
LabStor: A Modular and Extensible
Platform for Developing
High-Performance, Customized I/O Stacks
in Userspace
Luke Logan, Jaime Cernuda Garcia, Jay Lofstead*, Xian-He Sun, Anthony Kougkas
Illinois Institute of Technology, * Sandia National Laboratories

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

The Explosion of I/O Requirements

2

A wide diversity of
applications

Each have varying
I/O requirements

Machine
Learning

Simulation

AI

Data
Streaming

High
Bandwidth

Low
Latency

Data
Privacy

I/O
Interface

Analysis

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Rapid Storage Hardware Evolution

3

● Order of magnitude
performance improvement
with each new generation

● New interfaces being
exposed

● Hardware-specific
optimization!

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Parallel Filesystems

4

● HPC applications rely on
parallel filesystems (PFS)

● PFS relies on node-local
storage stacks

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Parallel Filesystems

5

● HPC applications rely on
parallel filesystems (PFS)

● PFS relies on node-local
storage stacks

Node-local I/O stacks are not
adapting rapidly enough!

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Developing I/O Stacks

6

FUSE

Bento

Library I/O Stacks

App1

DAX

PMEM

Simurgh
App2

DAX
Simurgh

App3

DAX
Simurgh

VFS

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

The Limitations of Existing Platforms

7

Limited
Configurability

Limited
Extensibility

Tight
Coupling

Cumbersome
Deployments

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Limited Extensibility

Cannot expose APIs
alternative to POSIX

8

Applications

MPI-IO
HDF5, NetCDF, pNetCDF, etc.

 VFS

Direct I/O Page Cache

Block I/O Layer

I/O Scheduling

Device Drivers

POSIX write()read()

XFSEXT4 F2FS

Cannot improve other
layers of the I/O stack

Development
platforms only

support the
filesystems layer!

Limits performance and
feature richness!

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Tight Coupling

9

 VFS

Direct I/O Page Cache

Block I/O Layer

I/O Scheduling

Device Drivers

POSIX write()read()

F2FS

Development
platforms do not

promote the single
responsibility

principle!

compress

split

block alloc

encrypt

Access Ctrl

compact

I/O stacks are tightly
coupled with a large set of
features

They cannot be reused
by other I/O stacks

Duplicated implementation
and debugging effort!

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Limited Configurability

10

 VFS

Direct I/O Page Cache

Block I/O Layer

I/O Scheduling

Device Drivers

POSIX write()read()

EXT4

I/O stacks are
shipped with a fixed

set of features!

split

Access Ctrl

block alloc

Some policies are
non-negotiable

Performance degradation!

Some policies are not workload
or hardware-optimized

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Cumbersome Deployments

● Ununified namespaces
○ Multiple I/O stacks per program can cause conflict

● Upgrades require reboots and potentially kernel
recompilation

● No crash recovery from bugs

11

I/O stacks suffer
from cumbersome

deployment pipelines!

Lowers adoption rates!

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

The LabStor Platform

12

LabMod LabStack LabStor Runtime

We aim to reinvision the way that I/O stacks are developed
and deployed to improve the customizability and code velocity

of future I/O stacks

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

The LabStor Platform

13

LabMod Promote
Extensibility

Single
Responsibility

Generic code object
whose type can be

chosen by the
developer

Provide a wide (and
extensible) menu of
types for every layer

of the stack

Provide separate
types for filesystems

and their features

Page
Cache

I/O
Sched

FS

KVS

FS
Transform

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

The LabStor Platform

Enable
Configurability

The combination of compatible
LabMods into an optimized

storage stack

Provide a human-readable
schema file format to define

LabStacks

LabStack

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

The LabStor Platform

15

LabStor Runtime Optimize
Deployment

● Unified namespace for all I/O stacks
● Protocols to upgrade I/O stacks
● Protocols to recover from a crash

Main warehouse and
execution engine of

LabStor

Towards fully modular I/O
stacks

16

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Towards Modularity: What LabMods Are

