Performance Range Comparison
Via
Crossing Point Analysis

Xian-He Sun
Department of Computer Science
Louisiana State University

Baton Rouge, LA 70803-4020
sun@bit.csc.Isu.edu

Abstract.

Parallel programming is elusive. The relative performance of different
parallel implementations varies with machine architecture, system and
problem size. How to compare different implementations over a wide
range of machine architectures and problem sizes has never been well
addressed due to its difficulty. Scalability has been proposed in recent
years to reveal scaling properties of parallel algorithms and machines. In
this paper, based on scalability analysis, the concepts of crossing point
analysis and range comparison are introduced. Crossing point analysis
finds slow/fast performance crossing points of parallel algorithms and
machines. Range comparison compares performance over a wide range
of ensemble and problem size via scalability and crossing point analysis.
Three algorithms from scientific computing are implemented on an Intel
Paragon and an IBM SP2 parallel computer. Experimental and theoret-
ical results show the combination of scalability, crossing point analysis,
and range comparison provides a practical solution for scalable perfor-
mance evaluation. While our testings are conducted on homogeneous
parallel computers, the proposed methodology applies to heterogeneous
and network computing as well.

1 Introduction

In a parallel and distributed environment, load balance over processors generally
decreases with the ensemble size (the number of processors available) while com-
munication overhead increases with ensemble size. The decrease of load balance
and increase of communication overhead may reduce the performance consider-
ably and lead to a much longer execution time than expected when problem and
system size increase. More importantly, the “decrease” and “increase” vary with
algorithms, machines, and Algorithm-Machine Combinations (AMCs). They are
also functions of system ensemble size and problem size. An initially fast paral-
lel implementation may become slow when system and problem size increase. A
superior algorithm may only be superior for a given architecture and only over
a limited range of system and problem sizes. Finding the range of superiority is

inherently difficult. Superiority/inferiority is determined in terms of execution
time, whereas execution time is set at a given parallel platform and at a specified
system and problem size. The lack of a performance evaluation mechanism for
range comparison is a current barrier of parallel/distributed programming.
Execution time is the ultimate and most used measure in practice. System
ensemble and problem size vary in a scalable computing environment. How to
compare execution time over a range of system and problem size, however, eludes
researchers still. Scalability analysis has been introduced in recent years to iden-
tify the scaling properties of parallel algorithms and machines [2, 1, 3, 8, 4].
Based on newly revealed relations between scalability and execution time, in this
paper, the concept of range comparison is introduced. Unlike conventional ex-
ecution time comparison, range comparison compares performance over a wide
range of ensemble and problem size via scalability and performance crossing
point analysis. The idea of range comparison is straightforward: find the first
performance superior/inferior crossing point. Before meeting the first crossing
point, over a wide range of system and problem sizes, a fast program will remain
fast and a slow program will remain slow. The key question is how to find the
crossing point. This question is well addressed in this study. Theoretical foun-
dation is built to find the crossing point via isospeed scalability [8]. Since the
relation between isospeed scalability and other scalabilities has been studied [9],
results presented in this paper can be extended to other scalabilities as well.

2 Background

A goal of high performance computing is to solve large problems fast. Considering
both execution time and problem size, what we seek from parallel processing,
therefore, is speed which is defined as work divided by time. In general, how
work should be defined is debatable. For scientific applications, it is commonly
agreed that the floating-point (flop) operation count is a good estimate of work.
Average unit speed is the achieved speed of the given computing system divided
by p, the number of processors. It represents a quantity or efficiency that ideally
would be constant with the system size. Isospeed scalability has been formally
defined in [8] as the ability to maintain the average unit speed based on this
observation.

Definition 1 Analgorithm-machine combination is scalable if the achieved
average speed of the algorithm on the given machine can remain constant with
increasing numbers of processors, provided the problem size can be increased with
the system size.

