of service
interruption caused by updating a component in the LabStack during
runtime. We run an application which messages a dummy module
100,000 times using a single thread. Roughly 20 seconds after the
app is launched, the dummy module is upgraded. We measure the
total running time of the app with a centralized upgrade and with a
decentralized upgrade III-C2. We vary the number of upgrade requests
and report the application’s running time in seconds. From Table I,
it can be observed that the cost of a live upgrade was roughly 5ms
which does not noticeably impact the application’s running time until
thousands of upgrade requests are queued (an addition of 5 seconds
after 1024 upgrades). There are three main factors which impact the
performance of an upgrade: First, the storage medium the upgrade is
located on; Second, the cost of loading the update into memory; Third,
the cost of transferring state. In this case, the dummy module is 1MB
and located on an NVMe. The I/O cost accounted for the majority of
time spent in the upgrade process. The state needed to be transferred
was simply a few bytes of pointers. Overall, this is a substantial
improvement over a reboot per update, which in Chameleon Cloud,

0

0.05

0.1

0.15

0.2

0

2

4

6

8

1 2 4 8 16

C
P

U
 U
�

l (
%

)

Th
ro

u
gh

p
u

t
(M

O
p

s)

# Clients

W-1 W-8 W-D

(a) CPU Allocation

1

100

10000

1000000

0

0.5

1

1.5

2

1 2 4 8 La
te

n
cy

 (
µ

s)

Th
ro

u
gp

u
t 

(M
O

p
s)

# L-Apps/# C-Apps

RR D

RR D

(b) Request Partitioning

Fig. 5. Dynamic Work Orchestration

takes roughly 300 seconds – five orders of magnitude slower.
Work Orchestration: Dynamic CPU Allocation: In this evalua-
tion, we measure the ability of the Work Orchestrator to dynamically
adjust to changes in load. We run a workload where each client thread
randomly writes 1GB of data with 4KB request sizes and vary the
number of clients (between 1 and 16). The LabStack tested uses no-op
scheduling with Kernel Driver LabMod over NVMe. We compare
three worker configurations: 1 worker, 8 workers, and a dynamic
number of workers. We measure IOPS and average CPU utilization.
From Figure 5(a), it can be observed that when there are only 2 clients,
a single worker is able to saturate the load without performance loss.
However, after 4 clients, the single worker is overloaded and IOPS
decrease by 50%. While 8 workers achieve maximum performance,
it has 25% higher CPU utilization than the dynamic policy, which
only requires 4 cores. At 16 clients, both the dynamic and 8-worker
configurations achieve similar performance and CPU utilization.
Overall, it is observed that dynamic work orchestration can balance
resource utilization without sacrificing performance.
Work Orchestration: Request Partitioning: In this evaluation, we
measure how queue scheduling policies impact performance. To do
this, we deploy two LabStacks: latency-sensitive (L) and compressor
(C). The L-LabStack contains an LRU cache, No-Op I/O scheduler,
and uses the Kernel Driver LabMod as a backend. The C-LabStack
adds compression. We run a metadata-intensive workload (L-App)
which creates 5,000 files per-thread over the L-LabStack, and a large
I/O workload (C-App) which writes 128GB of data per-thread with
request sizes of 32MB through the C-LabStack. Both the number
of L-App and C-App threads are fixed at 8. We vary the number
of Runtime workers to be between 1 and 8. We compare two work
orchestration policies: round-robin (RR) and dynamic and measure
the average latency of the L-App and bandwidth of the C-App. From
Figure 5(b), it can be observed that the RR policy achieves the highest
bandwidth in each test. For this policy, all workers are processing
the C-App, since queues are evenly divided among workers. Since the
processing time of L-Apps is about 3µs, whereas the compression
takes roughly 20ms, bandwidth is impacted negligibly. RR also scales
linearly with the number of clients, since all workers process the C-
App. However, in general, the RR policy causes severe latency penalty,
as the L-App must wait for multiple 20ms compressions before being
processed. LabStor’s dynamic scheduling, however, sends the L-App
queues to separate workers from the C-App queues, significantly
improving latency, but at a cost to bandwidth. As the number of
workers increases, the bandwidth cost drops from 30% down to 6%,



0

0.25

0.5

0.75

1

HDD SSD NVMe PMEM

N
o

rm
al

iz
ed

 IO
P

S
aio posix libaio io_uring L-kern L-by

(a) Random Write (4kB, 1 thread)

0

0.25

0.5

0.75

1

HDD SSD NVMe PMEM

N
o

rm
al

iz
ed

 IO
P

S aio posix libaio io_uring L-kern L-by

(b) Random Write (128kB, 1 thread)

Fig. 6. Storage API performance. IOPS are normalized.

0.01

0.1

1

10

100

1 2 3 4 5 6

Th
ro

u
gh

p
u

t 
(M

O
p

s)

# Clients

EXT4 XFS F2FS Lab-All LabFS-Min LabFS-D

Fig. 7. Metadata throughput

since the L-Apps are all placed on the same worker. Overall, it can
be concluded that the Orchestrator can balance requests with varying
computational complexities fairly among a given set of resources.