● An independent, self-contained code object implementing a well-defined,
distinct, single-purpose functionality

17

Full Creative
Freedom

Incrementally
Upgradeable

Hot Swappable Stackable

Promote
Extensibility

Loose
Coupling

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

LabMod Components

18

1. Type
The set of
APIs the
LabMod

implements

3. Operation
Functionality
of the LabMod

4. State
Internal data

required for the
operation

2. Connector
Exposes the
operation to

clients

Client

Connector

Operation

2. POSIX I/O
Request

4. Block I/O
Requests

State

Block
Allocator

3. Allocate
disk blocks

1. Connector.write()

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

LabMod Developer Kit

● STL-like data structures and memory allocators
○ Shared-memory compatible
○ Kernel-compatible

● Request queueing API
● Namespace API

19

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

LabMod Example: Filesystem Compression (1/3)

● Connectors call LabStor APIs to build & submit requests
● This submits a “kWriteBegin” request

20

class CompressConnector : public FsTransformConnector {
public:
 request* WriteBegin(lab::vector<char> &data,
 ExtendedMetadata &ext_md) {
 auto q = GetQueue();
 auto req = Alloc<fs_request>();
 req->op_ = FsOps::kWriteBegin;
 req->data_ << data;
 req->md_ = md;
 }
};

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

LabMod Example: Filesystem Compression (2/3)

● A worker eventually dequeues the request and calls ProcessRequestFn
● All operators implement ProcessRequestFn
● Routes a request to the proper function

21

class CompressOperator : public FsTransformOperator {
public:
 void ProcessRequestFn(queue *q, request *req, int op) {
 switch(static_cast<FsOps>(op)) {
 case FsOps::kWriteBegin: { _WriteBegin(q, req); }
 case FsOps::kWriteEnd: { _WriteEnd(q, req); }
 }

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

LabMod Example: Filesystem Compression (3/3)

● The main functionality of the labmod
● Compresses the input data and stores the uncompressed size in metadata
● Promise will asynchronously call kWriteEnd after child_req completes

22

void _WriteBegin(queue *q, fs_request *req) {
 vector<char> orig_data, new_data;
 orig_data << req->data_;
 new_data = compress(orig_data);
 req->md_.add("old_size", orig_data.size());
 auto conn = GetConnector<GenericFs>(next_labmod_);
 auto child_req = conn->_WriteBegin(new_data, req->md_);
 Promise(req, child_req, kWriteEnd);
}

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks
23

Why does single
responsibility matter?

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

The Benefit of Single Responsibility

● Many Linux filesystems provide
transparent compression

● Very similar implementations

24

Application write()

BTRFS
Compress1

Metadata

F2FS JFFS2
write

(“/bt
rfs/a

.txt”
) write(“/jffs/c.txt”)write(“/f2fs/b.txt”)

I/O Sched
Drivers

Compress2

Metadata

Compress3

Metadata

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

The Benefit of Single Responsibility

● The same compression module can be reused across filesystems in LabStor
● 10x less code needs to be written
● Less debugging and implementation effort!

25

Btrfs

LRU NoOp KDriverCompress

LabStor
Runtime

Application

F2FS

JFS

write()

Kernel LOC LabStor LOC

3756 327

Total LOC for Compression

Towards Composable I/O
Services

26

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

The LabStack

● A user-defined combination of compatible LabMods into a single I/O system
● LabStacks can be mounted using a human-readable name (e.g., “fs::/a”)

27

Pick &
Choose

Dynamic
Modification

Multiple Paths,
Same Data

Choose only
the LabMods

required by the
I/O stack

Dynamically modify
to adapt to changing

I/O requirements

Provide different views over
the same content

(e.g., different I/O APIs)

Enable
Configurability

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks
28

What does composability enable that
was not previously possible?

