
APAC: An Accurate and Adaptive Prefetch
Framework with Concurrent Memory Access

Analysis
Xiaoyang Lu, Rujia Wang, Xian-He Sun

Department of Compute Science, Illinois Institute of Technology, Chicago, IL
xlu40@hawk.iit.edu, rwang67@iit.edu, sun@iit.edu

Abstract—Prefetching techniques have been studied for
decades. However, there are few studies on how concurrent
memory accesses may affect prefetching effectiveness. When
there are multiple concurrent memory requests, we can classify
them into sub-classes by analyzing the overlapping relationship.
In this work, we first propose pure prefetch coverage (PPC), a
novel prefetching metric that can identify an accurate prefetch
coverage under the concurrent memory access model. Then
we propose APAC, an adaptive prefetch framework with PPC
metric that can capture the dynamics of applications and adjust
the prefetching aggressiveness. Our experimental results show
that the PPC metric has a higher IPC correlation compared to
the conventional prefetch coverage (PC) metric. For memory-
intensive single-thread benchmarks, APAC provides an average
performance improvement by 17.3% and 5.9% compared to the
state-of-the-art adaptive prefetch framework FDP and NST. In
a multi-core system, APAC outperforms FDP and NST by 8.5%
and 5.0% IPC on average, respectively.

I. INTRODUCTION

The unbalanced technological advancements in processor
and memory over the past decades have led to the “Memory
Wall” problem. In addition to utilizing memory hierarchy and
data locality to alleviate the performance gap between the
CPU and the memory, intensive research has been conducted
to improve the concurrency of memory systems. Multi-port
cache, multi-banked cache, and pipelined cache are advanced
cache design techniques that enhance cache hit concurrency;
whereas, non-blocking cache can improve cache miss con-
currency. Processor ILP techniques, such as out-of-order exe-
cution, multiple issue pipeline, simultaneous multi-threading,
can dramatically improve both cache hit and miss concurrency
[21]. With these advanced techniques, it is common to observe
concurrent memory accesses.

Memory concurrency reduces memory stall time by over-
lapping multiple outstanding memory accesses. Some misses
occur concurrently with other hits (hit-miss overlapping),
whereas some misses do not (miss-miss overlapping) [14].
Thus, a single cache miss latency is no longer a determinant
factor of the overall memory system performance. The perfor-
mance loss resulting from a cache miss can be reduced when
there is hit-miss overlapping. When a miss has no hit-miss
overlapping, it becomes the critical factor that could hurt the
performance. Such miss is classified as pure miss (§II-A).

Data prefetching has been proved to be effective in reducing
CPU stalled cycles by capturing a program’s memory access

pattern and then proactively fetching needed data blocks from
off-chip memory to the faster on-chip cache ahead of demand
access. While the conventional prefetching mechanisms are
useful in reducing memory accesses delay, they are not fully
utilized in a concurrent data access environment. There is
room for improvement. In this work, we propose pure prefetch
coverage (PPC), a more comprehensive metric that extends
the current prefetch coverage (PC) metric to consider con-
current memory accesses. PPC evaluates the performance of a
prefetcher by observing the ratio of pure misses reduced rather
than misses reduced to quantify its effectiveness. We show the
effectiveness of PPC compared with PC through a correlation
analysis against execution time.

PPC lays a foundation for the APAC, an accurate and adap-
tive prefetch framework that can auto-tune the aggressiveness
of the prefetcher at runtime. The memory access behavior may
change phase by phase during its runtime [5]. Therefore, a
prefetcher needs to be adaptive to catch the change of the
data access pattern. In APAC, we measure and track the pure
prefetch coverage (PPC), prefetch accuracy (PA), as well as
the pure miss rate (pMR) to adjust the aggressiveness of the
prefetcher dynamically. Our experimental results show that
APAC outperforms state-of-the-art adaptive prefetch frame-
works, such as FDP [18] and NST [9]. Also, the PPC metric
can be integrated with other complex prefetchers to enhance
the performance further.

The paper is organized as follows: Section II introduces the
background of a concurrent memory access model and the
missing piece of current prefetch metrics; Section III presents
the related prefetching frameworks; Section IV introduces our
proposed PPC metric and the method to measure and imple-
ment it on a given system; Section V shows our accurate and
adaptive prefetch framework APAC can adjust the prefetching
scheme dynamically; Section VI describes our experimental
settings and Section VII presents experimental results by
comparing and integrating with state-of-the-art prefetching
frameworks; Section VIII concludes this paper.

II. BACKGROUND AND MOTIVATION

A. Concurrent Cache Accesses

Concurrent cache accesses enable requests overlapping.
Cache misses may or may not overlap with hit accesses; thus,
not all misses have an equal impact on performance. When



A
B

C
D

E

Cycle2 3

Memory 
Access

E’

a) Memory Accesses w/o Prefetch

b) Memory Accesses with Prefetch

Hit
Miss

4 51 6 7

Pref. Hit
Memory 
Access

Cycle2 3 4 51 6 7

A
B

C
D

Fig. 1: Case 1: a single prefetch hit can save 2 cycles.