B. Stress Tests
Storage Interface Performance: In this evaluation, we measure the
performance of LabStor’s storage LabMods compared to traditional
kernel-based approaches for interacting with storage in userspace. For
these tests, LabStacks consisting only of DAX, SPDK or Kernel Driver
LabMods are compared to using POSIX I/O, POSIX AIO, libaio, and
I/O Uring to write directly to device files (e.g., /dev/nvme0n1). We
repeat all tests for various storage hardware, including PMEM, NVMe
SSD, SATA SSD and SATA HDD. We measure end-to-end application
performance. We present the results on Figure 6. It can be observed
that the I/O paths provided by Labstor outperform existing solutions
significantly on low-latency device types (SSD, NVMe, PMEM).
Unlike POSIX syscalls, LabStor uses shared-memory queues as
opposed to context switches, which avoids software overhead and is
friendlier to CPU caches. POSIX AIO suffers additional overhead due
to the cost of context switching to the AIO thread, amounting up to
60-70% overhead on NVMe and PMEM. libaio and I/O Uring obtain
significantly improved performance over typical POSIX syscalls, as
they avoid context switching. However, for 4KB I/Os, the Kernel
Driver LabMod outperforms all other solutions by at least 15% by
avoiding context switches and data copies on NVMe. The SPDK
LabMod outperforms the Kernel Driver LabMod by an additional 12%
on NVMe by avoiding the complex allocation of structures required
by the Kernel Driver. As the request size increases, the benefits of the
reduced software overhead decrease. By the 128KB size, performance
difference between SPDK and POSIX is roughly 6%. Overall, it is ap-
parent that different interfaces to storage can have significant impacts
on performance depending on the workload and device type. Simply
relying on POSIX to build storage systems and incurring the costs
of the kernel’s stack can yield dramatic latency costs of up to 60%.
Metadata Throughput: In this evaluation, we measure the overhead

0

10

20

30

0

0.5

1

1.5

2

Linux-NoOp Lab-NoOp Linux-Blk Lab-Blk Linux-NoOp Lab-NoOp Linux-Blk Lab-Blk

No-OP BLK No-OP BLK

Isolated Colocated

Th
ro

u
gh

p
u

t 
(M

O
p

s)

A
vg

. L
at

en
cy

 (
µ

s)Througput Latency

Fig. 8. Performance of different I/O Schedulers

of various LabStor configurations on metadata performance: a com-
mon workload in various HPC applications [73]–[75]. We compare
three configurations of LabFS to various I/O systems (EXT4, XFS,
F2FS) on workloads which stress file creation using FxMark [71].
We vary the number of client threads to be between 1 and 24. The
LabStor Runtime is configured with 16 workers. From Figure 7, it
can be seen that all LabFS configs outperform the alternatives by up
to 3x in the single-threaded case while also maintaining scalability in
each of the scenarios. For the single-thread case, LabFS-All primarily
outperforms the alternatives due to a reduction in context switches
caused by syscalls. When the permissions LabMod is removed from
the LabStack, performance improves by an additional 7%. Finally,
removing the centralized authority entirely improves performance by
an additional 20% in the single-threaded case by removing IPCs. As
the number of clients increases, LabFS scales well since LabFS stores
all files in a single hashmap, which supports insert, rename, and delete
operations with minimal contention and overhead. LabFS’s block
allocator divides blocks among workers, also minimizing contention.
However, the kernel filesystems scale very poorly, as they use locking
in order to ensure the correctness of their data structures. Overall, sim-
ply relying on kernel filesytems and the VFS as backends for metadata-
sensitive workloads can result in severe performance penalties due to
software overheads and locking. New high-performance I/O systems
can be built within LabStor using its lightweight IPC mechanisms and
scalably managed by its Runtime. In addition, by giving end-users
more choice of what functionality (e.g., permissions) is truly required
by their I/O systems, software overhead can be further reduced.
Developing & Customizing I/O Policies: In this evaluation, we
demonstrate the power of the LabStor platform to develop low-level
I/O policy decisions while maintaining high performance. To do
this, we integrate the No-Op and blk-switch [20] I/O schedulers into
LabStor and compare against their in-kernel counterparts. No-op
maps I/O requests to device queues based on the CPU core the request
originated. Blk-switch takes into consideration the load emplaced
on a queue. We deploy two applications: throughput-bound (T-App)
and latency-bound (L-App). The T-App produces 64KB random
writes per-thread with an I/O depth of 32. The L-App produces 4KB
random writes per-thread (I/O depth 1). Both apps run for a period of
1 minute. Both the T-App and L-App have 8 threads, and the LabStor
Runtime is configured to have 8 workers. We measure average and
P99 latency when the L-Apps and T-Apps are isolated and colocated.

TABLE II
P99 LATENCY OF LINUX AND LABSTOR SCHEDULERS

Isolated Colocated
Linux-NoOp 110 µs 945 µsNoOp Lab-NoOp 89 µs 889 µs
Linux-Blk 120 µs 122 µsBlk Lab-Blk 95 µs 96 µs

Figure 8 shows that when the processes are isolated, No-Op
performs at least as well as blk-switch since T-Apps and L-Apps are
mapped to separate queues. This style of workload is similar to HPC



1

100

X
FS

La
b

-A
ll

La
b

-M
in

X
FS

La
b

-A
ll

La
b

-M
in

X
FS

La
b

-A
ll

La
b

-M
in

X
FS

La
b

-A
ll

La
b

-M
in

X
FS

La
b

-A
ll

La
b

-M
in

X
FS

La
b

-A
ll

La
b

-M
in

HDD SSD NVMe HDD SSD NVMe

R
u

n
�

m
e 

(s
)

[l
o

g 
sc

al
e]

Data Metadata

(a) PFS performance

0

125

250

375

500

NVMe PMEM

B
an

d
w

id
th

 
(M

B
p

s)

