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ABSTRACT 
In this study, the authors propose a simple performance model to 
promote a better integration between the parallel I/O middleware 
layer and parallel file systems. They show that application-
specific data layout optimization can improve overall data access 
delay considerably for many applications. Implementation results 
under MPI-IO middleware and PVFS2 file system confirm the 
correctness and effectiveness of their approach, and demonstrate 
the potential of data layout optimization in petascale data storage.   

Categories and Subject Descriptors 
B.4.3 [Input/Output and Data Communications]: 
Interconnections (Subsystems) – parallel I/O. D.4.2 [Operating 
Systems]: Storage Management – allocation/deallocation 
strategies, secondary storage. 

General Terms 
Measurement, Performance, Experimentation. 

Keywords 
Data layout, parallel file systems, parallel I/O 

1. INTRODUCTION 
High-performance computing (HPC) has crossed the Petaflop 
mark and is moving forward to reach the Exaflop range [15]. 
However, while computing resources are making rapid progress, 
there is a significant gap between processing capacity and data-
access performance. Due to this gap, although processing 
resources are available, they have to stay idle waiting for data to 
arrive, which leads to a severe overall performance degradation. 
Figure 1 shows the number of CPU cycles required to access 
cache memory (SRAM), main memory (DRAM), and disk storage 
[2]. It can be seen that the number of cycles for accessing disks is 
hundreds of thousands of times slower. This trend is predicted to 
continue in the near future. In the meantime, applications are 
becoming more and more data intensive. Due to the growing 
performance disparity and emerging data intensive applications, 
I/O and storage have become a critical performance bottleneck in 
HPC machines, especially when we are dealing with petascale 

data storage. 

Data layout mechanism decides how data is distributed among 
multiple file servers. It is a crucial factor that decides the data 
access latency and the I/O subsystem performance for high-
performance computing. The recent work in log-like reordering of 
data [1][7] has demonstrated the importance and performance 
improvement by arranging data in a proper manner. However, 
historically, parallel I/O middleware systems, such as ROMIO 
[14], and parallel file systems are developed separately with a 
simplified modular design in mind. Parallel I/O middleware 
systems often assume the underlying is a big file system, and, on 
the other hand, parallel file systems often rely on the I/O 
middleware for data access optimization and do little in data 
layout optimization.  In this study, we argue that purely 
depending on I/O middleware for data retrieval optimization is 
costly and may not be effective in many situations. We argue that 
if we pass some of the application-specific I/O request 
information to file systems for data layout optimization, the 
results could be much better.  Existing parallel file systems, such 
as PVFS2 [3], Lustre [5], and GPFS [11] provide high bandwidth 
for simple, well-formed, and generic I/O access characteristics, 
but their performance varies  from application to application 
[4][8]. Tuning data layout according to specific I/O access 
patterns for a parallel I/O system is a necessity. This tuning 
requires understanding file system abstractions, gaining 
knowledge of disk storage, knowing the designs of high-level 
libraries, and making intelligent decisions. While PVFS2 and 
high-level parallel I/O libraries, such as MPI-IO [13] and HDF-5 
[12] provide some functionality to customize data layout 
according to specific I/O workloads, few know how to use them 
effectively. 
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Figure 1. Comparison of data access latency. 

In this research, we study data layout optimization of parallel file 
systems. We show that, with the consideration of application-
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specific I/O request, the data layout optimization can be totally 
different in a parallel file system. We present a system-level 
application-specific data layout optimization strategy for 
petascale data storage. By system-level, we mean that the 
proposed approach is integrated into the file system and is 
transparent to programmers and users. By application-specific, we 
mean that the proposed approach can adapt to specific data access 
patterns for a proper data layout. The contribution of this study is 
two folds. First, we show that the data layout optimization has a 
significant impact on petascale data storage performance. Second, 
we demonstrate with a simple performance model and current 
simple data layout functionalities provided by PVFS2 that we can 
achieve noticeable performance gain. While our results are 
preliminary, they demonstrate the potential of the data layout 
optimization approach. 

2. APPLICATION-SPECIFIC DATA 
LAYOUT MODELING 
Modeling and evaluating the performance of data layout strategy 
is essential in providing an application-specific data layout 
optimization. The conventional round-robin distribution (referred 
to as simple striping in some existing work) is in place in many of 
parallel file systems [3][5][11]. However, under parallel I/O 
systems, this simple distribution may not be the best data layout 
and can be improved. 