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Examples: I/O Specialization (1)

● Typically, a filesystem will have one rigid set of features
● E.g., compression attempted on every I/O access

29

EXT4 LRU Driverfs::/a Compress

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Examples: I/O Specialization (2)

● Can provide different paths which have different optimizations
● High-bandwidth requests get compression + caching
● Low-latency requests get stored ASAP

30

LabFS LRU SPDK

fs::/a Low-Latency?

Compress

LabFS SPDKYes

No

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Examples: Tunable Access Control (1)

● Authentication is typically required on every request in Linux
● Can completely disable authentication by removing that LabMod
● Useful when hardware is dedicated to a user

31

LabFS LRU NoOp KDriverACLfs::/a

LabFS LRU NoOp KDriverfs::/a

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Examples: Tunable Access Control (2)

● Alternative approaches to authentication can also be created
● fs::/a and fs::/b give users access to different “data islands”

32

LabFS LRU NoOp KDriverIsland A

fs::/a Users A

Paths A

Island B

Users B

Paths B

fs::/b

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Examples: Interface Convergence & Diversity

● Provide alternative APIs and data representation to POSIX
● Expose different APIs over the same content
● Data stored as objects, but accessed using either log or filesystem APIs

33

LabKVS LRU NoOp KDriverkvs::/a

FSfs::/a

Loglog::/a

A Powerful Alternative to
the Linux Stack

34

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks
35

How does LabStor execute
LabStacks?

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Executing LabStacks (1)

1. Client initially registers with the
Runtime

2. Create shared-memory queues
between client & runtime

3. Client loads the connector of
“Generic LabMod” from the
Namespace

4. Call the connector to place an
I/O request in the queue

36

Client

LabStor Runtime

Kernel

LabStor Kernel
 Ops Manager

Kernel
IPC

NVMe HDD

IPC
Manager

Worker

LRU Cache

Worker

NoOp Sched.

App1
LabStor Client

 LibraryIPC Generic
LabMod

App2
LabStor Client

 Library IPCGeneric
LabMod

Namespace

App1
LabStack

App2
LabStack

Module Manager

ModulesUpgrade
Manager

Client
Admin

Worker

LabFS

Work Orchestrator

Worker

LabKVS

Worker

NVMe Driver

Request Update

Submit
Update

Execute
Update

I/O Data Path

Manage
Workers

Establish
Comms

In-Kernel
Management

Load LabMod

Re
qu

es
t

La
bM

od

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Executing LabStacks (2)

● The runtime spawns or registers
workers

● Eventually process the queues
● Workers can execute either in

kernel or userspace
○ Re-use kernel functionality

37

Client

LabStor Runtime

Kernel

LabStor Kernel
 Ops Manager

Kernel
IPC

NVMe HDD

IPC
Manager

Worker

LRU Cache

Worker

NoOp Sched.

App1
LabStor Client

 LibraryIPC Generic
LabMod

App2
LabStor Client

 Library IPCGeneric
LabMod

Namespace

App1
LabStack

App2
LabStack

Module Manager

ModulesUpgrade
Manager

Client
Admin

Worker

LabFS

Work Orchestrator

Worker

LabKVS

Worker

NVMe Driver

Request Update

Submit
Update

Execute
Update

I/O Data Path

Manage
Workers

Establish
Comms

In-Kernel
Management

Load LabMod

Re
qu

es
t

La
bM

od

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Executing LabStacks (3)

● Work orchestrator assigns
queues to workers

● Can place multiple queues on a
single worker
○ Helpful if requests are

latency-sensitive

38

Client

LabStor Runtime

Kernel

LabStor Kernel
 Ops Manager

Kernel
IPC

NVMe HDD

IPC
Manager

Worker

LRU Cache

Worker

NoOp Sched.

App1
LabStor Client

 LibraryIPC Generic
LabMod

App2
LabStor Client

 Library IPCGeneric
LabMod

Namespace

App1
LabStack

App2
LabStack

Module Manager

ModulesUpgrade
Manager

Client
Admin

Worker

LabFS

Work Orchestrator

Worker

LabKVS

Worker

NVMe Driver

Request Update

Submit
Update

Execute
Update

I/O Data Path

Manage
Workers

Establish
Comms

In-Kernel
Management

Load LabMod

Re
qu

es
t

La
bM

od

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks
39

How to deploy LabStacks?