For a large class of algorithm-machine combinations, the average speed can
be maintained by increasing problem size [8]. The necessary increase of problem
size varies with algorithms, machines, and their combinations. This variation
provides a quantitative measurement for scalability. Let W be the amount of
work of an algorithm when p processors are employed in a machine, and let W' be
the amount of work needed to maintain the average speed when p' > p processors

are employed. We define the scalability from ensemble size p to ensemble size p'
of an algorithm-machine combination as follows:
_rw

¢(p7pl) - pW, (1)

!
The work W' is determined by the isospeed constraint. When W' = ILW, that
p

is when average speed is maintained with work per processor unchanged, the
scalability equals one. This is the ideal case. In general, work per processor may
have to be increased to achieve the fixed average speed, and scalability is less
than one.

Since the average speed is fixed, the isospeed scalability (1) also can be
equivalently defined in terms of execution time [8]:

b(p,p) = = (2)
where T}, (W) is the corresponding execution time of solving W' on p' processors.

By the definition of isospeed scalability, scalability can be predicted if and
only if the scaled work size, W', can be predicted. A prediction formula has been
given in [10] to compute W':

a-p - T,(W")

r_
W= 1—aA 3)

where a is the average speed, A is the sustained computing capacity of a single
processor (reciprocal of speed), and T, (') is the parallel processing overhead
on p’ processors.

Theorem 1 and 2 show that isospeed scalability favors systems with better
run-time and characterizes the run-time well when problem size scales up with
system size. The proofs and some direct results of Theorem 1 and 2 can be found
in [6].

Theorem 1 If algorithm-machine combinations 1 and 2 have execution time
a-T and T, respectively, al the same initial state (the same initial ensemble and
problem size), then combination 1 has a higher scalability than combination 2 if
and only if the execution time of combination 1 is smaller than the a multiple
of the execution time of combination 2 for solving W', where W' is the scaled
problem size of combination 1.

Theorem 1 shows that if two AMCs have some initial performance difference,
in terms of execution time, then the faster AMC will remain faster on scaled
problem sizes if it has a larger scalability. Initial performance difference can be
presented in terms of execution time, as given in Theorem 1, or in terms of
problem size needed for obtaining the desired average unit speed, as in most
scalability studies [8]. Theorem 2 shows the relation of scalability and execution
time when the initial performance difference is given in terms of problem size.

Theorem 2 If algorithm-machine combinations 1 and 2 achieve the same av-
erage speed with problem size W and o - W, respectively, at the same initial
ensemble size, then the o multiple of the scalability of combination 1 is greater
than the scalability of combination 2 if and only if combination 1 has a smaller
ezecution time than that of combination 2 for solving W', where W' is the scaled
problem size of combination 1.

3 Range Comparison and Crossing Point Analysis

Theorems 1 and 2 give the basic relation of scalability and execution time: bet-
ter scalability leads to better execution time. Range comparison becomes more
challenging when the initial faster AMC has a smaller scalability. When the sys-
tem ensemble size scales up, an originally faster code with smaller scalability
can become slower than code that has a better scalability. Finding the fast/slow
crossing point is critical to optimizing performance. Finding the superior/inferior
crossing point, however, is very difficult and has yet to be fully studied. The def-
inition of crossing point is problem size dependent. It depends on the view of
scalable computing: does problem size scale up? and if so, then how? Definition
2 gives a formal definition of crossing point based on isospeed scalability. The
correctness of the definition is proved by Proposition 3. The relation given by
Proposition 2 and 3 is important by itself. It not only contributes to the con-
cept of crossing point, but of equal importance, it demonstrates the uniqueness
of scalability measurement in evaluation and benchmarking of algorithms and
parallel computers.

Definition 2 (scaled crossing point) For any « > 1, if algorithm-machine com-
binations 1 and 2 have execution time oI and T respectively at the same initial
state, then we say a scaled ensemble size p' is a crossing point of combinations
1 and 2 if the ratio of the isospeed scalability of combination 1 and combination
2 is greater than « at p'.