We present a simple data layout performance model herein. In 
this model, we assume that the connection between compute (I/O) 
nodes and file servers is not a performance bottleneck and that the 
significant overhead is in accessing file servers. We further 
assume that each file server’s performance can be measured as 
α+sβ, where α is the start up time (latency), s is the data size, and 
β is the transmission time of single unit data (the reciprocal of 
transmission rate). 

In this model, we differentiate three data layout strategies, 1-D 
Horizontal Layout, 1-D Vertical Layout and 2-D Layout. The 1-D 
Horizontal Layout (or 1-DH in short) refers to the strategy that 
data is distributed among all available file servers in a traditional 
round-robin fashion. This layout matches with the existing simple 
striping or round-robin strategy. The 1-D Vertical Layout (or 1-
DV in short) refers to the strategy that data to be accessed by each 
process is stored on one given file server. The 2-D Layout (or 2-D 
in short) is the strategy in which data to be accessed by each 
process is stored on a subset of file servers. Figure 2 illustrates 
these three strategies with an example. 

Assume that we have p computing (I/O) nodes, n file servers, 
where all computing nodes participate in an SPMD form of 
parallel computing, with a block-cyclic or some similar, even data 
partitioning. With 1-DH data layout, i.e., with simple striping 
round-robin layout where exactly s/n of the data are in any of the 
n file servers, the cost of accessing data of size s by one process 
and p processes are: 
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respectively. With the 1-DH layout, each process accesses its 
required data concurrently, but multiple processes have to access 
data one by one sequentially; and the data of each process is 
distributed over different file servers evenly. This strategy makes 

accesses in a “sequential concurrent” way. The value of Equation 
(1) depends on the value of p, n, α and β. In any case, however, 
the 1-DH layout or the conventional round-robin layout may not 
be the best choice when p ≥ n. If we take the 1-DV layout, i.e. 
taking a “concurrent sequential” approach, we can get a better 

performance, with ( )p s
n
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. If p < n, then the data can be 

stored either on n servers using 1-DH layout or using 2-D layout, 
where each of the p processes gets n/p file servers for data 
storage. For the former layout, the cost is α+sβ and for the latter 
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Figure 2. Data layout strategies. 

3. APPLICATION-SPECIFIC DATA 
LAYOUT OPTIMIZATION 
With application-specific data layout modeling, we are able to 
guide data layout towards a better way by considering data access 
characteristics. With the value of p, n and α, β, the proper data 
layout can be determined with the aforementioned data layout 
formulas for a given parallel I/O request. The data layout of a 
given application can then be determined based on the weighted 
summation of the costs of its I/O requests. The above model is 
deterministic and is ready to use under existing parallel file 
systems, such as PVFS2. In addition, in parallel I/O applications, 
it is common that an application accesses multiple files and each 
file in multiple occasions. We store each file in a different layout 
to improve performance. When an application accesses a file in 
multiple patterns, it is necessary to find a layout that is beneficial 
for all patterns. For example, a file is read in contiguous access 
pattern and written in a complex non-contiguous pattern. From 
many observations [8][13], accessing data in non-contiguous 
patterns performs worse than accessing contiguously. Storing data 
to facilitate non-contiguous accesses may deteriorate contiguous 
access performance. We have to find a balance between 
performance benefits when we decide on performance layouts. 
Based on pattern analysis, we can utilize a strategy by assigning 
each pattern a weight to represent its scope for I/O performance 
improvement. 



Based on the modeling and observations, we define a set of data 
layout heuristics as shown in Table 1. When I/O access 
characteristics are unknown or completely random, we rely on 1-
DH strategy or the default simple round-robin strategy. When the 
degree of I/O concurrency is high, it is beneficial to use 1-DV 
layout. 1-DH layout or 2-D layout can be configured for low 
degree of concurrency. In case of TCP Incast [10], it is better to 
stripe data among a certain set of file servers instead of all 
available file servers, which is 2-D layout. File systems such as 
PVFS2 provide features to extend and create new distributions 
[9]. We utilize these features in generating new application-
specific distributions in our implementation. 