Cycle2 3

Memory 
Access

a) Memory Accesses w/o Prefetch

b) Memory Accesses with Prefetch

4 51 6 7

Memory 
Access

2 3 4 51 6 7

B

D

A

C

F
E

8

Cycle8

B

D

F
E

Hit
Miss

Pref. Hit
C’

A’

Fig. 2: Case 2: two prefetch hits do not save cycle time.

miss cycles are overlapping with one or more hit cycle, the
processor can still work on the hit access(es), and the miss
penalty is less significant. However, if a miss cycle has no
hit to overlap with, it can severely hurt the performance. We
refer a miss cycle without overlapping with any hit cycle the
pure miss cycle and refer a miss access which consists of at
least one pure miss cycle the pure miss access. In other words,
pure miss access is the type of miss access that contains at
least one miss cycle which does not have any hit accesses to
overlap with [21]. We use pure miss rate (pMR) to define the
cache efficiency when considering concurrent misses:

Pure Miss Rate(pMR) =
Num. of Pure Misses

Num. of Total Accesses

To maximize performance, we can reduce pMR by reducing
the number of pure misses via prefetching. On the other hand,
we also want to minimize pure miss cycles by maximizing the
hit-miss overlapping [14].

B. Prefetch Evaluation Metrics

Currently, prefetch accuracy (PA) and prefetch coverage
(PC) are the most used metrics in evaluating prefetching
techniques [5], [11]. PA reflects the percentage of useful
prefetches out of all prefetches. Note that a useful prefetch
is defined as a prefetched cache line that was accessed at least
once while residing in the prefetch destination. The formal
definition of prefetch accuracy is as below:

Prefetch Accuracy =
Num. of Useful Prefetches
Num. of Total Prefetches

PC is the fraction of total misses that can be effectively
reduced by prefetching [6]. Without considering concurrent
memory accesses, an effective prefetcher usually means to
cover as many potential misses as possible. The formal defi-
nition of prefetch coverage is:

Prefetch Coverage =
Num. of Misses Reduced by the Prefetcher

Num. of Overall Misses w/o Prefetcher

Most prefetching techniques are designed to achieve a
balanced high PA and PC. For sequential memory access
activities, PC directly reflects the contribution of prefetcher
to performance improvement. However, we show the limita-
tions of the PC metric when considering concurrent memory
accesses in the next section.

C. Case Studies: The Limitations of PC
PC may provide inaccurate measurements for a prefetcher

when we consider concurrent data access. As discussed in
Section II-A, not all misses equally impact performance, when
concurrency is paramount. As a result, blindly reducing the
number of misses may not be the best for performance. A
high value of PC does not mean that a prefetcher can certainly
cover a lot of pure misses. Likewise, if the number of cache
misses saved by a prefetcher is low, but most are pure misses,
a low value of PC may lead to better performance. We provide
two conceptual cases in Figure 1 and Figure 2 to illustrate why
ignoring concurrency information in PC metric may produce
less accurate evaluations of the prefetcher’s effectiveness. In
both cases, each cache hit access consumes two cycles, and
each cache miss has four miss penalty cycles.
Case 1: Low PC, high performance improvement. Without
the help of prefetching, in Figure 1a), access A and B are
cache hits, access C, D, E are cache misses. When considering
the access concurrency, both access C and D have two pure
miss cycles (cycle 4 and cycle 5), and access E has four pure
miss cycles (cycle 4-7). According to the definition of pure
miss, access C, D, and E are all pure misses. With prefetching,
access E is saved by prefetch and now becomes E’ in Figure
1b). Though access C and D are still misses with four miss
cycles, these cycles are no longer pure miss cycles because
they overlap with the hit cycles of access B and access E’.
In this example, prefetching only reduces one misses, so PC
is just 1/3. However, all concurrent pure misses now have
hit-miss overlap. Even though the PC is relatively low, the
performance gain brought by prefetching is noticeable.
Case 2: High PC, low performance improvement. The
second case study shows the limitation of PC in the opposite
way. In Figure 2 a), without the help of prefetching, accesses
B, D, and E are cache hits, accesses A, C, F are cache misses.
Access F is the only pure miss in this example, which leads
to 3 pure miss cycles (cycle 6-8). All the miss penalty cycles
of accesses A and C are overlapping with hits, so access A
and access C are not pure misses. After prefetching, as shown
in Figure 2 b), accesses A and C are saved by prefetching,
and they become prefetch hits A’ and C’. In this example, two
misses are reduced; we calculate the PC as 2/3, which means
that we saved the majority of misses. However, the total cycles



spent on memory accesses are not saved. Access F is still a
pure miss, with three pure miss cycles. Even though the PC is
high, the prefetcher might not be able to improve performance
as expected if the pure miss reduction is low.
Takeaways: The two case studies demonstrate the limitation
of PC metric. When we consider memory concurrency, the
correlation between the saved misses by prefetching and the
memory stall cycles is loss. In some extreme cases, the
correlation may even be negative. An alternative metric that
considers memory concurrency is needed. Note that we do not
show the performance gain of concurrent hits in Figure 1 and
Figure 2 above, as they do increase hit bandwidth. Overlapping
masks the data access delay of the lower layer of the memory
hierarchy, which is in general significantly slower than the
current memory hierarchy. The two examples show that hit-
miss overlapping can directly reduce the memory stall cycles
and enhance performance.

III. RELATED WORK

In addition to studying prefetching at the algorithm level,
adaptive prefetching frameworks are designed to control
prefetcher aggressiveness based on runtime estimation of
system performance for performance improvement.