EXT4 XFS F2FS
Lab-All Lab-Min Lab-D

(b) Labios Performance

0

0.5

1

1.5

Varmail WebServer WebProxy Fileserver

Th
ro

u
gh

p
u

t 
(M

O
p

s)

EXT4 XFS F2FS Lab-All Lab-Min Lab-D

(c) FileBench Performance

Fig. 9. LabStor under different storage systems
storage nodes, where the node is dedicated to processing I/O requests
from a single application (the parallel filesystem). However, after colo-
cating, the performance and QoS of the L-Apps degrade due to head-
of-line blocking. This style of workload is more similar to that of a
multi-tenant environment (e.g., Cloud or HPC compute nodes), where
many conflicting applications may be running. However, by avoiding
context switching and upper layers of the I/O stack, LabStor decreases
latency by 20% over the kernel version of blk-switch. In addition, Lab-
Stor’s No-Op reduces latency by an additional 5% when the apps are
isolated. Overall, low-level policy decisions can be developed and cus-
tomized in LabStor with minimal overhead, and the choice of policy
can have noticeable performance impacts depending on the workload.
C. End-to-end Performance with Real Workloads

In these evaluations, we demonstrate the end-to-end performance
of different LabStor configurations for various real workloads.
PFS: In this evaluation, we demonstrate the benefit of deploying a
PFS over customized LabStacks. We use OrangeFS with the metadata
server deployed separately from the data servers and with a stripe size
of 64KB. The metadata server runs on a node with NVMe SSDs. We
run two workloads: VPIC [76] and BD-CATS [77]. VPIC is a particle
simulation code where each process produces particle data and writes
them at each time step. VPIC writes 8 million particles where each
particle is a vector of 8 floating point values. We run VPIC with 640
processes in 16 time steps, totaling 165GB of data. BD-CATS reads
the data generated by VPIC to perform a parallel clustering algorithm.
BD-CATS also uses 640 processes.

From Figure 9(a), it is shown that a PFS gains performance
improvements of 6-12% when deployed over a customized I/O stack.
These benefits primarily come from the increased throughput of
the metadata server, which manages the location of stripes. Overall,
roughly 100 million metadata operations are made to the metadata
server in both workloads, amounting to roughly 4-6 seconds of
execution time. The remaining time is spent in I/O and network. The
improved metadata performance stems from using kernel-bypass
I/O (LabFS-All) and by minimizing permissions checking overheads
(LabFS-Min). When the data storage servers are backed by HDDs, the

benefit of improved metadata performance is overshadowed by the
cost of I/O. However, as the overhead of I/O decreases by switching
to SSDs and NVMes, performance benefits are more noticeable.
Distributed Object Store: In this evaluation, we demonstrate the
benefit of customizing I/O interfaces on a state-of-the-art distributed
I/O system, LABIOS [60], which bridges the gap between Cloud
and HPC workloads through the use of a new data representation –
the label. In this test, we measured the I/O bandwidth and throughput
of LABIOS Workers, which are responsible for storing and retrieving
data. We perform a workload which triggers LABIOS to generate
8KB I/Os. Typically, LABIOS stores labels by translating them to a
UNIX file which is written on the disk by POSIX I/O. Each label write
triggers a sequence of POSIX calls (fopen()-fseek()-fwrite()-fclose()).
This behavior is common among distributed NoSQL DBs, Document
Stores, and Key-Value Stores. We compare the performance of using
various backends including LabKVS for the workload. We ran this
experiment over several types of drives but we present only the
NVMe results since it eliminates the differences of the medium and
highlights the impact of the stacks used. We avoided presenting the
results HDDs since no performance was gained due to seek penalties.

From Figure 9(b), it can be seen that filesystem performance
degrades by at least 12% when compared to LabKVS on NVMe and
PMEM. This is because filesystems impose the POSIX abstraction
over storage, which does not translate well to a key-value store
workload, requiring many syscalls in order to place data. As opposed
to the typical open-modify-close procedure required by filesystems,
LabKVS simply performs put/get, which reduces the number of
syscalls from 4 down to 1. In addition, by relaxing the access control
guarantees of LabKVS, up to an additional 16% performance is
gained. Overall, simply relying on the age-old POSIX API limits
the expressiveness of I/O systems, requiring them to comply with
awkward file translations and increased software overhead.
Cloud Workloads: Filebench contains four workloads: varmail,
webserver, webproxy, and fileserver. We use the default [72]
configurations of filebench for the workloads and run over NVMe and
PMEM. The results of the NVMe evaluation can be seen on Figure 9.
The PMEM experiments return identical trends as those executed over
NVMe. In most cases, LabStacks containing LabFS perform markedly
better than the alternatives (up to 2.5x throughput) by reducing context
switching and the I/O path length. The main exception is fileserver,
which performs many large I/Os and is thus dominated by I/O time.

V. CONCLUSION
In this work, we address the limitations of developing I/O stacks

within the confines of monolithic kernels, such as Linux. We
present LabStor: a modular, extensible, and high-performance I/O
platform. We showcase how modularity can be leveraged to provide
expressive, customizable and high-velocity I/O stacks. We leverage
this modularity to build composable I/O stacks that provide users
with the ability to upgrade and manage their I/O stacks in an easy
and efficient manner. Finally, we showcase how utilizing both
in-kernel and userspace drivers can help tie these ideas together into
a functional runtime environment. Experimental results demonstrate
that customized LabStor I/O stacks can yield performance gains of up
to 60% over alternatives under various workloads and storage devices.

