occelerotes.

u and Extensﬂole

Sandia
ILLINOIS INSTITUTE National

OF TECHNOLOGY Laboratories

The Explosion of 1/0O Requirements

A wide diversity of Kach have varying
applications I/0 requirements

Machine
Learning High

Bandwidth

DEF:] /0
Streaming Interface

Data
Privacy

2
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Rapid Storage Hardware Kvolution

Luke Logan

Order of magnitude
performance improvement
with each new generation
New interfaces being
exposed
Hardware-specific
optimization!

LabStor: A modular platform for developing custom I/0 stacks

Block

Device |

Zoned

Namespace |

~| Latency: 20ms

Bandwidth: 120MBps

“| Latency: 20us

Bandwidth: 1.2GBps

Byte

Addressable

Bandwidth: 6GBps
/| Latency: 100ns

3
llogan@hawk.iit.edu

Parallel Filesystems

e HPC applications rely on
parallel filesystems (PFS)

e PK'S relies on node-local
storage stacks

IBM

.........

........

Page Cache Direct I/0

Block 1/0 Layer

1/0 Scheduling

Device Drivers

Luke Logan LabStor: A modular platform for developing custom I/0 stacks

Spectrum

llogan@hawk.iit.edu

Parallel Filesystems

e HPC applications rely on
parallel filesystems (PFS)

e PK'S relies on node-local
storage stacks

Node-local 1/0 stacks are not
adapting rapidly enough!

Page Cache Direct I/0

Block 1/0 Layer

1/0 Scheduling

Device Drivers

Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

)

Developing I/0 Stacks

Luke Logan

VFS

BentoFS

ES List

‘ FS libBentoKS

libBentoFS i :’—b{ BlockDevice }—
v ‘J: wiite TepStream }—
»

Kernel Services

block_device

socket

VFS -=1P dispatch -9 update_prepare
: : l update_transfer :
"""" i ==
install/upgrade ot T
module :
-------- <"1 manager Riuasessmit
1 =
3 | Application FUSE file—system daemon
- FUSE library
~ h
g EIvES /devifuse Other kernel
3 t FUSE g subsystems
= Kernel-based driver E
file system

Bento

BentoFS

FS List

‘FS

1===t---p dispatch

libBeNtoFS | 3 o T
WE

‘ P update_prepare

~-)p update_transfer

libBentoKS

BlockDevice }—

@_i block_device

Kernel Services

socket

il ToRiNE o J|Egurena
- manager

Library I/0 Stacks

App1

App2

App3

Simurgh

Simurgh

Simurgh

DAX

DAX

DAX

——

PMEM

LabStor: A modular platform for developing custom I/0 stacks

llogan@hawk.iit.edu

The Limitations of Existing Platforms

//\ @

\
Limited Tight Limited Cumbersome
Extensibility Coupling Configurability Deployments

7
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Limited Extensibility

Applications
HDF5, NetCDF, pNetCDF, etc.
MPI-10
/ Cannot expose APIs
,A\ POSIX read() | :write()] — alternative to POSIX
VFS | EXT4 || XFS || F2FS_
Development Direct I/0 Page Cache .
platforms only Cannot improve other
Block 1/0 Layer

support the
filesystems layer!

Luke Logan

1/0 Scheduling

Device Drivers

LabStor: A modular platform for developing custom I/0 stacks

layers of the 1/0 stack

Limits performance and

feature richness!

llogan@hawk.iit.edu

Tight Coupling

&)

\

Development
platforms do not
promote the single
responsibility
principle!

Luke Logan

————————————————————————————————

POSIX | read() | | write() |

VFS FrImsass e e

Direct 1/0 Page Cache
Block 1/0 Layer
1/0 Scheduling

Device Drivers

LabStor: A modular platform for developing custom I/0 stacks

I/0 stacks are tightly
coupled with a large set of
features

~__ They cannot be reused

by other I/0 stacks

Duplicated implementation
and debugging effort!

llogan@hawk.iit.edu

Limited Configurability

I/0 stacks are
shipped with a fixed
set of features!

