Parallel Architectures

Performance Prediction

A Case Study Using a Scalable
Shared-Virtual-Memory Machine

Xian-He Sun
Louisiana State University

Jianping Zhu
Mississippi State University

% A simple formula
shows the relationship
between scalability,
single-processor
computing power, and
degradation of
parallelism. Starting
with this formula, the
authors investigate the
prediction and
application of
scalability.

ecent trends in parallel processing suggest that the issue of

performance prediction is becoming more complex and dif-

ficult. Scientists have adopted massively parallel computing

as a cost-effective way to achieve high computing power.

They have introduced various architectures and algorithms
to deliver performance scalability with many processors. Shared virtual
memory and other kinds of system support, which hide the communica-
tion and other implementation details from the user, are becoming more
prevalent. At the same time, with various architectures and algorithms
available, performance prediction is becoming critical in choosing an
appropriate algorithm-machine pair for an application, especially when
the machine has a sophisticated hierarchical architecture.

In this article, we combine simple formulas with runtime information
to predict performance in modern parallel computers. After presenting a
simple prediction formula, we discuss a case study involving a virtual
memory machine to illustrate how to use the formula in practice. We dis-
cuss four different aspects:

* We propose a method to measure the needed runtime parameters.

® We propose an adjustment to catch the influence of architecture vari-
ation when the system size is scaled up from one level of architecture
hierarchy to another.

* We demonstrate, through the case study, that it is possible to predlct
the influence of architecture hierarchy on scalability by simply using
hardware specifications.

* Finally, we discuss the issue of choosing an appropriate algorithm for
a given application when the computing system is scaled up from one
level of hierarchy to another.

36

1063-8552/96/$4.00 © 1996 IEEE IEEE Parallel & Distributed Technology

The challenge of performance
prediction

There are two commonly used synchronization and
communication models: message passing and shared
memory. Processes communicate through explicit
message passing in the message-passing model and
through shared variables in the shared-memory model.
Traditionally, message passing has been the natural
choice of distributed-memory machines. With shared
virtual address space, shared virtual memory can be
supported on distributed-memory machines, but
requires sophisticated hardware and system support.
Shared-virtual-memory machines are scalable and
provide a sequential-like programming environment.
However, performance prediction for shared-virtual-
memory machines is more difficult than for traditional
message-passing machines, because communication is
implicit and memory access time is nonuniform.

Parallel machines can yield very high raw computa-
tion power. However, the high computation power
might not be realized in solving a given application,
because the achievable efficiency of an application can
drop quickly as system size increases. To evaluate the
ability of maintaining performance, researchers have
proposed several metrics to measure the scalability of
algorithm-machine combinations.!* Isospeed scalabil-
ity, which measures the ability of an algorithm-machine
combination to maintain unit processor speed, is one of
the proposed metrics. In parallel computing, the sus-
tained performance is typically only a small portion of
the hardware peak performance and can vary signifi-
cantly with the problem size and system size. Perfor-
mance tuning, architectural improvement, algorithm
and architecture selection, and compiler optimization
are critical steps in improving the efficiency of parallel
computers. Performance prediction is an especially
essential component of the last two steps.”$ Currently,
the challenge of performance prediction is to predict
the performance variation of scalable computing, where
the machine ensemble size and problem size vary over
awide range.” (The “Definitions and applications” side-
bar describes the motivation and application of the scal-
ability study in more detail.)

Performance models are developed in terms of exe-
cution time and scalability. Experimental results on a
64-node Kendall Square KSR-1 show that when per-
formance information about a small-scale system is
available, the performance of a larger-scale system can
be predicted. Thus, we can compare machine architec-

tures and algorithms in terms of scalability, without run-
time information. Our proposed formula and method-
ology are not bound to any particular algorithm or
architecture. Because a 64-node KSR-1 is a shared-
virtual-memory machine with variable memory access
times, the implementation experience learned in this
study is reasonably general and should be applicable to
a class of applications on similar architectures.

Definition and analysis

One of the main motivations of parallel processing is to
solve large problems fast. Considering both execution
time and problem size, what we seek from parallel pro-
cessing is speed, which is defined as work divided by
time. In general, how work should be defined is con-
troversial. For scientific applications, it is commonly
agreed that the floating-point operation (flop) count is
a good estimate of work problem size. Some authors
refer to problem size as the parameter that determines
the workload—for instance, the order of matrices. In
this article, problem size refers to the work to be per-
formed, and we will use “problem size” and “work”
interchangeably. The average unit speed is a good mea-
sure of parallel processing speed.

Definition 1: The average unit speed (or average speed,
for short) is the achieved speed of the given computing
system divided by p, the number of processors.