VI. ACKNOWLEDGMENT

This research is fully supported by the NSF under Grants OCI-
1835764, CSR-1814872, and CSSI-2104013. Results in this paper
were obtained using the Chameleon testbed supported by the NSF.



REFERENCES

[1] L. Logan, J. Lofstead, S. Levy, P. Widener, X.-H. Sun, and A. Kougkas,
“pmemcpy: a simple, lightweight, and portable i/o library for storing data
in persistent memory,” in 2021 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2021, pp. 664–670.

[2] F. Wang, S. Oral, G. Shipman, O. Drokin, T. Wang, and I. Huang, “Understanding
lustre filesystem internals,” Oak Ridge National Laboratory, National Center
for Computational Sciences, Tech. Rep, vol. 120, 2009.

[3] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R. Ganger, and
G. Amvrosiadis, “File systems unfit as distributed storage backends: Lessons
from 10 years of ceph evolution,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles, ser. SOSP ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 353–369. [Online]. Available:
https://doi.org/10.1145/3341301.3359656

[4] J. Xu and S. Swanson, “{NOVA}: A log-structured file system for hybrid
{Volatile/Non-volatile} main memories,” in 14th USENIX Conference on File
and Storage Technologies (FAST 16), 2016, pp. 323–338.

[5] H.-J. Kim, Y.-S. Lee, and J.-S. Kim, “{NVMeDirect}: A user-space {I/O} frame-
work for application-specific optimization on {NVMe}{SSDs},” in 8th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage 16), 2016.

[6] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht, M. Hess, J. Malo,
J. Marti, and E. Cesario, “The xtreemfs architecture—a case for object-based
file systems in grids,” Concurrency and computation: Practice and experience,
vol. 20, no. 17, pp. 2049–2060, 2008.

[7] B. Welch, M. Unangst, Z. Abbasi, G. A. Gibson, B. Mueller, J. Small, J. Zelenka,
and B. Zhou, “Scalable performance of the panasas parallel file system.” in FAST,
vol. 8, 2008, pp. 1–17.

[8] S. Zheng, M. Hoseinzadeh, and S. Swanson, “Ziggurat: A tiered file system
for {Non-Volatile} main memories and disks,” in 17th USENIX Conference
on File and Storage Technologies (FAST 19), 2019, pp. 207–219.

[9] S. Kannan, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, Y. Wang, J. Xu, and
G. Palani, “Designing a true {Direct-Access} file system with {DevFS},” in
16th USENIX Conference on File and Storage Technologies (FAST 18), 2018,
pp. 241–256.

[10] R. Kadekodi, S. K. Lee, S. Kashyap, T. Kim, A. Kolli, and V. Chidambaram,
“Splitfs: Reducing software overhead in file systems for persistent memory,”
in Proceedings of the 27th ACM Symposium on Operating Systems Principles,
2019, pp. 494–508.

[11] S. Gugnani and X. Lu, “Dstore: A fast, tailless, and quiescent-free object
store for pmem,” in Proceedings of the 30th International Symposium on
High-Performance Parallel and Distributed Computing, 2021, pp. 31–43.

[12] G. Lee, S. Shin, W. Song, T. J. Ham, J. W. Lee, and J. Jeong, “Asynchronous
i/o stack: A low-latency kernel i/o stack for ultra-low latency ssds,” in 2019
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19), 2019, pp.
603–616.

[13] S. Miller, K. Zhang, M. Chen, R. Jennings, A. Chen, D. Zhuo,
and T. Anderson, “High velocity kernel file systems with bento,” in
19th USENIX Conference on File and Storage Technologies (FAST
21). USENIX Association, Feb. 2021, pp. 65–79. [Online]. Available:
https://www.usenix.org/conference/fast21/presentation/miller

[14] Q. Huai, W. Hsu, J. Lu, H. Liang, H. Xu, and W. Chen, “{XFUSE}: An
infrastructure for running filesystem services in user space,” in 2021 USENIX
Annual Technical Conference (USENIX ATC 21), 2021, pp. 863–875.

[15] J. Liu, A. Rebello, Y. Dai, C. Ye, S. Kannan, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Scale and performance in a filesystem semi-microkernel,” in
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Princi-
ples, ser. SOSP ’21. New York, NY, USA: Association for Computing Machinery,
2021, p. 819–835. [Online]. Available: https://doi.org/10.1145/3477132.3483581

[16] Y. Zhu, T. Wang, K. Mohror, A. Moody, K. Sato, M. Khan, and W. Yu,
“Direct-fuse: Removing the middleman for high-performance fuse file system
support,” in Proceedings of the 8th International Workshop on Runtime and
Operating Systems for Supercomputers, 2018, pp. 1–8.

[17] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer, C. Contavalli, M. Dalton,
N. Dukkipati, W. C. Evans, S. Gribble et al., “Snap: A microkernel approach
to host networking,” in Proceedings of the 27th ACM Symposium on Operating
Systems Principles, 2019, pp. 399–413.

[18] I. Zhang, J. Liu, A. Austin, M. L. Roberts, and A. Badam, “I’m not dead
yet! the role of the operating system in a kernel-bypass era,” in Proceedings of
the Workshop on Hot Topics in Operating Systems, ser. HotOS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 73–80. [Online].
Available: https://doi.org/10.1145/3317550.3321422

[19] D. Ji, Q. Zhang, S. Zhao, Z. Shi, and Y. Guan, “Microtee: designing tee os based
on the microkernel architecture,” in 2019 18th IEEE International Conference
On Trust, Security And Privacy In Computing And Communications/13th
IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE). IEEE, 2019, pp. 26–33.