Hur and Lin [10] introduces a probabilistic prefetching tech-
nique that utilizes stream length histograms to capture spatial
locality in program execution to adjust the prefetch decision.
The limitation of their framework is the lack of versatility.
It cannot be adapted to other hardware prefetchers except
stream prefetcher. Srinath et al. [18] design a feedback directed
prefetching framework (FDP), which tracks the prefetch accu-
racy, prefetch lateness, and prefetcher generated cache pollu-
tion to adjust the prefetch configuration dynamically. Ebrahimi
et al. [7] focus on controlling the aggressiveness of multiple
prefetchers in multi-core systems based on the prefetcher-
caused inter-core interference in shared memory systems.
Alameldeen and Wood [3] propose an adaptive prefetching
mechanism that uses cache compression’s extra address tags to
detect the number of useless and harmful prefetches. Near-side
prefetch throttling (NST) [9] only adjusts the aggressiveness
of prefetching based on the fraction of late prefetchers, which
has a relatively small hardware overhead and minimizes cache
pollution and memory bandwidth wastage. Although the above
adjustment frameworks use different metrics as the basis for
adjusting the prefetch aggressiveness, none of these metrics
can properly consider access concurrency and reflect the effect
of prefetch on memory performance accurately. In particular,
concurrency has become the most commonly used technique
in modern memory systems. As a result, these frameworks
sometimes make erroneous decisions that cause the prefetcher
to be too conservative or too aggressive, thereby misleading
performance.

IV. PURE PREFETCH COVERAGE

In this section, we introduce pure prefetch coverage (PPC),
which extends the conventional PC metric with concurrency
factors. Unlike PC, PPC can examine concurrent accesses and

TABLE I: PC and PPC of two study cases

Reduced pure
misses

with prefetch

Overall pure
misses

w/o prefetch
PPC PC Stall cycles

reduced

Case 1 3 3 1 1/3 2
Case 2 0 1 0 2/3 0

distinguish between different types of concurrent misses. It is a
comprehensive metric that evaluates a prefetcher’s contribution
to pure misses reduction during concurrent memory accesses.
We first describe the definition and the formulas of PPC. Next,
the rationality of PPC is illustrated by revisiting the two case
studies. Finally, we show the algorithm and implementation
details about how to track the number of pure misses and
PPC during the execution time.

A. Definition

The PPC is introduced to quantify how effective a
prefetcher works in concurrent access activities. Different from
the definition of PC, which relies on the ratio of total misses
reduced to evaluate the effectiveness of a prefetcher, PPC
focuses on quantifying the ratio of pure misses (§II-A) that
are reduced by prefetching. PPC is defined as the fraction of
the number of pure misses reduced due to prefetching over
the overall number of pure misses that will occur without
prefetching:

Pure Prefetch Coverage =
Num. of Pure Misses Reduced by the Prefetcher

Num. of Total Pure Misses w/o Prefetcher

B. Revisit Case Studies with PPC Analysis

Recalling the two case studies in §II-C, we re-evaluated the
effectiveness of prefetching using the PPC definition. Table I
shows the value of PC and PPC for these two study cases,
respectively. In the first case, one of the three cache misses
is successfully reduced by prefetching, the value of PC is
1/3. When considering the access concurrency, all three pure
misses are now able to overlap with hits. Therefore, the value
of PPC is 3/3 = 1. A high value of PPC accurately reflects the
considerable contribution of prefetching to performance gain
in this case. In the second case, prefetching removes two of
the three misses, so the value of PC is 2/3. Nevertheless, pure
miss is not reduced. After prefetching, access F is still a pure
miss with three pure miss cycles. So the PPC is calculated
as 0/1 = 0. Compared to PC, PPC captures the ratio of pure
misses reduced by prefetcher, which contributes directly to
performance. PPC can accurately evaluate the effectiveness
of prefetching than PC when there are concurrent memory
accesses.

C. Measurement and Implementation

To compute the PPC during the execution time, we use two
counters to track the pure misses: 1) RPM, is used to count
the reduced pure misses by the prefetcher; 2) DPM, is used to
record the demand pure misses, which are the pure misses that
cannot be covered by the prefetcher. In this way, we compute
PPC as:

PPC =
RPM

RPM + DPM



where the sum of RPM and DPM is equal to the number of
total pure misses without the prefetcher.

The algorithm for detecting pure misses and measuring PPC
is shown in Algorithm 1. We declare the bits and counters used
for measurement on the top of Algorithm 1. The information
of all outstanding cache misses is tracked by the MSHR (Miss
Status Holding Register). Each miss is allocated to an MSHR
entry before it is served [12]. The NoHit and OnlyPrefetch
bits are used to identify the current cycle status: NoHit is set
when there is no hit in this cycle; OnlyPrefetch is set when
there are only prefetch hits but no demand hits in this cycle.

The steps to determine whether a miss is a pure miss are
shown from lines 1 to 5. A IsPure bit is used per MSHR entry.
If NoHit is set, we know all misses in MSHR are pure misses,
so their associated IsPure bits are set.

Lines 6 to 14 are used to determine how prefetch hits can
reduce pure misses. If OnlyPrefetch is set in the cycle, these
prefetch hits can be approximately considered as pure misses
saved by prefetch. So we increase the RPM counter to record
this type of pure miss reduction at line 8. Note that we may
have multiple hit cycles, so N is divided by hit cycle to
remove repeated counts. Next, to calculate the pure misses
reduced by overlapping with prefetch hits, we use an Overlap
bit to each MSHR entry. If the OnlyPrefetch bit is set and
a miss in the MSHR is not a pure miss, it means that it
is converted from a pure miss (w/o the prefetch) to a miss
that now can be overlapped with a prefetch hit. So we set its
Overlap bit to 1 at line 11.