Luke Logan

—————————————————————————————

POSIX'| read() ;| write() Some policies are
" Eexta)\ L non-negotiable
Access Ctrl-]
. split
' block alloc
| el ¥
Directl/0 | PageCache | \ Some policies are not workload
Block 1/0 Layer or hardware-optimized
1/0 Scheduling
Device Drivers < Performance degradation!
10
LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Cumbersome Deployments

e Ununified namespaces

o Multiple I/0 stacks per program can cause conflict

e Upgrades require reboots and potentially kernel
recompilation

e No crash recovery from bugs

I/0 stacks suffer Lowers adoption rates!
from cumbersome
deployment pipelines!

11
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

The LabStor Platform

We aim to reinvision the way that I/0 stacks are developed
and deployed to improve the customizability and code velocity
of future I1/0 stacks

[B][C s

LabMod LabStack LabStor Runtime

12
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

The LabStor Platform

(Al
[(Bl[C

LabMod Promote Single
Kxtensibility Responsibility
Generic code object Provide a wide (and Provide separate
whose type can be extensible) menu of types for filesystems
chosen by the types for every layer and their features
developer of the stack

Luke Logan

13
LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

The LabStor Platform

s

LabStack Enable. .
Configurability
The combination of compatible Provide a human-readable
LabMods into an optimized schema file format to define
storage stack LabStacks

Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

The LabStor Platform

AT
LabStor Runtime Optimize
Deployment
Main warehouse and e Unified namespace for all I/0 stacks
execution engine of e Protocols to upgrade I/0 stacks
LabStor e Protocols to recover from a crash

15
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Towards fully modular 1/0
stacks

/
Towards Modularity: What LabMods Are @

Promote Loose
Extensibility ~ Coupling

e An independent, self-contained code object implementing a well-defined,
distinct, single-purpose functionality

Full Creative Incrementally Hot Swappable Stackable
Freedom Upgradeable

17
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

. @ LabMod Components

1. Type 2. Connector
The set of Exposes the
APIs the operation to

LabMod clients

implements

3. Operation 4. State
Functionality Internal data
of the LabMod required for the

Luke Logan operation

Client

1. Connector.write()

State

Connector 3. Allocate Block
disk blocks Allocator
2. POSIX 1/0
Request
Operation
4. Block 1/0
Requests

LabStor: A modular platform for developing custom I/0 stacks

llogan@hawk.iit.edu

18

LabMod Developer Kit

e STL-like data structures and memory allocators

o Shared-memory compatible
o Kernel-compatible

e Request queueing API
e Namespace API

19
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

LabMod Example: Filesystem Compression (1/3)

CompressConnector : FsTransformConnector {

request* WriteBegin(lab::vector< > &data
ExtendedMetadata &ext md) {
GetQueue ()

Alloc<fs request> ()
FsOps: :kWriteBegin
<< data

md

e C(Connectors call LabStor APIs to build & submit requests
e This submits a “kWriteBegin” request

20
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

LabMod Example: Filesystem Compression (2/3)

CompressOperator : FsTransformOperator

ProcessRequestFn (queue *qg, request *req op) {

(<FsOps>(op))
FsOps:: : { WriteBegin (g, req) ¥
FsOps:: : { WriteEnd(qgq, req); }

e A worker eventually dequeues the request and calls ProcessRequestl'n
e All operators implement ProcessRequestE'n
e Routes a request to the proper function

21
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

LabMod Example: Filesystem Compression (3/3)

WriteBegin (queue *qg, fs request *req) f{
vector< > orig data, new data
orig data << reg->data
new data = compress (orig data)

reg->md .add (orlg data.size())

conn = GetConnector<GenericFs> (next labmod)

child req = conn-> WriteBegin (new data, reg->md)
Promise (req, child req, kWriteEnd)
}

e The main functionality of the labmod

e C(Compresses the input data and stores the uncompressed size in metadata
e Promise will asynchronously call k Writelind after child_req completes

22
Luke Logan LabStor: A modular platform for developing custom I/0 stacks

llogan@hawk.iit.edu

Why does single
responsibility matter?