[20] J. Hwang, M. Vuppalapati, S. Peter, and R. Agarwal, “Rearchitecting
linux storage stack for µs latency and high throughput,” in 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
21). USENIX Association, Jul. 2021, pp. 113–128. [Online]. Available:
https://www.usenix.org/conference/osdi21/presentation/hwang

[21] M. Hedayati, K. Shen, M. L. Scott, and M. Marty, “{Multi-Queue} fair queuing,”
in 2019 USENIX Annual Technical Conference (USENIX ATC 19), 2019, pp.
301–314.

[22] M. Yi, M. Lee, and Y. I. Eom, “Cffq: I/o scheduler for providing fairness and high
performance in ssd devices,” in Proceedings of the 11th International Conference
on Ubiquitous Information Management and Communication, 2017, pp. 1–6.

[23] M. Lee, D. H. Kang, M. Lee, and Y. I. Eom, “Improving read performance by
isolating multiple queues in nvme ssds,” in Proceedings of the 11th International
Conference on Ubiquitous Information Management and Communication, 2017,
pp. 1–6.

[24] J. Woo, M. Ahn, G. Lee, and J. Jeong, “{D2FQ}:{Device-Direct} fair queueing
for {NVMe}{SSDs},” in 19th USENIX Conference on File and Storage
Technologies (FAST 21), 2021, pp. 403–415.

[25] P. Mishra and A. K. Somani, “Host managed contention avoidance storage
solutions for big data,” Journal of Big Data, vol. 4, no. 1, pp. 1–42, 2017.

[26] Y. Chen, Y. Lu, F. Yang, Q. Wang, Y. Wang, and J. Shu, “Flatstore: An efficient
log-structured key-value storage engine for persistent memory,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp. 1077–1091.

[27] B. Peng, H. Zhang, J. Yao, Y. Dong, Y. Xu, and H. Guan, “{MDev-NVMe}: A
{NVMe} storage virtualization solution with mediated {Pass-Through},” in 2018
USENIX Annual Technical Conference (USENIX ATC 18), 2018, pp. 665–676.

[28] B. Peng, J. Yao, Y. Dong, and H. Guan, “Mdev-nvme: Mediated pass-through
nvme virtualization solution with adaptive polling,” IEEE Transactions on
Computers, 2020.

[29] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, “Arrakis: The operating system is the control
plane,” ACM Trans. Comput. Syst., vol. 33, no. 4, nov 2015. [Online]. Available:
https://doi.org/10.1145/2812806

[30] S. Kannan, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, Y. Wang, J. Xu,
and G. Palani, “Designing a true Direct-Access file system with DevFS,” in 16th
USENIX Conference on File and Storage Technologies (FAST 18). Oakland,
CA: USENIX Association, Feb. 2018, pp. 241–256. [Online]. Available:
https://www.usenix.org/conference/fast18/presentation/kannan

[31] M. Dong, H. Bu, J. Yi, B. Dong, and H. Chen, “Performance and protection
in the zofs user-space nvm file system,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, ser. SOSP ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 478–493. [Online].
Available: https://doi.org/10.1145/3341301.3359637

[32] “Direct access for files,” 2014. [Online]. Available:
https://www.kernel.org/doc/Documentation/filesystems/dax.txt

[33] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao,
J. Stern, V. Verma, and L. E. Paul, “Spdk: A development kit to build high
performance storage applications,” in 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), 2017, pp. 154–161.

[34] M. Bjørling, J. Gonzalez, and P. Bonnet, “{LightNVM}: The linux {Open-
Channel}{SSD} subsystem,” in 15th USENIX Conference on File and Storage
Technologies (FAST 17), 2017, pp. 359–374.

[35] N. Moti, F. Schimmelpfennig, R. Salkhordeh, D. Klopp, T. Cortes, U. Rückert,
and A. Brinkmann, “Simurgh: A fully decentralized and secure nvmm user
space file system,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’21.
New York, NY, USA: Association for Computing Machinery, 2021. [Online].
Available: https://doi.org/10.1145/3458817.3476180

[36] Y. Chen, Y. Lu, B. Zhu, and J. Shu, “Kernel/user-level collaborative
persistent memory file system with efficiency and protection,” arXiv preprint
arXiv:1908.10740, 2019.

[37] Y. Lu, J. Shu, Y. Chen, and T. Li, “Octopus: an {RDMA-enabled} distributed
persistent memory file system,” in 2017 USENIX Annual Technical Conference
(USENIX ATC 17), 2017, pp. 773–785.

[38] Y. Chen, Y. Lu, B. Zhu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and J. Shu,
“Scalable persistent memory file system with {Kernel-Userspace} collaboration,”
in 19th USENIX Conference on File and Storage Technologies (FAST 21), 2021,
pp. 81–95.

[39] W. Zhang, X. Zhao, S. Jiang, and H. Jiang, “Chameleondb: a key-value store for
optane persistent memory,” in Proceedings of the Sixteenth European Conference
on Computer Systems, 2021, pp. 194–209.

[40] T. Vinçon, A. Bernhardt, I. Petrov, L. Weber, and A. Koch, “nkv: near-data process-
ing with kv-stores on native computational storage,” in Proceedings of the 16th
International Workshop on Data Management on New Hardware, 2020, pp. 1–11.