Lines 16 to 23 are used for updating of the counters when a
miss from MSHR is serviced and removed. When a miss from
MSHR entry j is serviced at this cycle, if its IsPure is set, the
DMR counter is incremented. Otherwise, if the Overlap is set,
the RPM counter is incremented. Then the IsPure and Overlap
associated with that MSHR entry are reset. All the counters are
updated at every memory cycle, so the number of demand pure
misses and the number of pure misses reduced by prefetching
are updated every cycle. With RPM and DPM counters, we
can calculate PPC periodically based on the definition and use
PPC to guide the adaptive prefetching.

V. ADAPTIVE PREFETCH CONSIDERS ACCESS
CONCURRENCY (APAC)

Typically, a hardware prefetcher works by predicting future
data access based on observed past access behavior. How
aggressive a data prefetcher should be is a problem often
discussed. A good data prefetcher should guarantee a sufficient
aggressiveness to prefetch data ahead appropriately for the best
performance. However, over-aggressive prefetching may bring
adverse effects and lead to useless bandwidth consumption
and cache pollution [23]. Even the memory access pattern
is correctly predicted, an over-aggressive prefetcher still may
create early prefetches issue [19], [22]. When the pattern
prediction is inaccurate, blindly using aggressive prefetching
will provide a lot of unnecessary data that evicts useful data
from the cache, and could drag down the overall system
performance.

Algorithm 1 Detect and Measure PPC (called every cycle)
// Single-bit cycle status identifier
NoHit: set if no hit accesses in this cycle
OnlyPrefetch: set if only has prefetch hits but no demand hits in this
cycle
// Additional MSHR entry bit to record pure miss
IsPure: set if a miss is pure miss
Overlap: set if a pure miss reduced by overlapped with prefetch hits
// Counters used to compute PPC
RPM: counts the pure miss reduced by prefetching
DPM: counts the demand pure miss with prefetching

1: if NoHit is set then
2: for ith outstanding demand miss in MSHR do
3: MSHR[i].IsPure = 1
4: end for
5: end if
6: if OnlyPrefetch is set then
7: N ⇐ Number of prefetch hits in this cycle
8: RPM+= N/hit cycle
9: for ith outstanding demand miss in MSHR do

10: if MSHR[i].IsPure = 0 then
11: MSHR[i].Overlap = 1
12: end if
13: end for
14: end if
15:
16: for jth serviced miss in MSHR do
17: if MSHR[j].IsPure is set then
18: DPM ++
19: end if
20: if MSHR[j].Overlap is set then
21: RPM ++
22: end if
23: end for

0
0.2
0.4
0.6
0.8

1
1.2
1.4

degree 1 degree 2 degree 4 degree 8 degree 16

N
or

m
al

iz
ed

Sc
al

e

IPC PPC PA

Fig. 3: The impact of aggressive prefetching on performance.

Various workloads may have completely different behaviors.
Even for a given workload, it may have completely different
memory access patterns in different phases and show varying
sensitivity to prefetch aggressiveness [13]. Additionally, the
influence of concurrent data access should not be ignored if we
want to evaluate the performance of systems and prefetchers
correctly. To address these issues, we propose an adaptive
prefetching framework APAC that takes into account data
access concurrency.
A. Evaluation Metrics

In APAC, we use pure prefetch coverage (PPC), prefetch
accuracy (PA) and pure miss rate (pMR) without prefetching
as the feedback metrics for adjusting the aggressiveness of the
prefetching. The metrics are collected during each execution
phase and will guide the prefetching aggressiveness in the next
phase.

We first identify that using pMR can predict the overall
effectiveness of the prefetcher. If a phase of an application
has a high pMR, that means, in general, an aggressive prefetch
algorithm is needed. In contrast, if a phase has a low pMR,



TABLE II: Adjuct prefetch aggressiveness with runtime met-
rics (L=Low, H=High)

Case PPC PA pMR w/o
Prefetch Aggressiveness Update (reason)

1 H H L No Change (base case)
2 L H L Increment (to increase PPC)
3 H L L Decrement (to reduce pollution)
4 L L L Decrement (to reduce pollution)
5 H H H Increment (to increase PPC)
6 H L H No Change (to keep the high PPC)
7 L H H Increment (to increase PPC)
8 L L H Decrement (to reduce pollution)

PPCth=0.25 PAlow=0.15 PAhigh=0.4 pMRth=0.5

in most cases, we should avoid being too aggressive in
prefetching to save the bandwidth and reduce pollution.

The tradeoff between prefetch aggressiveness and effective-
ness can be evaluated using IPC, PPC, and PA. Figure 3
shows the behavior of the 437.leslie3d benchmark under
different aggressiveness of the IP-based stride prefetcher. The
IPC, PPC, and PA all have been normalized to very conser-
vative prefetch configuration (prefetch degree equals to 1).
As the prefetch degree increases, stride prefetcher becomes
more aggressive, more pure misses may effectively be covered,
resulting in increased PPC. However, with the increment of
the prefetch degree, useless prefetches are increasing, which
is reflected in the continuous drop of PA value. In Figure 3,
when the prefetch degree is 16, severe cache pollution and
bandwidth contention resulted in performance degradation,
yielding to lower IPC.