 
Table 1. Heuristics for Choosing Layouts 

Access Pattern Feature Data Layout Strategy 

Random 1-DH (round-robin) layout 

High degree of I/O concurrency 1-DV data layout 

Low degree of I/O concurrency 1-DH or 2-D data layout 

Too many I/O servers on TCP/IP 2-D data layout 
 

After making decisions on the layout, we store data on file servers 
using the new layout. The 1-DH layout strategy, or the simple 
round-robin layout, with different stripe size and striping factor 
can be set with MPI-IO hints, such as striping_factor and 
striping_unit. A more complex distribution, such as 1-DV or 2-D 
data layout, needs to be modified at the file system level to 
provide general support, but can be emulated with different 
striping_factor and striping_unit configurations. In addition, it is 
common for parallel file systems, such as PVFS2, to provide 
flexible and extendable data distributions [9]. PVFS2 includes a 
modular system for adding new data distributions to the system 
and using these for new files and optimized layouts. Since our 
current implementation focuses on prototyping the idea and 
verifying the potential performance gain, we employ a relatively 
quick prototyping strategy by using parallel file system 
configurations to provide support for various layout strategies. 
The current prototyping system has demonstrated a significant 
performance improvement over existing strategies as the 
following section shows. A general full-fledged data layout 
strategy support at parallel filesystem level is under development 
as well. 

4. PRELIMINARY EXPERIMENTAL 
RESULTS 
We have carried out a prototype implementation of application-
specific data layout on PVFS2 parallel file system based on the 
previously discussed model and optimization strategy. We 
currently support three strategies, 1-DH, 1-DV and 2-D layouts. 
The following subsections present the initial experimental results 
of these application-specific strategies under different scenarios. 

4.1 Experimental Setup 
Our experiments were conducted on a 17-node Dell PowerEdge 
Linux-based cluster and a 65-node Sun Fire Linux-based cluster. 
The Dell cluster is composed of one Dell PowerEdge 2850 head 

node, with dual 2.8 GHz Xeon processors and 2 GB memory, and 
16 Dell PowerEdge 1425 compute nodes with dual 3.4 GHz Xeon 
processors and 1 GB memory. The head node has two 73 GB 
U320 10K-RPM SCSI drives. Each compute node has a 40 GB 
7.2K-RPM SATA hard drive. The Sun cluster is composed of one 
Sun Fire X4240 head node, with dual 2.7 GHz Opteron quad-core 
processors and 8GB memory, and 64 Sun Fire X2200 compute 
nodes with dual 2.3GHz Opteron quad-core processors and 8GB 
memory. The head node has 12 500GB 7.2K-RPM SATA-II 
drives configured as RAID-5 system. Each compute node has a 
250GB 7.2K-RPM SATA hard drive. The experiments were 
tested on PVFS2 file system. For the Dell cluster, PVFS2 was 
configured with one metadata server node, the head node, and 8 
I/O server nodes. All nodes are used as compute nodes. For the 
Sun Fire cluster, PVFS2 was configured with 32 I/O server nodes. 
The rest nodes are used as compute nodes. 

4.2 Experimental Results and Analyses 
4.2.1 Synthetic Benchmark 
We have coded a synthetic benchmark which does sequential 
reads over the file stored with different layouts. We have 
performed a series of tests on the Dell cluster. The first set of 
experiments conducted is to compare the performance of different 
layout strategies with four compute processes. In this scenario, 
four processes retrieve data from 64MB, 160MB, 320MB, 800MB 
and 2000MB files respectively.  These files are stored on eight 
file servers with three layouts, 1-DH, 1-DV and 2-D. We 
measured the performance of retrieving data in each case and the 
results are shown in Figure 3. The reported results are the average 
of three runs. We flushed the system buffer cache between each 
run. 
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Figure 3. I/O performance with different layout strategies. 
 
Figure 3 clearly shows that different layout strategies do have a 
considerable impact to the performance of parallel I/O system. 
Among three layouts, the 2-D layout achieved the best 
performance in all cases. This is consistent with our model and 
analysis that the 2-D layout is desired when the number of 
compute processes is less than that of I/O server nodes. In the 
meantime, the 1-DH layout, or the default round-robin layout, 
performed worse than both 1-DV and 2-D layouts, and the 
performance disparity was up to 48.8%. 



We have also performed a detailed analysis to verify the proposed 
model. We compute the theoretical value with the model and the 
measured disk transfer time and startup time. The theoretical and 
experimental results are shown in Figure 4 (1-DH layout is 
omitted here due to the space limit). As can be seen from the 
results, there is a close match between the experimental results 
and theoretical results, which shows the model can estimate the 
performance of these layout strategies well. 
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Figure 4. Experimental and theoretical results. 