[41] B. Zhang and D. H. Du, “Nvlsm: A persistent memory key-value store using
log-structured merge tree with accumulative compaction,” ACM Transactions
on Storage (TOS), vol. 17, no. 3, pp. 1–26, 2021.



[42] T. Bisson, K. Chen, C. Choi, V. Balakrishnan, and Y.-s. Kee, “Crail-kv: A
high-performance distributed key-value store leveraging native kv-ssds over
nvme-of,” in 2018 IEEE 37th International Performance Computing and
Communications Conference (IPCCC). IEEE, 2018, pp. 1–8.

[43] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson, “Strata:
A cross media file system,” in Proceedings of the 26th Symposium on Operating
Systems Principles, 2017, pp. 460–477.

[44] W. Wang and S. Diestelhorst, “Quantify the performance overheads of pmdk,”
in Proceedings of the International Symposium on Memory Systems, 2018, pp.
50–52.

[45] L. Zhang and S. Swanson, “Pangolin: A {Fault-Tolerant} persistent memory
programming library,” in 2019 USENIX Annual Technical Conference (USENIX
ATC 19), 2019, pp. 897–912.

[46] Y. Ren, C. Min, and S. Kannan, “{CrossFS}: A cross-layered {Direct-Access}
file system,” in 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), 2020, pp. 137–154.

[47] T. L. Kernel, “Fuse.” [Online]. Available:
https://www.kernel.org/doc/html/latest/filesystems/fuse.html

[48] J. Lofstead and A. Younge, “Gestalt computing: Hybrid traditional hpc and cloud
hardware and software support,” CLOUD COMPUTING 2022, p. 63, 2022.

[49] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An empirical
guide to the behavior and use of scalable persistent memory,” in 18th {USENIX}
Conference on File and Storage Technologies ({FAST} 20), 2020, pp. 169–182.

[50] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum, “Minix 3:
A highly reliable, self-repairing operating system,” ACM SIGOPS Operating
Systems Review, vol. 40, no. 3, pp. 80–89, 2006.

[51] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish et al., “sel4: Formal
verification of an os kernel,” in Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, 2009, pp. 207–220.

[52] Top500, “Operating system family / linux,” November 2021. [Online]. Available:
https://www.top500.org/statistics/details/osfam/1/

[53] S. McClure, A. Ousterhout, S. Shenker, and S. Ratnasamy, “Efficient scheduling
policies for {Microsecond-Scale} tasks,” in 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22), 2022, pp. 1–18.

[54] J. Liu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Kannan, “File systems
as processes,” in 11th USENIX Workshop on Hot Topics in Storage and File Sys-
tems (HotStorage 19). Renton, WA: USENIX Association, Jul. 2019. [Online].
Available: https://www.usenix.org/conference/hotstorage19/presentation/liu

[55] I. Zhang, A. Raybuck, P. Patel, K. Olynyk, J. Nelson, O. S. N. Leija, A. Martinez,
J. Liu, A. K. Simpson, S. Jayakar, P. H. Penna, M. Demoulin, P. Choudhury,
and A. Badam, “The demikernel datapath os architecture for microsecond-scale
datacenter systems,” in Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, ser. SOSP ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 195–211. [Online]. Available:
https://doi.org/10.1145/3477132.3483569

[56] N. Moti, F. Schimmelpfennig, R. Salkhordeh, D. Klopp, T. Cortes, U. Rückert,
and A. Brinkmann, “Simurgh: a fully decentralized and secure nvmm user
space file system,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2021, pp. 1–14.

[57] R. R. Curtin, J. R. Cline, N. P. Slagle, W. B. March, P. Ram, N. A. Mehta, and
A. G. Gray, “Mlpack: A scalable c++ machine learning library,” Journal of
Machine Learning Research, vol. 14, no. Mar, pp. 801–805, 2013.

[58] R. B. Ross, G. Amvrosiadis, P. Carns, C. D. Cranor, M. Dorier, K. Harms,
G. Ganger, G. Gibson, S. K. Gutierrez, R. Latham et al., “Mochi: Composing
data services for high-performance computing environments,” Journal of
Computer Science and Technology, vol. 35, no. 1, pp. 121–144, 2020.

[59] H. Devarajan, A. Kougkas, L. Logan, and X.-H. Sun, “Hcompress: Hierarchical
data compression for multi-tiered storage environments,” in 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). IEEE,
2020, pp. 557–566.

[60] A. Kougkas, H. Devarajan, J. Lofstead, and X.-H. Sun, “Labios: A distributed
label-based i/o system,” in Proceedings of the 28th International Symposium
on High-Performance Parallel and Distributed Computing, 2019, pp. 13–24.

[61] A. Kougkas, H. Devarajan, and X.-H. Sun, “Iris: I/o redirection via integrated
storage,” in Proceedings of the 2018 International Conference on Supercomputing,
2018, pp. 33–42.

[62] ——, “Hermes: a heterogeneous-aware multi-tiered distributed i/o buffering
system,” in Proceedings of the 27th International Symposium on High-
Performance Parallel and Distributed Computing, 2018, pp. 219–230.

[63] H. Devarajan, H. Zheng, A. Kougkas, X.-H. Sun, and V. Vishwanath, “Dlio:
A data-centric benchmark for scientific deep learning applications,” in 2021
IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet
Computing (CCGrid). IEEE, 2021, pp. 81–91.