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Deployment

● LabStacks are mounted in the LabStack Namespace using a utility script
(mount.labstack)

● After mounting, there are three ways of accessing it:
○ Native API (GetConnector)
○ API Interception (Generic LabMods)
○ System calls (VFS)

40

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Generic LabMods & Unified Namespace

41

Intercept Route Reuse

Intercept I/O for a
particular API
(e.g., POSIX)

Many
implementations of
the same API at the

same time

Manages state
common between I/O

systems of a
particular type

GenericPosix

Application

EXT4 F2FS BTRFS

open() write()

open() write()

open(“/ext4/hi.txt”)

open(“/ext4/hi.txt”)

File Descriptor Table
descriptor

/ext4
/f2fs
/btrfs

Key LabStack
EXT4
F2FS

BTRFS

LabStack NS

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Generic LabMods & Unified Namespace

42

Intercept Route Reuse

Intercept I/O for a
particular API
(e.g., POSIX)

Many
implementations of
the same API at the

same time

Manages state
common between I/O

systems of a
particular type

GenericPosix

Application

EXT4 F2FS BTRFS

open() write()

open() write()

open(“/ext4/hi.txt”)

open(“/ext4/hi.txt”)

File Descriptor Table
descriptor

/ext4
/f2fs
/btrfs

Key LabStack
EXT4
F2FS

BTRFS

LabStack NS

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Generic LabMods & Unified Namespace

43

Intercept Route Reuse

Intercept I/O for a
particular API
(e.g., POSIX)

Many
implementations of
the same API at the

same time

Manages state
common between I/O

systems of a
particular type

GenericPosix

Application

EXT4 F2FS BTRFS

open() write()

open() write()

open(“/ext4/hi.txt”)

File Descriptor Table
descriptor

open(“/ext4/hi.txt”)

/ext4
/f2fs
/btrfs

Key LabStack
EXT4
F2FS

BTRFS

LabStack NS

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Generic LabMods & Unified Namespace

44

Intercept Route Reuse

Intercept I/O for a
particular API
(e.g., POSIX)

Many
implementations of
the same API at the

same time

Manages state
common between I/O

systems of a
particular type

GenericPosix

Application

EXT4 F2FS BTRFS

open() write()

open() write()

open(“/ext4/hi.txt”)

File Descriptor Table
descriptor

open(“/ext4/hi.txt”)

/ext4
/f2fs
/btrfs

Key LabStack
EXT4
F2FS

BTRFS

LabStack NS

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Other deployment considerations

● Crash recovery: what happens if a LabMod was buggy and crashed the
Runtime?
○ Data structures in shared memory, and can be recovered after a crash

● Upgrade protocols: how to update LabMods after deployment?
○ Request queues are paused, and all pending operations will be completed
○ The upgrades are then processed

45

Provided LabMods

46

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Diverse Storage Driver Layer
● Various ways to interact with hardware
● Tradeoffs between hardware-generality and performance

47

 VFS
Cache Direct I/O

Block I/O Layer
I/O Scheduling
Device Drivers

POSIX LabMod

XFSEXT4

Syscall

Storage Devices

 VFS
Cache Direct I/O

Block I/O Layer
I/O Scheduling
Device Drivers

I/O Uring LabMod

XFSEXT4

Storage Devices

 VFS
Cache Direct I/O

Block I/O Layer
I/O Scheduling
Device Drivers

Kernel Driver LabMod

XFSEXT4

Storage Devices

 VFS
Cache Direct I/O

Block I/O Layer
I/O Scheduling
Device Drivers

SPDK LabMod

XFSEXT4

Storage Devices

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Our Prototype LabMods

48

Metadata Management

LabFS LabKVS

I/O Scheduler

No-Op Blk Sw

Drivers (already discussed)