To achieve the optimal prefetch aggressiveness, we need to
closely monitor all three metrics, PPC, PA, and pMR. We will
discuss the adaptive aggressiveness selection mechanism in the
next section.

B. Adaptive Aggressiveness Selection

In this work, we use the prefetch degree in the IP-based
stride prefetcher to determine the prefetching aggressiveness
[4]. The prefetch degree will determine how many prefetch
accesses per demand miss will be generated. For example, a
prefetch degree of N will bring [A,A + 1, ..., A + N ] when
there is a demand miss at address A, when the stride is 1.

We define five grades of the aggressiveness in this work
(degree = 1, 2, 4, 8, 16), from the very conservative (degree
1) to the very aggressive (degree 16). The initial prefetch
degree is set to 4. During the application execution time,
APAC collects and evaluates the performance of prefetching
at the end of each sampling phase. It dynamically adjusts
the appropriate prefetching aggressiveness for the next phase
based on three feedback metrics: PPC, PA, and pMR without
prefetching.

The measured PPC value needs to be compared with the
threshold PPCth to determine whether the current aggres-
siveness of prefetching can cover enough pure misses. The
currently measured PA value is compared with two thresholds
PAhigh and PAlow to determine the current prefetch accuracy
is high, average or low. The threshold of pMR without
prefetching pMRth is used to reflect whether the current phase
caused a performance issue due to the excessive number of

TABLE III: Hardware cost of APAC
Additional bits Size Used for
IsPure 1 bit per L2 MSHR PPC, pMR
Overlap 1 bit per L2 MSHR PPC, pMR
NoHit 1 bit PPC, pMR
OnlyPrefetch 1 bit PPC, pMR
DPM 32 bit PPC, pMR
RPM 32 bit PPC, pMR
pref-bit 1 bit per L2 block PA, pMR
UPF 32 bit PA, pMR
TPF 32 bit PA

pure misses. We set these thresholds empirically based on the
results of a large number of simulations. Table II shows the
thresholds used to implement APAC and the heuristic policy
for dynamic updating the aggressiveness of the prefetcher.

If the value of pMR without prefetching is smaller than
the pMRth, except for Case 2, APAC tends to degrade the
aggressiveness of the prefetcher, since we do not need to
reduce the pure misses at the cost of accuracy. In Case 2,
when the PA is high, and the PPC is smaller than the threshold,
APAC suggests increasing the aggressiveness for higher gain
from the accurate prediction. If the pMR without prefetch
is larger than the pMRth, the prefetcher tends to increase
aggressiveness for higher PPC, which decreases the pure
misses and improve the performance. Case 8 is an exception.
In this case, APAC decreases the aggressiveness of prefetcher
to reduce cache pollution and save memory bandwidth because
the current phase shows that the prefetcher cannot prefetch
effectively and accurately.

C. Hardware Cost and Complexity of APAC

APAC requires monitoring PPC, PA, and pMR without
prefetching during the execution time. We have presented the
measurement and implementation for tracking PPC in §IV-C.
The hardware cost is shown in Table III. The needed bits
include IsPure, Overlap, NoHit, and OnlyPrefetch. For a 32-
entry MSHR, the IsPure and Overlap need a total of 64 bits.
The NoHit and OnlyPrefetch just need 1 bit each, which is
trivial. In addition, two counters, RPM and DPM are required.
The 32-bit wide registers are sufficient to prevent their data
overflow.

To measure PA value, we use a similar method described by
Feedback Detected Prefetching (FDP) [18]. A bit pref-bit per
L2 block is required to differentiate whether the data block
comes from demand request or prefetch request. For a 256KB
L2 cache with 64B cache block size, the total pref-bit size
is 0.5KB. With the help of pref-bit, the number of useful
prefetches (prefetch hits) and the total number of prefetches
can be recorded by two 32-bit wide counters UPF and TPF.
The value of PA can be calculated as the ratio between the
UPF and TPF.

The pMR value without prefetching is computed as the ratio
of the total number of pure misses that will occur without
prefetching to the number of total accesses that will occur
without prefetching. We use the method mentioned in §IV-C
to count the number of pure misses that will occur without
prefetching. The number of accesses that will occur without
prefetching can be obtained by calculating the sum of demand



TABLE IV: Simulated system configurations

Processor One to four cores, 4GHz, 8-issue width, 256-entry ROB

L1 Cache split 32KB I/D-cache/core, 8-way, 4-cycle hit latency,
8-entry MSHR, 64B line-size

L2 Cache unified 256KB, 8-way, 10-cycle hit latency,
32-entry MSHR, 64B line-size

L3 Cache shared 2MB/core, 16-way, 20-cycle hit latency,
64×#cores-entry MSHR, 64B line-size

DRAM 4GB 1 channel, 64-bit channel, 1600MT/s

misses, demand hits, and prefetch hits. Therefore, the bits and
counters used for PPC and PA can help to compute pMR
without prefetching as well.

In total, the hardware overhead of APAC is around 0.52 KB,
which is only 0.2% of the capacity of the baseline 256KB L2
cache.

VI. EXPERIMENTAL METHODOLOGY

We implement our adaptive prefetching framework APAC as
described in §V with both a single-core system and a 4-core
system. ChampSim [1] simulator is used to provide an ap-
propriate memory system performance simulation. A detailed
out-of-order CPU model in the ChampSim was adopted to
achieve the most accurate simulation results. The details of
the configuration parameters of our simulation are described
in Table IV. APAC works with an IP-based stride prefetcher
at the L2 cache by default. As we mentioned in §V-B, there
are five different prefetch degrees (1,2,4,8,16) available for
selection by the stride prefetcher.