23
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

The Benefit of Single Responsibility

Application write()

.\‘I&‘\ Wﬁfe(::.
N{\\eq\b\‘%\a write(“/f2fs/b.txt”) s Che)
. . I

e Many Linux filesystems provide BTRFS FOFS JFES?

transparent compression Compress] Compress2 Compress3
e Very similar implementations Metadata Metadata Metadata

1/0 Sched
Drivers

O LJ -

SSD

24
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

The Benefit of Single Responsibility

Application [write() }

LabStor

Runtime | Birfs

Compressi— F2FS LRU | NoOp —KDriver —|[ssp
JFS

Total LOC for Compression

Kernel LOC
3756

LabStor LOC
327

e The same compression module can be reused across filesystems in LabStor
e 10x less code needs to be written

e Less debugging and implementation effort!

Luke Logan

LabStor: A modular platform for developing custom I/0 stacks

llogan@hawk.iit.edu

29

Towards Composable 1/0
Services

Enable
Configurability

The LabStack

e A user-defined combination of compatible LabMods into a single I1/0 system
e LabStacks can be mounted using a human-readable name (e.g., “fs::/a”)

<

Pick & Dynamic Multiple Paths,
Choose Modification Same Data
Choose only Dynamically modify Provide different views over
the LabMods to adapt to changing the same content
required by the I/0 requirements (e.g., different I/O APIs)
I/0 stack

27
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

What does composability enable that
was not previously possible?

28
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Kxamples: 1/0 Specialization (1)

fs::/a Compress — EXT4 — LRU - Driver SSD

e Typically, a filesystem will have one rigid set of features
e K.go., compression attempted on every 1/0 access

29
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Kxamples: 1/0 Specialization (2)

%Q Compress — LabFS [LRU | SPDK $SD

fs::/a Low-Latency?

Yoq LabFS SPDK -~

e (an provide different paths which have different optimizations
e High-bandwidth requests get compression 4 caching
e Low-latency requests get stored ASAP

30
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Examples: Tunable Access Control (1)

g = =

fs::/a ACL 1 LabFS H LRU [+ NoOp {KDriver SSD

$

fs::/a LabFS — LRU [NoOp {{KDriver SSD

e Authentication is typically required on every request in Linux
e (an completely disable authentication by removing that LabMod
e Useful when hardware is dedicated to a user

31
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Examples: Tunable Access Control (2)

Island A | | | abFS | LRU | NoOp [KDriver

fs::/a el —

Paths A SSD

Island B

fs::/b LR 1

Paths B

e Alternative approaches to authentication can also be created

e fs::/a and fs::/b give users access to different “data islands”

32
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Kxamples: Interface Convergence & Diversity

kvs::/a LabKVS— LRU [NoOp —KDriver
fs:/a FS
log::/a Log

e Provide alternative APIs and data representation to POSIX
e [Hxpose different APIs over the same content
e Data stored as objects, but accessed using either log or filesystem APIs

33
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

A Powertul Alternative to
the Linux Stack

How does LabStor execute
LabStacks?

39
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Executing LabStacks (1) Q)

LabStor Runtime

App1

7
/

| PN

[

ec Library Gen

LabStor Client

P

App?2

LabStor Client
Library »~

;D éneric PC

|/0 Data Path

~ (-

Request Update

Submit

Y

Client
Admin

. o . . Worker Worker | Execute| {Upg}adeIMo dules}
1. Client initially registers with the -y , G ©) @)®) [Update| (Manager
: | g Module Manager
Runtime (\ LabFS LabKVS — | LoadiLabMod
2. Create shared-memory queues § | Worker J - 182(Namespace)
. . rc |00 Lk
between client & runtime Manager | Establish: 20 cacra ... ‘ Appl | App2
Comms | dche \LabStaCk LabStackJ
3. Client loads the connector of . ,, B p _
. - Worker | Manage
“Generic LabMod” from the : oo @)B) [Workers
' bt Work Orchestrator
NoOp Sched. :
Namespace p A)
4. Call the connector to place an RN] j cernel
: ’ Kernel |
I/0 request in the queue _IPC el % .
~ -~ “LabStor Kernel | Management | HDD
L Ops Manager NVMe Driver
36