Features

Auth Compress

Caching

LRU

Evaluations

49

Testbed
● Chameleon Cloud
● Storage hierarchy node
● NVMe (Intel P3700, 2TB)
● SSD (Intel SSDSC2BX01, 1.6TB)
● HDD (Seagate ST600MP0005, 600G)
● RAM (512GB)
● CPU: 24 core / 48 threads

○ 2x Intel(R) Xeon(R) CPU

Software
● Ubuntu 20.04, kernel 5.4
● FIO 3.28, FxMark, LABIOS,

Filebench 1.4.9.1

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Evaluation Objectives

50

Modularity

The choice of
modules have major

performance impacts

Customization

I/O stacks should be
more customized to

the workload and
environment

I/O Expressiveness

The best I/O interface
should be chosen to

store data

Design Correctness

LabStor can execute
I/O stacks without

sacrificing resource
utilization or
performance

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Experimental Setup: LabStacks

51

Permissions

LabFS (or KVS)

LRU

NoOp

Drivers

Client

IPC

Lab-All

LabFS (or KVS)

LRU

NoOp

Drivers

Client

IPC

Lab-Min

LabFS (or KVS)

LRU

NoOp

Drivers

Client

Lab-D

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks
52

What is the performance difference
between LabStor and other

development platforms?

What is the performance benefit of
having a configurable I/O stack?

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Developing and Customizing I/O Policies
● Two ioscheds

○ No-Op
○ Blk-Switch

● Two workloads:
○ Latency: synchronous 4K

requests
○ Bandwidth: synchronous

16MB requests
● Compare when the

workloads are isolated and
colocated

53

Latency
(4KB)

Bandwidth
(16MB)

Latency
(4KB)

Bandwidth
(16MB)

Latency
(4KB)

Bandwidth
(16MB)

Latency
(4KB)

Bandwidth
(16MB)

CPU CPU CPU CPU

CPU CPU

vs

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Developing and Customizing I/O Policies
● LabStor’s NoOp and

Blk-Switch are 20%
faster than their in-kernel
counterpart

● LabStor bypasses
significant in-kernel
overheads

54

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Developing and Customizing I/O Policies
● No-Op is 8% faster than

blk-switch when there is no
colocation

● Blk-sw has overhead due to
additional code logic

55

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Developing and Customizing I/O Policies
● Blk-switch is 10x faster

than No-Op when there is
colocation

● Routes latency-sensitive
requests to separate
queues, reducing starvation

56

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Developing and Customizing I/O Policies
● Both policies have pros and

cons in different
circumstances

57

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks
58

What is the benefit of enabling more
than just POSIX filesystems to be

developed?

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

I/O Expressiveness

● Labios: a distributed storage system
used to bridge the gap between
different I/O stacks

● POSIX vs Key-Value API
● Labios generates 8KB I/Os and

stores using different stacks

59

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

I/O Expressiveness

● LabKVS outperforms all I/O
stacks for various use cases

● This is because KVS reduces
of syscalls from 4 down to
1, significantly reducing
software overhead

● Providing new interfaces to
storage can provide substantial
benefits

60

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks
61

How does increased modularity
improve real-world programs?

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Filebench

● We run a full real-workload over various LabStacks
● We find that different LabStor configurations yield different performance

○ Except webserver, which performs large-sequential I/O
● Can save up to 40% on performance by choosing only the required labmods

62

Conclusion

63

Luke Logan llogan@hawk.iit.eduLabStor: A modular platform for developing custom I/O stacks

Conclusions

64

LabStor: a platform for developing high-performance, customized I/O stacks in userspace

Modular Composable Performant
Up to 60% gains

under various
workloads and

devices

Provide the ability to
upgrade and manage
I/O stacks in an easy
and efficient manner

Provide expressive,
customizable and
high-velocity I/O

stacks

65