For APAC dynamic prefetching framework, the value of
PPC, PA, and pMR without prefetching will be updated every
4096 misses (half the number of blocks in the L2 cache) in
L2. Initially, APAC will set the prefetch aggressiveness of
the first phase to degree 4. When a given stride prefetcher
works under the APAC frame, the prefetch degree will be
dynamically adjusted between degree 1 and degree 16, and
the prefetcher will never be disabled.

We select the performance without a prefetcher as the base-
line for performance comparison. We compare APAC against
two state-of-the-art adaptive prefetching frameworks FDP [18]
and NST [9]. We also implement a naive adaptive framework
called NAP with a similar workflow as APAC. However, NAP
makes all decisions without considering concurrency. NAP
dynamically adjusts the aggressiveness of prefetching based on
prefetch coverage (PC), prefetch accuracy (PA), and miss rate
(MR) without prefetching. The importance of comprehensive
memory access analysis can be reflected by comparing APAC
and NAP.

We collect SimPoint [16] traces from SPEC CPU2006 [17]
and SPEC CPU2017 [2]. For SPEC workloads, we use high
intensity workloads with MPKI > 3, as shown in Table V.
For 4-core experiments, we test multi-copy and mixed SPEC
workloads. A multi-copy workload has four identical copies
of a single benchmark. A mixed workload has four different
benchmarks, which are assigned to different cores. CloudSuite
[8] workloads are multi-threaded and are only used for 4-core
experiments. Each trace is warmed up with 50M instructions

TABLE V: Evaluated workloads
Workload LLC MPKI Workload LLC MPKI

436.cactusADM 4.99 437.leslie3d 3.56
459.GemsFDTD 6.40 462.libquantum 26.07

482.sphinx3 11.65 602.gcc 70.06
603.bwaves 23.19 605.mcf 72.69

619.lbm 47.23 620.omnetpp 10.64
621.wrf 19.22 623.xalancbmk 19.10

649.fotonik3d 8.77 654.roms 32.47
MIX1 436,437,462,482 MIX2 436,437,602,603
MIX3 436,437,621,623 MIX4 436,437,649,654
MIX5 462,482,602,603 MIX6 462,482,621,623
MIX7 462,482,649,654 MIX8 602,603,621,623
MIX9 602,603,649,654 MIX10 621,623,649,654

0

10
20

30

40
50

436 437 459 462 482 602 603 605 619 620 621 623 649 654 GM

AP
KC

Single-core 4-core

Fig. 4: APKC on L2 in single-core and 4-core configurations.

for all experiments, and simulation results are collected over
the next 200M instructions.

VII. EXPERIMENTAL RESULTS

In this section, we first discuss the concurrency of each
SPEC workloads, then verify the correctness of PPC through
a performance-metric correlation study. Finally, we show the
effectiveness of the APAC.
A. Concurrency Analysis

We use accesses per kilocycles (APKC) [20] to measure
the overall memory concurrency concerning the complexity of
modern memory systems. Figure 4 shows the L2 concurrency
of each SPEC benchmark in single-core and 4-core multi-copy
configurations without prefetching. In the multi-core system,
applications run on different cores and share the LLC and
main memory, which causes bandwidth contention, especially
when all cores are running the same application. This results
in the concurrency gap between the single-core and 4-core
multi-copy configurations shown in Figure 4. The single-core
cases achieve a geometric mean of 1.9 times higher APKC
than 4-core cases.
B. Accuracy of PPC Metric

We show the correlation between PPC and IPC for each
evaluated workload to verify the correctness of the PPC metric.
Also, we show the correlation between the classical metric
PC and IPC for comparison. The higher the correlation is,
the better the metric is, whereas a low correlation means
the metric is wrong. From a statistical point of view, the
correlation coefficient describes the proximity between the
changing trends of the two variables. Therefore for each
application, five static prefetch configurations(from degree 1
to degree 16) are executed independently. Then, we calculate
the r(IPC, PPC) and r(IPC, PC) correlation based on the
five different configurations. The correlation coefficient of r of
two variables X and Y can be calculated using the following
equation:



TABLE VI: Performance correlation coefficient analysis

Workload single-core 4-core
r(PPC,IPC) r(PC,IPC) r(PPC,IPC) r(PC,IPC)

436.cactusADM 0.97 -0.65 0.99 0.78
437.leslie3d 0.98 0.89 0.99 0.70
459.GemsFDTD 0.99 0.40 0.78 0.39
462.libquantum 0.96 0.92 0.99 0.95
482.sphinx3 0.99 0.89 0.99 0.89
602.gcc 0.98 0.86 0.70 0.21
603.bwaves 0.91 0.52 0.98 0.89
605.mcf 0.98 0.80 0.99 0.89
619.lbm 0.83 0.56 0.65 0.34
620.omnetpp 0.96 0.87 0.66 0.28
621.wrf 0.99 0.94 0.94 0.84
623.xalancbmk 0.99 -0.55 0.85 0.75
649.fotonik3d 0.99 0.95 0.95 0.91
654.roms 0.99 0.95 0.99 0.91
Average 0.97 0.60 0.89 0.70

r(X,Y )=
n(

∑
XY )−(

∑
X)(

∑
Y )√

[n
∑

X2−(
∑

X)2][n
∑

Y 2−(
∑

Y )2]

where X and Y are the sampling points for two variables.
Table VI shows that, in both single-core and 4-core con-

figurations, compare to PC, PPC shows a stronger positive
correlation with IPC. This result demonstrates the unique
advantage of PPC in capturing the concurrency characteristics
of modern memory systems and accurately evaluating the
efficiency of prefetching. As discussed in multi-core cases,
the concurrency of memory accesses will be reduced by
bandwidth contention. The accuracy of PPC will be affected
by concurrency, which will cause the average gap between
r(IPC, PPC) and r(IPC, PC) in 4-core configurations to
be smaller than the gap in single-core configurations.