[64] J. Cernuda, H. Devarajan, L. Logan, K. Bateman, N. Rajesh, J. Ye, A. Kougkas,
and X.-H. Sun, “Hflow: A dynamic and elastic multi-layered i/o forwarder,”
in 2021 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2021, pp. 114–124.

[65] A. Kougkas, H. Devarajan, X.-H. Sun, and J. Lofstead, “Harmonia: An
interference-aware dynamic i/o scheduler for shared non-volatile burst buffers,”
in 2018 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2018, pp. 290–301.

[66] L. Soares and M. Stumm, “{FlexSC}: Flexible system call scheduling with
{Exception-Less} system calls,” in 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 10), 2010.

[67] W. J. Stewart, Probability, Markov chains, queues, and simulation. Princeton
university press, 2009.

[68] J. U. Farley and L. W. Ring, “A stochastic model of supermarket traffic flow,”
Operations Research, vol. 14, no. 4, pp. 555–567, 1966.

[69] L. Torvalds, “Linux kernel github,” 2016, commit hash:
1f5bd336b9150560458b03460cbcfcfbcf8995b1. [Online]. Available:
https://github.com/torvalds/linux

[70] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione, M. Cevik,
J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti, A. Barnes, F. Halbach,
A. Rocha, and J. Stubbs, “Lessons learned from the chameleon testbed,” in
Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC
’20). USENIX Association, July 2020.

[71] C. Min, S. Kashyap, S. Maass, and T. Kim, “Understanding manycore scalability
of file systems,” in 2016 USENIX Annual Technical Conference (USENIX ATC
16), 2016, pp. 71–85.

[72] R. McDougall and J. Mauro, “Filebench,” URL: http://www. nfsv4bat.
org/Documents/nasconf/2004/filebench. pdf (Cited on page 56.), 2005.

[73] X. Ji, B. Yang, T. Zhang, X. Ma, X. Zhu, X. Wang, N. El-Sayed, J. Zhai, W. Liu,
and W. Xue, “Automatic,{Application-Aware}{I/O} forwarding resource
allocation,” in 17th USENIX Conference on File and Storage Technologies (FAST
19), 2019, pp. 265–279.

[74] A. K. Paul, B. Wang, N. Rutman, C. Spitz, and A. R. Butt, “Efficient metadata
indexing for hpc storage systems,” in 2020 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGRID). IEEE, 2020,
pp. 162–171.

[75] S. Patil, K. Ren, and G. Gibson, “A case for scaling hpc metadata performance
through de-specialization,” in 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis. IEEE, 2012, pp. 30–35.

[76] S. Byna, J. Chou, O. Rubel, H. Karimabadi, W. S. Daughter, V. Roytershteyn,
E. W. Bethel, M. Howison, K.-J. Hsu, K.-W. Lin et al., “Parallel i/o, analysis,
and visualization of a trillion particle simulation,” in SC’12: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis. IEEE, 2012, pp. 1–12.

[77] M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. Lukić, V. Roytershteyn,
M. J. Anderson, Y. Yao, P. Dubey et al., “Bd-cats: big data clustering at trillion par-
ticle scale,” in SC’15: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis. IEEE, 2015, pp. 1–12.



Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
LabStor is a platform consisting of multiple libraries and binaries.
Scripts for automating the compilation, deployment, and testing of
this system are provided in GitHub1. A readme file is also provided
which contains detailed steps on how to install and test LabStor.

System: We ran all of our experiments in Chameleon using
the storage hierarchy node, equipped with NVMe (Intel P3700;
2TB), SSD (Intel SSDSC2BX01; 1.6TB) HDD (Seagate ST600MP0005;
600GB), and 512 GiB of RAM. It contains 2xIntel(R) Xeon(R) CPU
E5-2670 v3 @ 2.30GHz for a total of 24 cores and 48 threads.

Software: We use Ubuntu 20.04 with kernel 5.4.0-100-generic as
the OS and kernel for all experiments. For our synthetic benchmarks
we use FIO 3.28 and FxMark2. For the non-synthetic evaluations, we
use LABIOS3, specifically the worker code and FileBench-1.4.9.1. To
setup emulation for PMEM devices, we apply minor modifications
to the OS bootloader. Instructions to do this are provided in the
GitHub. We use SPDK v21.10 in some experiments as an NVMe
driver. All this software is provided in the LabStor repo.

Compiling LabStor: To compile LabStor, a single CMake script
is provided in the head of the repo. The script compiles all LabStor
code. Users can set the CMAKE_INSTALL_PREFIX to install all
binaries, libraries, and headers into a separate directory; but this is
optional. More detail on compiling/installing LabStor is provided
in the GitHub.

LabStor Components: LabStor is comprised of several binaries
and executables. After compilation, a client library, an executable for
the Runtime, and a kernel module for the Kernel Ops Manager will
be produced. In addition, there are various LabMods (e.g., GenericFS,
LabFS, LRU, NoOp, SPDK, Kernel Drivers) which can be dynamically
loaded into the Runtime using the provided mount commands.

LabStor Deployment/Testing: An automation script is pro-
vided (benchmark/test.py) to setup and run all tests used in LabStor.
This script automatically deploys the kernel module, the LabStor
Runtime, and the various LabMods required for each individual
test. Details of the test script are provided in the GitHub. For exper-
iments which perform I/O at any point, the script clears all system
caches before running the test.

0.1 Evaluation Conduct
Following is a detailed explanation of how all evaluations where
performed. Detailed technical details on how to performed each
experiment are available in the provided script.