Let AMC 1 have execution time ¢, scalability @(p, p'), and scaled problem size
W'. Let AMC 2 have execution time T, scalability ¥ (p,p"), and scaled problem
size W*. By Definition 2, p’ is the crossing point of AMC 1 and 2 if and only if

®(p,p)
¥(p,p')

In fact, as given by Theorem 3, when &(p,p’) > a¥(p,p’) we have ¢, (W') <
T, (W*). Notice that since o > 1 combination 2 has a smaller execution time at
the initial state, ¢, (W) > T,(W). This superior /inferior change in execution time
illustrates the meaning of crossing point. For the sake of showing the relation
between parallel processing overhead and scaled crossing point, in the following
we do not prove the correctness of Definition 2 directly. Instead, we prove the
correctness through an alternative equivalent definition which is defined in terms
of parallel processing overhead. In Definition 3 and through out this paper, the
scaled problem size is the scaled problem size under isospeed scalability.

(4)

Definition 3 (scaled crossing point) For any a > 1, if algorithm-machine com-
binations 1 and 2 have execution time oI and T respectively at the same initial
state, then we say the scaled ensemble size p' is a crossing point of combinations
1 and 2 if p' is a scaled ensemble size at which the ratio of the scaled parallel

1—ad/a

overhead of combination 1 and 2 is less than ———5—, where a is the average

speed of combination 2, A is the computing rate.

Proposition 1 Definition 2 and Definition 3 are equivalent.

Proof: Let AMC 1 have execution time ¢, parallel processing overhead
to, scalability @(p,p'), and scaled problem size W'. Let AMC 2 have execution
time T', parallel overhead T, average speed a, scalability ¥ (p,p'), and scaled
problem size W*. Since t,(W) = oT,(WW) at the initial state, the average speed
of combination 1 is a/a. By the definition of isospeed scalability, we have

aW' w*

pltp’(Wl) B Py (W*)

Thus,
w* _ aTy (W) (5)
wr tp (W) .

Also, by equation (3)
W a-p-T,(W*) a(l-ad/a) a(l—ad/a) T,(W*)

=2 . = . 6

w! (1-ad) a-p -t,(W") 1—-aA to(W'). (©)
Combining the equations (5) and (6) and using the relation (2), we get

) 1-ad Ipp) W) 1-ad #ps) o
to(W') 1—adja &-(p,p')-t,(W) a(l —ad/a) ¥(p,p').

Equation (7) shows that ;,DE%)) - 1;13[' if and only if % = a, and

;ZE%*)) < 1Iff£a if and only if igf}’z,; > «. That is Definition 2 and 3 are

equivalent. O

Proposition 2 If algorithm-machine combinations 1 and 2 have execution time
oI and T respectively at the initial state, then combinations 1 and 2 have the
same scaled execution time at scaled ensemble size p' if and only if combinations
1 and 2 have scaled parallel overhead 1;‘_1fA/a T, and T, respectively at ensemble
size p'.

Proof: We use the same notations as used in the proof of Proposition 1.
By relation (2), we have

= o '(p,p)-t,(W), (8)
Ty(W*) = & p,p) - Tp(W). (9)

By equation (1)

Also, by equation (6)
W* a(l—ad/a) T,(W*)

W'~ 1—aA t,(W).

Substitute relation (6) into equation (10), we get the final relation

W l—aA (W) (W) o loaA t,(W))
W) = S0 —ear o) T,on 2) = Toeaze Ty)

That is }:E%I)) = 1Iff£°‘ if and only if t,, (W') = T}, (W*), which completes the

proof. O

Proposition 3 For any a > 1, if algorithm-machine combinations 1 and 2 have
execution time o1 and T respectively at the initial state, then combination 1 has
a smaller scaled execution time than that of combination 2 at scaled ensemble
size p' if and only if combination 1’s scaled parallel overhead is less than the
1;‘_’?4“ multiple of combination 2’s scaled parallel overhead at p', where a is the
average speed of combination 2.

Proof: Similar as the proof of Proposition 2. a

Theorem 3 is a direct result of Proposition 3.

Theorem 3 If algorithm-machine combination 1 has a larger execution time
than algorithm-machine combination 2 at the initial state, then, for any scaled
ensemble size p', p' is a scaled crossing point if and only if combination 1 has a
smaller scaled execution time than that of combination 2.

Since two different algorithm-machine combinations may have different scal-
abilities, they may cross performances at crossing point p’ with different problem
sizes. Scaled crossing point is different from the equal-size crossing point where
performance crosses with the same problem size. Proposition 4 gives a relation
between the scaled crossing point and equal-size crossing point. It shows that
in the range of (p,p’), combination 2 is superior than combination 1 under the
condition of Proposition 2, in terms of both scaled and equal-size performance.