C. APAC Performance Evaluation

Single-core Results: Figure 5 shows the single-core pure
prefetch coverage of the various adaptive prefetch frameworks.
APAC achieves the highest PPC of all the adaptive prefetch
frameworks simulated. APAC covers 40.0% of the demand
pure misses at L2, higher than NST’s 35.7%, FDP’s 29.0%,
and NAP’s 22.2%. For 459.GemsFDTD and 620.omnetpp,
which suffer from indirect accesses, APAC does not show
advantages on PPC. The hardware prefetchers do not prove
to be useful to these benchmarks with irregular accesses, and
all frameworks are almost not conducive to the performance
with a less than 0.05 pure miss coverage at the L2.

Figure 6 shows the single-core speedup achieved by NAP,
FDP [18], NST [9] and APAC for the individual memory-
intensive SPEC CPU applications, followed by the geomean
across all the workloads. All results are normalized to
the baseline of no prefetching. In most cases, APAC can
match the best static optimum for each specific workload
based on feedbacked application phase behavior. APAC pro-
vides a 70.0% higher geometric mean IPC over the base-
line, 28.9% over NAP, 17.3% over FDP, and 5.9% over
NST. Benchmarks 603.bwaves, 619.lbm, 621.wrf, and
623.xalancbmk, benefit the most from APAC, the IPC
increased over NST ranging from 8.6% to 49.2%. For these
benchmarks, based on the observation of PPC, APAC provides

0
0.2
0.4
0.6
0.8
1

436 437 459 462 482 602 603 605 619 620 621 623 649 654 GM

PP
C

NAP FDP NST APAC

Fig. 5: PPC measured in the single-core configuration.

0.5
1

1.5
2

2.5
3

3.5

436 437 459 462 482 602 603 605 619 620 621 623 649 654 GM

N
or

m
al

iz
ed

IP
C

NAP FDP NST APAC w/o prefetch

Fig. 6: Normalized IPC compared to baseline (single-core).

higher PPC over NST, ranging from 5.3% to 34.0%, which can
explain why these benchmarks benefit the most from APAC.
APAC fully considers the balance between the reduction
of pure misses and the accuracy of the prefetch requests.
Therefore APAC can prevent severe cache pollution while
ensuring pure miss coverage.
4-core Results: For the evaluation of 4-core systems, we
simulate both multi-copy and mixed workloads then compare
APAC with other adaptive mechanisms. For multi-copy work-
loads, Figure 7 shows that APAC provides superior perfor-
mance improvement with 12.1% higher geometric mean over
the baseline, whereas both FDP and NST only provide 6.6%
speedup. Compared with single-core results, the effectiveness
of all adaptive prefetch frameworks has decreased. The con-
tention at the LLC and DRAM bandwidth is the primary
limiting factor to cause this trend.

For mixed workloads, Figure 8 shows that APAC achieves
an improvement of 62.7% on average, whereas NAP, FDP, and
NST improve performance by 28.6%, 40.3%, and 53.1%. In
the multi-core system, coordinated throttling is independently
applied to the L2 prefetcher of each core, which is essential
for mixed workloads with different access patterns and non-
uniform bandwidth demands.

For most CloudSuite benchmarks, it is challenging for most
hardware prefetchers to capture their complex access patterns.
Since the focus of APAC is not to detect and propose complex
prefetching strategy, we achieve similar performance gains
compared with other frameworks. As shown in Figure 9,
streaming is the only benchmark where all frameworks
work can significantly improve performance. On average,
APAC achieves a 10.6% speedup and outperforms NAP by
3.6%.
Integrate APAC with a complex prefetcher: The major
contribution of this paper is a framework that enables com-
prehensive concurrent access pattern analysis, and we have
shown that with a simple strided prefetcher, we can enhance
the performance for most workloads. It is worth noting that
our approaches can be easily integrated with more complex
prefetching algorithms and extended through multiple memory
hierarchies. By adequately integrating our PPC metrics into
the system, the performance gain coming from the advanced
prefetching algorithms can be further enhanced with our meth-



0.8

1

1.2

1.4

1.6

436 437 459 462 482 602 603 605 619 620 621 623 649 654 GM

N
or

m
al

iz
ed

IP
C

NAP FDP NST APAC w/o prefetch

Fig. 7: Normalized IPC compared to baseline (4-core, multi-
copy).

0.8
1

1.2
1.4
1.6
1.8

MIX1 MIX2 MIX3 MIX4 MIX5 MIX6 MIX7 MIX8 MIX9 MIX10 GM

N
or

m
al

iz
ed

IP
C

NAP FDP NST APAC w/o prefetch

Fig. 8: Normalized IPC compared to baseline (4-core, mixed-
copy).