I/O Anatomy: We used LabStor to construct a LabStack contain-
ing LabFS, LRU caching, NoOp I/O scheduling, and Kernel Drivers.
We collect time measurements from each of the modules on the
stack during a read and write operation. Time is collected using a
separate, dedicated timer thread which stores the current time in
shared memory by continuously polling std::chrono.

1https://github.com/scs-lab/labstor
2https://github.com/sslab-gatech/fxmark. Commit 3f29552
3https://github.com/scs-lab/labios. Commit a03384a

Live Upgrade: We used LabStor to construct a LabStack contain-
ing only a dummy LabMod and send 100,000 messages to the Lab-
Mod using a custom driver program. We then upgrade the dummy
LabMod while it is executing and measure overall execution time.
The Runtime is configured with one worker.

Work Orchestrator: Dynamic CPU Allocation: We run a
workload where each client thread randomly writes 1GB of data
with 4KB request sizes and vary the number of clients (between
1 and 16) using a custom driver program. The LabStack tested
uses NoOp scheduling with Kernel Driver LabMod over NVMe. We
compare three Runtime work orchestrator configurations: 1 worker,
8 workers, and a dynamic number of workers.

Work Orchestration: Request Partitioning: We deploy two
LabStacks: latency-sensitive (L) and compressor (C). The L-LabStack
contains an LRU cache, No-Op I/O scheduler, and uses the Kernel
Driver LabMod as a backend. The C-LabStack adds ZLIB compres-
sion. We run a metadata-intensive workload (L-App) which creates
5,000 files per-thread over the L-LabStack, and a large I/O work-
load (C-App) which writes 128GB of data per-thread with request
sizes of 32MB through the C-LabStack. Both the number of L-App
and C-App threads are fixed at 8. We vary the number of Runtime
workers to be between 1 and 8.

Storage API performance: We compared the kernel’s APIs
(I/O uring, libaio, aio, posix) to LabStor’s SPDK and Kernel Driver
LabMods over HDDs, SSD, NVMe, and emulated PMEM using fio.
We used a single thread and request sizes of 4KB and 128KB. When
using the kernel’s APIs, we perform direct I/O (O_DIRECT) to the
device files, bypassing filesystem implementations.

I/O Schedulers: We integrate the No-Op and blk-switch I/O
schedulers into LabStor and compare against their in-kernel coun-
terparts. For this evaluation, we compiled the custom kernel re-
quired for blk-switch to work (kernel 5.4.43). LabStor was still exe-
cuted in kernel 5.4.0 to avoid additional development. We deploy
two fio instances: throughput-bound (T-App) and latency-bound
(L-App). The T-App produces 64KB random writes per-thread with
an I/O depth of 32. The L-App produces 4KB random writes per-
thread (I/O depth 1). Both apps run for a period of 1 minute. Both
the T-App and L-App have 8 threads, and the LabStor Runtime is
configured to have 8 workers.

Metadata throughput: We compare LabStor against various
filesystems for metadata performance using FxMark. We vary the
number of client threads to be between 1 and 24. The LabStor
Runtime is configured with 16 workers. The LabStacks are defined
as follows:

(1) Centralized+Permissions: Permissions, LabFS. LabStack exe-
cutes asynchronously.

(2) Centralized: Removes the Permissions Module.
(3) Minimal: Removes the Permissions Module. LabStack exe-

cutes synchronously.

Labios: We ran the Labios Worker program, which uses
open/lseek/write/close to perform I/O. We use a single thread to



Logan, et al.

write 8KB IOs to NVMe (randomly) and emulated PMEM. The Lab-
Stor Runtime is also configured with a single thread. We compare
three LabStacks against EXT4/XFS/F2FS. The LabStacks are defined
as follows:

(1) Centralized+Permissions: Permissions, LabKVS, NoOp I/O
scheduling, Kernel Drivers. LabStack executes asyn-
chronously.

(2) Centralized: Removes the Permissions Module.
(3) Minimal: Removes the Permissions Module. LabStack exe-

cutes synchronously.
Filebench: For the filebench workload, we ran varmail, web-

server, webproxy, and fileserver using the default configurations
over NVMe and emulated PMEM. The Runtime is configured with
8 workers. We compared EXT4, XFS, and F2FS against three Lab-
Stacks. The LabStacks are defined as follows:

(1) Centralized+Permissions: Permissions, LabFS, LRU Caching,
NoOp I/O scheduling, Kernel Drivers. LabStack executes
asynchronously.

(2) Centralized: Removes the Permissions Module.
(3) Minimal: Removes the Permissions Module. LabStack exe-

cutes synchronously.

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: https://doi.org/10.5281/zenodo.6941987
Artifact name: LabStor GitHub

Reproduction of the artifact without container: We cannot con-
tainerize or virtualize the LabStor experiments, as we are including
optimizations which require modifications to the host machine.
However, LabStor has only three dependencies: kernel 5.4.0, Yaml-
CPP (commit db6deed), and Boost 1.74. The only limiting depen-
dency is the required kernel version, which is kernel 5.4.0. Ideally,
a baremetal machine which can have any OS or kernel version
installed (e.g., Chameleon Cloud) would be used. Besides this, the
LabStor GitHub has automation scripts for installing necessary
dependencies (including kernel versions) and running experiments.
A single script is used for the installation of all dependencies (in-
stall.sh in the root of the GitHub). A single script is used for the
execution of the test cases (benchmark/test.py). The repo has more
details about the exact execution of the scripts and installation
processes.


	0.1 Evaluation Conduct