Luke Logan

LabStor: A modular platform for developing custom I/0 stacks

llogan@hawk.iit.edu

App1

j' LabStor Client

, -~ o

App?2

LabStor Client
Librar

-
/

Kxecuting LabStacks (2)

e The runtime spawns or registers
workers

e [ventually process the queues

e Workers can execute either in
kernel or userspace

o Re-use kernel functionality

Luke Logan

|/0 Data Path

Request Update

\, Library Gentih éneric - IPC_ /i:clllr(;r:;t]
OO LabMod)\ LabMod 80O

Submit

LabStor Runtime ; ; :
Worker Worker Execute| [Upgrade
i e - Modules
_____________ : . % % Update| | Manager
|l LabFs LabkVS - Module Manager
I — LoadiLabMod
RG] J %% (Namespace h
IPC I e ©).(®), - 1EF
Manager | Establish! [RUCache b | ‘ App1 App2
Camms | LabStack | LabStack
! = _/
- Worker ' Mahage C N
R S % - ' 1 Workers
N = s RRRL L Work Orchestrator
NoOp Sched. 5
BN)
-~ I Kernel
- \ Y i erne
; KFFr)r(I:eI | Worker |
X / In-Kernel 7] >
"~ < - “LabStor Kernel Management | ’% HDD
L Ops Manager NVMe Driver |+
37

LabStor: A modular platform for developing custom I/0 stacks

llogan@hawk.iit.edu

App1

j LabStor Client

PAEERE

App?2

LabStor Client

Request Update

Executing LabStacks (3)

e Work orchestrator assigns
queues to workers

e (an place multiple queues on a
single worker

o Helpful if requests are
latency-sensitive

Luke Logan

: ,LPQX\ Library Gemih éneric Library ~ pc

Client
Admin

LabStor: A modular platform for developing custom I/0 stacks

N©)©)) LabMod / \ LabMod i\@@;
T |/0 Data Path (_§yp_n_1i_t_j
Update
LabStor Runtime ; ; :
Worker Worker _ Execute| [Upgrade Modules
_____________ : . % @X@ Update| | Manager
' ; LabFS LabKVS b Module Manager
— LoadiLabMod
; RG] J %% (Namespace h
IPC 00 I £5
Manager | Establish! LRU Cache - | ‘ App1 App2
Comms ! Lo LabStack | LabStack
! P _ _/
- Worker iManage C D
! S % - ' 1 Workers
! t-~-t--------41 Work Orchestrator
NoOp Sched. ;
H N)
g I Kernel
“ s v | erne
:" KFS(‘;' | Worker |
/ In-Kernel | __ >
¥~ _ - “LabStor Kernel Management | m HDD
L Ops Manager NVMe Driver |+
38

llogan@hawk.iit.edu

How to deploy LabStacks?

39
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Deployment

e LabStacks are mounted in the LabStack Namespace using a utility script
(mount.labstack)

e After mounting, there are three ways of accessing it:
o Native API (GetConnector)
o API Interception (Generic LabMods)
o System calls (VFS)

40
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Geeneric LabMods & Unified Namespace

Intercept Route Reuse

Intercept 1/0 for a Many Manages state

articular AP] implementations of common between 1/0
Ize POSIX) the same API at the systems of a
o same time particular type

Application | open() | | write() | LabStack NS

open(“/ext4/hi.txt") descriptor

, [File Descriptor Table]
GenericPosix “open(). Rt :

open(“/ext4/hi.txt")

EXT4 F2FS BTRFS

41
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Geeneric LabMods & Unified Namespace