Proposition 4 Under the assumption of Proposition 2, we have
Ty (W' < Ty (W*) =t, (W)

where W' is the scaled problem size of combination 1 and W* is the scaled
problem size of combination 2.

Proof: t, (W') =T, (W*) is a direct result of Proposition 2.
By Proposition 1, under the condition of Proposition 2 we have ®(p,p’) =
ap(p,p'). Replace the scalability with relation (1), we get

pPW ap'W

pW' — pWr.
Thus,

W* =aW',
and

Ty (W') < Ty (W7) =ty (W).

A more general result is given by Theorem 4.

Theorem 4 If algorithm-machine combination 1 has a larger execution time
than algorithm-machine combination 2 at the initial state and the scaled ensemble
size p' is not a scaled crossing point, then combination 1 has a larger execution
time than that of combination 2 for solving W' at p', where W' is the scaled
problem size of combination 1.

Proof: We use the same notations as used in the proof of Proposition 1.
Since p' is not a scaled crossing point, by Theorem 3, Tp, (W*) < ¢, (W').

Case 1: If W’ < W*, then
Tp’(WI) < Tp’(W*) < tp’(Wl)'

Case 2: If W' > W*, then by the definition of isospeed scalability (1) we have
the scalability of combination 1 is equal to or smaller than the scalability of
combination 2, &(p,p') < ¥(p,p’). Thus combination 1 has a larger initial
time and equal or smaller scalability, by Theorem 1, T, (W') < t, (W").

O

Theorem 4 gives the necessary condition for equal-size performance crossing;:
for the initial ensemble size p, if p' is an equal-size crossing point of p it must be
a scaled crossing point of p. In other words, if p’ is not a scaled crossing point
of p, it is not an equal-size crossing point of p. No performance crossing will
occur before the scaled crossing point even in terms of equal-size performance.
Theorem 4 provides the mean of range comparison. Based on the theoretical
findings Figure 1 gives the range comparison algorithm.

Assumption of the Algorithm: Assume algorithm-machine combi-
nations 1 and 2 have execution time o7 and T respectively at the
same initial state, where o > 1.

Objective of the Algorithm: Predict if combination 2 is superior
over the range of ensemble sizes from p to p’, where p' > p.

Range Comparison
Begin
Compute the Scalability of combination 1 &(p,p');
Compute the Scalability of combination 2 ¥(p,p');
If ((p,p') < a¥(p,p’) then
Combination 2 is superior over the range < p,p’ >;
Else
p' is a performance crossing point
End{If}
End{Range Comparison }

Fig. 1: Range Comparison Via Performance Crossing point

4 Experimental Testing

Three parallel tridiagonal solvers are used to confirm the analytical results. They
are the PPT, PDD, and Reduced PDD algorithms. For the sake of brevity, the
algorithms will not be re-introduced. Interested readers may refer to [5] and [7]
for details of the algorithms and their corresponding scalability analyses. Only
needed analytical and experimental results are presented here to confirm the
range-comparison methodology.

The tridiagonal systems under consideration are diagonal dominant, symmet-
ric, Toeplitz systems with multiple right sides. Both the PDD and Reduced PDD
algorithms are ideally scalable with scalability equals one under our testing con-
dition. The PPT algorithm is not perfect scalable. These three algorithms were
implemented on an IBM SP2 and an Intel Paragon. Execution time is measured
in seconds. Speed is given in MFLOPS (Milliones floating-point operation per
second). Tables 1 through 3 list the measured results on the SP2 and Paragon
machines. The measurement starts with two processors, since uniprocessor pro-
cessing does not involve communication on SP2 and Paragon and, therefore, the
uniprocessor performance is not suitable for the analytical results.