(Left: 1-DV layout; Right: 2-D layout) 
The other set of experiments we have conducted is to compare the 
impact of layout strategies with 16 compute processes. This set of 
tests is similar with the previous tests, but the file sizes are 
doubled in order to compare the performance with various file 
sizes. The results show that 1-DV layout outperformed the other 
two strategies in all cases, which is consistent with the model and 
analysis presented in Section 2. The results are shown in Figure 5. 
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Figure 5. I/O performance with different layout strategies. 

4.2.2 IOR Benchmark 
In addition to the synthetic benchmark measurement, we have 
performed a series of testing on the Sun cluster with the IOR-
2.10.2 benchmark from Lawrence Livermore National Laboratory 
[6]. In these experiments, we performed a larger scale of testing. 
We configured PVFS2 with 32 I/O server nodes and run testing 
with 64 processes on 32 client nodes (client nodes are separate 
from I/O server nodes). We performed both sequential 
reads/writes and random reads/writes tests, and varied the stripe 
size and the file size. Figure 6 and Figure 7 report the bandwidth 
results of accessing files with different layouts in a random or 
sequential manner, respectively, with 64KB stripe size for 1-DH 
and 2-D layouts. Figure 8 and Figure 9 report the results in a 
similar scenario, but with 1MB stripe size for 1-DH and 2-D 
layouts. 
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Figure 6. Random reads/writes with 64KB stripe size. 
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Figure 7. Sequential reads/writes with 64KB stripe size. 
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Figure 8. Random reads/writes with 1MB stripe size. 
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Figure 9. Sequential reads/writes with 1MB stripe size. 

 
As can be seen from these results, different layout strategies can 
affect the IOR benchmark testing performance considerably. 
Among the three strategies we specifically analyze, the 1-DV 
strategy generally performs better than the other two, while the 2-
D strategy performs better than the 1-DH strategy. 



Although the current experimental results are preliminary, they 
have demonstrated that data layout strategies have a considerable 
impact on parallel I/O systems. The proposed model and 
application-specific data layout optimization are desired to 
dynamically adapt the layout to achieve a better performance 
under different scenarios. 

5. ONGOING WORK 
We have reported some of initial results, while several studies are 
ongoing and are not ready to report at this time. For instance, we 
are working on a comprehensive data layout model to characterize 
the performance impact of layout strategy in general cases based 
on probability and queuing theory. The basic idea of the general 
model is that each I/O node can be modeled as an independent 
queue. I/O requests come into these queues and are serviced for 
either storing or retrieving data. When contention occurs, the 
request has to wait in the queue to be serviced. Multiple queues 
are independent from each other, and data layout optimization on 
parallel file servers are derived accordingly. This model 
characterizes concurrency (parallelism) and contention, two major 
roles that data layout strategy plays in affecting the system 
performance, to guide an optimal layout selection. We have 
developed a theoretical model and are working on the 
experimental part to verify the model. We are also moving the 
experimental testing to a much larger computer cluster than what 
we have used. 

6. CONCLUSION 
Parallel I/O middleware and parallel file systems are fundamental 
and critical components for petascale storages. While both of the 
technologies have made their success, little has been done to 
application-specific data layout. In most existing file systems, 
data is distributed among multiple servers primarily with a simple 
round-robin strategy. This simple data layout strategy does not 
always work well for parallel I/O system, where I/O requests are 
generated concurrently.  In this study, we have proposed an 
application-specific data layout strategy to optimize the 
performance of accessing data according to distinct application 
features. This data layout strategy optimization is built upon a 
simple but effective data layout model, and has been prototyped 
with the configuration facility of the underlying PVFS2 parallel 
file system. 
Parallel file systems have been designed as one-set-for-all and 
have been static. There is a great need for research into next-
generation I/O architectures to support access awareness, 
intelligence, and application-specific adaptive data distribution 
and redistribution. Although our current results are very limited, 
our prototyping system has demonstrated the great potential in 
improving parallel I/O access performance via data layout 
optimization when access characteristics are taken into 
consideration. We believe that the application-specific data layout 
optimization approach needs a community attention. This 
approach appears to be a feasible solution to mitigating the I/O 
wall problem, especially for petascale data storages. 
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