Intercept Route Reuse

Intercept 1/0 for a Many Manages state

articular AP] implementations of common between 1/0
?e POSIX) the same API at the systems of a
o same time particular type

LabStack NS

Application | open() | | write()

open(“/ext4/hi.txt") descriptor

[File Descriptor Table)
open() | | write()

GenericPosix

open(“/ext4/hi.txt")

EXT4 F2FS BTRFS

42
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Geeneric LabMods & Unified Namespace

Intercept Route Reuse

Intercept 1/0 for a Many Manages state

articular AP] implementations of common between 1/0
Ize POSIX) the same API at the systems of a
o same time particular type

Application | open() | { wiite(). LabStack NS

open(“/ext4/hi.txt") descriptor

. [File Descriptor Table)
GenericPosix ;- e :

open(“/ext4/hi.txt")
EXT4 F2FS BTRFS

43
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Geeneric LabMods & Unified Namespace

Intercept Route Reuse
Intercept 1/0 for a : Many. SETTEQES SEIE
: implementations of common between 1/0
particular API
the same API at the systems of a
(e.g., POSIX) :)
same time particular type

— e s LabStack NS
Application : open() : : write()

open(“/ext4/hi.txt") descriptor

, ~|File Descriptor Table
GenericPosix —————+- S ~.

open(“/ext4/hi.txt")
EXT4 F2FS BTRFS

44
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Other deployment considerations

e (rash recovery: what happens if a LabMod was buggy and crashed the
Runtime?
o Data structures in shared memory, and can be recovered after a crash

e Upgrade protocols: how to update LabMods after deployment?

o Request queues are paused, and all pending operations will be completed
o The upgrades are then processed

45
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Provided LabMods

Diverse Storage Driver Layer

e Various ways to interact with hardware

e Tradeoffs between hardware-generality and performance

POSIX LabMod

Syscall

1/0 Uring LabMod

Kernel Driver LabMod

Cache Direct 1/0

SPDK LabMod

Block 1/0 Layer

Cache Direct 1/0

1/0 Scheduling

Block 1/0 Layer

Cache Direct I/0

Device Drivers

1/0 Scheduling

Block 1/0 Layer

Cache Direct I/0

Device Drivers

1/0 Scheduling

Block 1/0 Layer

Storage Devices

00000 NI E
—
|| i HE

Device Drivers

/0 Scheduling

Luke Logan

Storage Devices

00000 NI E
—
|| i HE

Device Drivers

Storage Devices

00000 NI E
——
S BE

LabStor: A modular platform for developing custom I/0 stacks

Storage Devices

00000 NI El
-
) BE

llogan@hawk.iit.edu

47

Our Prototype LabMods

Luke Logan

Features

———————————————————————————————————————

————————————————————

———————————————————————————————————————

Drivers (already discussed)

LabStor: A modular platform for developing custom I/0 stacks

llogan@hawk.iit.edu

48

Evaluations

Testbed

Chameleon Cloud

Storage hierarchy node

NV Me (Intel P3700, 2TB)

SSD (Intel SSDSC2BXO01, 1.6TB)
HDD (Seagate ST600MP0005, 600G)
RAM (512GB)

CPU: 24 core / 48 threads
o 2x Intel(R) Xeon(R) CPU

Software

e Ubuntu 20.04, kernel 5.4

e FIO 3.28, FxMark, LABIOS,
Filebench 1.4.9.1

49

Evaluation Objectives

Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

o0

Experimental Setup: LabStacks

Lab-All Lab-Min Lab-D

Client

-

Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Luke Logan

What is the performance difference
between LabStor and other
development platforms?

What is the performance benefit of
having a configurable 1/0 stack?