Observing the timing given in Tables 1 and 2, we can see that the measured
result confirms the theoretical result. For instance, since the scalability of the
PPT algorithm is less than the scalability of the PDD and the Reduced PDD
algorithms, the performance comparison of these three algorithms can be used
to verify Theorem 1 and 3. By Theorem 1, since the PPT algorithm is slow
at the initial state on the Paragon machine, it is inferior over the computing

Number of Processors
2 4 8 16 32
Order of Matrix 12800 | 25600 | 51200 | 102400 | 204800
PDD Algorithm 0.8562 | 0.8561 | 0.8564 | 0.8564 | 0.8569
Reduced PDD Alg. | 0.5665 | 0.5666 | 0.5668 | 0.5673 | 0.5659
PPT Algorithm 0.7810 | 0.9826 | 1.004 1.103 1.288

Table 1: Measured Execution Time (in seconds) on the SP2 Machine

range, and the timing difference between the PPT algorithm and the PDD and
Reduced PDD algorithms should be enlarged when problem size is scaled up with
ensemble size. This claim is supported by the measured data on the Paragon
machine. Performance on the SP2 is more interesting. The PPT algorithm is
faster than the PDD algorithm at the initial state. The initial time difference
ratio is 0.8562/0.781 = 1.0963. By scalability analysis [7], the scalability of the
PPT algorithm &(2,4) = % = 0.7. The PDD is ideally scalable, ¥(2,4) = 1.
Therefore, following the range comparison algorithm given in Figure 1, the first
performance crossing point is at ensemble size 4. This predicted crossing point is
confirmed by experimental measurement (see Table 2). In summary, the following
range comparison principles have been confirmed by experimental results.

— (PDD/Reduced PDD, Theorem 1) If two programs have the same scalabil-
ity, then the initially faster program will remain faster over the considered
scalable range.

— (Reduced PDD/PPT, Theorem 1) If the initially faster program has a larger
scalability, then the initially faster program will be superior over the consid-
ered scalable range.

— (PDD/PPT, Theorem 4) If the initially faster program has a smaller scala-
bility, then performance superiority /inferiority will change when system size
increases. The crossing point can be predicted. In the PDD/PPT case, the
performance crossing point is 4.

Theorem 2 provides the foundation of range comparison from another an-
gle. Instead of using initial time difference, Theorem 2 uses initial efficiency (in
terms of average speed) to predict the scaled performance. Table 3 shows the
performance variation of the Reduced PDD algorithm on the Paragon. A small
problem size, n = 1000, is chosen so that the Reduced PDD can rearch the
achieved average speed of the PDD algorithm with larger size (see Table 3).
The initial ensemble size is chosen to be four because when the problem size
is small the overall performance is highly dependent on communication delay.
With two processors the PDD and Reduced PDD algorithms have one send and
one receive communication. With more than two processors these algorithms

Number of Processors
2 4 8 16 32 64
Order of Matrix 3200 6400 12800 | 25600 | 51200 | 102400
PDD Alg. 0.7379 | 0.7388 | 0.7387 | 0.7397 | 0.7388 | 0.7393
Reduced PDD Alg. | 0.5452 | 0.5524 | 0.5539 | 0.5550 | 0.5521 | 0.5563
PPT Alg. 0.8317 | 0.9115 | 1.066 | 1.462 | 2.008 3.095

Table 2: Measured Execution Time (in seconds) on the Paragon Machine

Number of Processors
4 | 8 | 16 | 32 | 64
Order of Matrix 1000 2000 4000 8000 16000
Timing 0.1154 | 0.1155 | 0.1166 | 0.1159 | 0.1159
Speed/p 11.095 | 11.0875 | 10.9812 | 11.0469 | 11.0453
Order of Matrix 6400 12800 25600 51200 102400
Timing 0.5524 | 0.5539 | 0.5550 | 0.5521 | 0.5563
Speed/p 14.8375 14.8 14.7688 | 14.8469 | 14.7359