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

cassandra classification cloud9 nutch streaming Geomean

N
or

m
al

iz
ed

IP
C

NAP FDP NST APAC w/o prefetch

Fig. 9: Normalized IPC compared to baseline (4-core, Cloud-
Suite).

0.5
1

1.5
2

2.5
3

3.5

436 437 459 462 482 602 603 605 619 620 621 623 649 654 GM

N
or

m
al

iz
ed

 IP
C

IPCP IPCP+APAC w/o prefetch

Fig. 10: Speedup of APAC + IPCP in the single-core config-
uration.

0.8
1

1.2
1.4
1.6

1.8

multi-copy mixed CloudSuite Geomean (All)

N
or

m
al

iz
ed

IP
C

IPCP IPCP+APAC w/o prefetch

Fig. 11: Speedup of APAC + IPCP in the 4-core configuration.

ods. We apply APAC to the open-sourced IPCP [15], which is
the winner of the 3rd Data Prefetching Championship (DPC-
3). IPCP can perform multiple types of prefetching patterns;
therefore, prefetching accuracy is relatively high. We show the
add-on performance gain in Figure 10 and Figure 11. Compare
to utilizing IPCP alone, applying APAC to the IPCP provides
additional performance improvement of 3.2% and 3.4% in the
single-core and 4-core configuration, respectively.

VIII. CONCLUSIONS

In this paper, we identify that concurrency of memory ac-
cesses is an indispensable factor when evaluating the prefetch
effectiveness. We propose pure prefetch coverage (PPC), a
comprehensive metric focusing on the effect of prefetching.
We develop a detailed implementation of detecting pure misses
and the measurement method for PPC. Furthermore, we design
an accurate and lightweight, adaptive prefetch framework,
APAC, based on concurrency aware metrics. APAC outper-
forms state-of-the-art adaptive prefetcher frameworks, and it
can be easily integrated with other advanced prefetchers.

ACKNOWLEDGMENT

This research is supported in part by the National Science
Foundation under grant CCF-2008907, CNS-1730488 and
CCF-1536079, and by the NSF Chameleon computing facility.

REFERENCES

[1] The champsim simulator. https://github.com/ChampSim/ChampSim.
[2] Spec cpu2017 benchmark suite. http://www.spec.org/cpu2017/.
[3] A. R. Alameldeen and D. A. Wood. Interactions between compression

and prefetching in chip multiprocessors. In HPCA, 2007.
[4] J.-L. Baer and T.-F. Chen. An effective on-chip preloading scheme to

reduce data access penalty. In SC, 1991.

[5] E. Bhatia, G. Chacon, S. Pugsley, E. Teran, P. V. Gratz, and D. A.
Jiménez. Perceptron-based prefetch filtering. In ISCA, 2019.

[6] Y. Chen, H. Zhu, and X.-H. Sun. An adaptive data prefetcher for high-
performance processors. In CCGRID, 2010.

[7] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt. Coordinated control
of multiple prefetchers in multi-core systems. In MICRO, 2009.

[8] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi. Clearing the
clouds: a study of emerging scale-out workloads on modern hardware.
Acm sigplan notices, 47(4):37–48, 2012.

[9] W. Heirman, K. D. Bois, Y. Vandriessche, S. Eyerman, and I. Hur.
Near-side prefetch throttling: adaptive prefetching for high-performance
many-core processors. In PACT, 2018.

[10] I. Hur and C. Lin. Memory prefetching using adaptive stream detection.
In MICRO, 2006.

[11] J. Kim, S. H. Pugsley, P. V. Gratz, A. N. Reddy, C. Wilkerson, and
Z. Chishti. Path confidence based lookahead prefetching. In MICRO,
2016.

[12] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In
ISCA, 1998.

[13] J. Lee, H. Kim, and R. Vuduc. When prefetching works, when it doesn’t,
and why. ACM Transactions on Architecture and Code Optimization
(TACO), 9(1):1–29, 2012.

[14] Y. Liu and X.-H. Sun. Lpm: A systematic methodology for concurrent
data access pattern optimization from a matching perspective. IEEE
Transactions on Parallel and Distributed Systems, 30(11):2478–2493,
2019.

[15] S. Pakalapati and B. Panda. Bouquet of instruction pointers: Instruction
pointer classifier-based spatial hardware prefetching. In ISCA, 2020.

[16] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and
B. Calder. Using simpoint for accurate and efficient simulation. ACM
SIGMETRICS Performance Evaluation Review, 31(1):318–319, 2003.

[17] C. D. Spradling. Spec cpu2006 benchmark tools. ACM SIGARCH
Computer Architecture News, 35(1):130–134, 2007.

[18] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers. In ISCA, 2007.

[19] V. Srinivasan, E. S. Davidson, and G. S. Tyson. A prefetch taxonomy.
IEEE Transactions on Computers, 53(2):126–140, 2004.

[20] X.-H. Sun and D. Wang. Apc: a performance metric of memory systems.
ACM SIGMETRICS Performance Evaluation Review, 40(2):125–130,
2012.

[21] X.-H. Sun and D. Wang. Concurrent average memory access time.
Computer, 47(5):74–80, 2013.

[22] S. P. Vanderwiel and D. J. Lilja. Data prefetch mechanisms. ACM
Computing Surveys (CSUR), 32(2):174–199, 2000.

[23] X. Zhuang and S. L. Hsien-Hsin. Reducing cache pollution via dynamic
data prefetch filtering. IEEE Transactions on Computers, 56(1):18–31,
2006.