LabStor: A modular platform for developing custom I/0 stacks

llogan@hawk.iit.edu

02

Developing and Customizing 1/0 Policies

Luke Logan

Two ioscheds
o No-Op

o Blk-Switch
Two workloads:

o Latency: synchronous 4K
requests

o Bandwidth: synchronous
16MB requests

Compare when the
workloads are isolated and
colocated

Latency Latency Bandwidth Bandwidth
(4KB) (4KB) (16MB) (16MB)
CPU CPU CPU CPU
Bandwidth Bandwidth
(16MB) (16MB)
Latency Latency
(4KB) (4KB)
CPU CPU
23

LabStor: A modular platform for developing custom I/0 stacks

llogan@hawk.iit.edu

Developing and Customizing 1/0 Policies

e LabStor’s NoOp and

Blk-Switch are 20% Isolated Colocated
faster than their in-kernel IBUNENC O | 110 s || 945 us
counterpart Lab-NoOp 89 1S 889 s
e LabStor bypasses Linux-Blk 120 ps 122 us
L : Lab-Blk 95 us 96 118
significant in-kernel

overheads

04
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Developing and Customizing 1/0 Policies

e No-Op is 8% faster than
blk-switch when there is no Isolated Colocated
colocation IBINEANO M 110 us | 945 us

e Blk-sw has overhead due to Lab-NoOp 89 s 889 s
Linux-Blk 120 us 122 us

Lab-Blk 95 us 96 s

additional code logic

09
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Developing and Customizing 1/0 Policies

Luke Logan

Blk-switch is 10x faster
than No-Op when there is
colocation

Routes latency-sensitive
requests to separate
queues, reducing starvation

LabStor: A modular platform for developing custom I/0 stacks

Linux-NoOp
Lab-NoOp

Linux-Blk
Lab-Blk

Isolated

Colocated

110 us | 945 s
89 us 8389 s
120 ps 122 us
95 s 96 118

llogan@hawk.iit.edu

06

Developing and Customizing 1/0 Policies

Luke Logan

Both policies have pros and

cons in different
circumstances

Linux-NoOp EESUNTE

Colocated
945 us

Lab-NoOp 89 118

8389 s

Linux-Blk 120 ps

122 us

Lab-Blk 95 us

96 118

LabStor: A modular platform for developing custom I/0 stacks

llogan@hawk.iit.edu

o7

What is the benefit of enabling more
than just POSIX filesystems to be
developed?

08
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

1/0 Expressiveness

e Labios: a distributed storage system

used to bridge the gap between SEXT4 IIXFS
different I/0 stacks so0 = F2FS Lab-All

Lab-Min m Lab-D
e PORSIX vs Key-Value API
e Labios generates S8KB I/0Os and
stores using different stacks

Throughput (MBps)

100

NVMe

59
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

1/0 Expressiveness

e LabKV®S outperforms all I/0 0 TSEXTA IXFS

F2FS Lab-All
Lab-Min ® Lab-D

stacks for various use cases 500
e This is because KVS reduces
of syscalls from 4 down to

5
o
o

w
o
o

1, significantly reducing

N
o
o

software overhead

Throughput (MBps)

100

e Providing new interfaces to

storage can provide substantial 0
benefits

NVMe

60
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

How does increased modularity
improve real-world programs?

61
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Filebench

1.4

@ EXT4 IXFS = F2FS Lab-All # Lab-Min ™ Lab-D
1.2

0.4 AN
w
o

0.2 b G
\-\.-\.':-\\

i .
o
0 R

Varmail WebServer WebProxy Fileserver

Throughput (MOps)

A,

o
[e)}
%
e

W

e We run a full real-workload over various LabStacks
e We find that different LabStor configurations yield different performance

o Except webserver, which performs large-sequential I/0
e C(an save up to 40% on performance by choosing only the required labmods

62
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

Conclusion

Conclusions

LabStor: a platform for developing high-performance, customized I/0 stacks in userspace

Modular Composable Performant
Provide expressive, Provide the ability to Up to 60% gains
customizable and upgrade and manage under various
high-velocity 1/0 I/0 stacks in an easy workloads and

stacks and efficient manner devices

64
Luke Logan LabStor: A modular platform for developing custom I/0 stacks llogan@hawk.iit.edu

\\,\SCALABLE COMPUTING
SOFTWARE LABORATORY

Sandia
National
Laboratorie