Table 3: Variation of the Reduced PDD Algorithm on the Paragon Machine

require two send-and-receive communications. Though theoretically each pro-
cessor on Paragon can send and receive messages concurrently, in practice the
synchronization cost of concurrent sending and receiving may lead to noticeable
performance differences when problem size is small. The PDD algorithm and
Reduced PDD algorithm reach the same average speed at ensemble size equal
four with problem size W = (5n — 3) * 1024 4+ 3n — 4 = 32,784,124 flops and
W = (5n —3) %1024 + 3n — 4 = 5,119,924 flops respectively. The ratio of prob-
lem size difference, computed as 5,119,924 over 32,784,124, is 0.15617. That is
a = 0.15617. The PDD and Reduced PDD algorithm have the same scalability.
Therefore, the a multiple of the scalability of PDD algorithm is less (not greater)
than the scalability of the Reduced PDD algorithm. By Theorem 2, the execu-
tion time of the PDD algorithm on its scaled problem size should be greater
(not smaller) than that of the Reduced PDD algorithm over the scalable com-
puting range. Measured results given in Tables 3 and 2 confirm the theoretical
statement.

Range comparison is not only useful in algorithm or software development.
It is also applicable in evaluating hardware variations. The best sequential tridi-
agonal solver, the Thomas algorithm, can be parallelized for systems with mul-
tiple right sides. Parallelized Thomas algorithm has less computing but more
communication requirement than that of the PDD algorithm. Figure 2 and 3
demonstrate the performance range comparison of the PDD and parallelized

10

Thomas algorithm, when the computing and communication capacity varies, re-
spectively [10]. These figures are created based on scalability analysis formula
with measured machine parameters. The number of processors used in both fig-
ures is fixed as 64. We can see that computing speed increases do not change
the superiority. The PDD algorithm remains superior. However, communication
capacity will change the superiority.

Mflops sec/Mb

Fig. 2: Speed Influence Fig. 3: Communication Influence

5 Conclusion

While scalability has been accepted as an important property of algorithms and
architectures, execution time is the dominant metric of computing [4]. Scalability
study would have little practical impact if it could not provide useful informa-
tion on time variation in a scalable computing environment. The relation between
scalability and execution time is identified in this study. The concepts of cross-
ing point analysis and range comparison are proposed. A novel methodology is
developed to compare/evaluate the performance of different parallel algorithms
and architectures over a large range of system and problem size. Experimental
and theoretical results show scalability is a unique indicator of time variation.
An initially slow algorithm-machine combination can become superior if it has
a better scalability. More importantly, the performance superior/inferior cross-
ing point can be determined via scalability. Scalability makes range comparison
possible. Range comparison, in which execution time is compared over a range
of system and problem sizes, opens new ways of performance evaluation.

Acknowledgements

This research was supported in part by NSF under grant ASC-9720215, by NASA
under contracts NAS1-1672, and by Louisiana Education Quality Support Fund.

11

References

10.

GRrAMA, A. Y., GupTa, A., AND KUMAR, V. Isoefficiency: Measuring the scala-
bility of parallel algorithms and architectures. IEEE Parallel € Distributed Tech-
nology 1, 3 (Aug. 1993), 12-21.

GUSTAFSON, J. Reevaluating Amdahl’s law. Communications of the ACM 31
(May 1988), 532-533.

Hwanag, K. Advanced Computer Architecture: Parallelism, Scalability, Pro-
grammability. McGraw-Hill, 1993.

SAHNI, S., AND THANVANTRI, V. Performance metrics: Keeping the focus on
runtime. IEEE Parallel € Distributed Technology (Spring 1996), 43-56.

SuN, X.-H. Application and accuracy of the parallel diagonal dominant algorithm.
Parallel Computing (Aug. 1995), 1241-1267.

SuN, X.-H. The relation of scalability and execution time. In Proc. of the Inter-
national Parallel Processing Symposium’96 (April 1996).

SuN, X.-H. Scalability versus execution time in scalable systems. Louisiana State
Uiversity, Computer Science TR-97-003, 1997.

SuN, X.-H., AND ROVER, D. Scalability of parallel algorithm-machine combi-
nations. IEEE Transactions on Parallel and Distributed Systems (June 1994),
599-613.

SuN, X.-H., AND ZHU, J. Performance considerations of shared virtual memory
machines. IEEE Transactions on Parallel and Distributed Systems (Nov. 1995),
1185-1194.

SuN, X.-H., AND ZHU, J. Performance prediction: A case study using a scalable
shared-virtual-memory machine. IEEE Parallel € Distributed Technology (Winter
1996), 36-49.

12