Ideally, average speed remains constant when system
size increases. The hardware peak performance specified
by vendors is usually based on this ideal assumption.
However, if problem size is fixed, the ideal situation is
unlikely. The reason is that for a problem with a fixed
size, the communication/computation ratio is likely to
increase with the number of processors, so the average
speed decreases with increased system size. On the other
hand, if the system size is fixed, the communication/
computation ratio is likely to decrease with increased
problem size for most practical algorithms. For these
algorithms, increasing the problem size with the system
size can keep the average speed constant. On the basis of
this observation, the isospeed scalability has been formally

- defined as the ability to maintain the average speed.’

Definition 2: An algorithm-machine combination is scal-
able if the achieved average speed of the algorithm on a
given machine can remain constant with increasing num-
bers of processors, provided the problem size can be
increased with the system size.

Winter 1996

37

—

Definitions and applications

As parallel machines with more and more processors
become available, the performance metric scalability
becomes increasingly important. Scalability measures how
an algorithm performs when the problem size is scaled up
linearly with the number of processors. Let T{(p,) be the
execution time for solving a problem with work ¥ (prob-
lem size) on p processors. In the ideal situation, both the
number of processors and the amount of work are scaled up
N times, while the execution time remains unchanged:

TN xp, Nx W) =T, W) GY)

Equation A is true if and only if the average unit speed
of the given computing system is constant, where average
unit speed is defined as the quotient of the achieved speed
of the given computing system and the number of proces-
sors. Scalability is formally defined as the ability to main-
tain a given average unit speed.! Let ¥ be the amount of
work of an algorithm when p processors are employed on
a machine, and let ¥ be the amount of work of the algo-
rithm when p’ processors are employed to maintain the
average speed. Then the scalability from system size p to
system size p” of the algorithm-machine combination is
defined as

W

wip,p)= =z (B)

Because the average speed is fixed, the isospeed scalability

(Equation B) can be equivalently defined in terms of exe-
cution time:!

(p,W)

Y MV C
(W) ©

yp,p)=

where T(p’, W) is the corresponding execution time of
solving I¥” on p’ processors. When T(N'x p, N x W) = T(p,
W), the scalability is 1 (by Equation C). However, this is the
ideal situation. In general, TINx p, Nx W) > T(p, W), and
the scalability is less than 1.

Speed is defined as work divided by time. The definition
of problem size is still under debate. However, it is com-
monly agreed that the floating-point operation (flop) count
is 2 good estimate for scientific computations. To elimi-
nate the effect of numerical inefficiencies in parallel algo-
rithms, the flop count is, in practice, based on some opti-
mal sequential algorithms.

ExampLES
Periodic tridiagonal systems arising in many applications
are multiple right-side systems. They are usually kernels
in much larger codes. It is often more efficient to use a par-
allel solver for these systems than to remap data among
processors, so that different processors can solve differ-
ent right sides concurrently—especially for distributed-
memory machines, where communication cost is high.
For most distributed-memory computers, the time for
a processor to communicate with its nearest neighbors

varies linearly with the problem size. Let S be the number
of bytes to be transferred. The transfer time for a proces-
sor to communicate with a neighbor can be expressed as o
+ SP, where ais a fixed startup time and S is the incre-
mental transmission time per byte. Let Teomp FEPresent the
unit cost of a computation operation normalized to the
communication time. The time required to solve a peri-
odic tridiagonal system by the Parallel Diagonal Dominant
(PDD) algorithm? with p processors is

T(p, W) =(9%+l)nl “Teomp T A0 +4 -7y)

where # is the order of the system, and #, is the number of
right sides.

For solving tridiagonal systems, we choose the Thomas
algorithm—the LU decomposition method for tridiago-
nal systems—as the conventional sequential algorithm.} It
takes 7z - n, flops for a periodic system with 7, multiple
right sides. Let’s assume the number of right sides is fixed.
Then, when the problem size W increases N times to IV,
we have

W'=(NX5m)-m=5n""n D)

(E)

Thus, for the PDD algorithm, the execution time of the
scaled problem is

w=N-n

T(pr,NxW)=(9—N¢';+I)nl-rcomp +20+4-m-PB)
=(911:§j1;+1)nl~rmmp +2a+4-m-B)
=95+ Dm Teomp + At +4-m - B)
=T(pW)

By Equation C, the PDD algorithm is perfectly scalable.
Given our assumption, its scalability is 1.

We can also parallelize the Thomas algorithm, for par-
allel processing. The time required by the parallelized
Thomas (PT) algorithm is

T(p,W) =(7'§,‘)”1 “Teomp + 20X +6-7 -)

for solving a periodic system with multiple right sides.?
The PT algorithm has a smaller operation count than does
the PDD algorithm, but its communication cost, 2p(c +
6 - n, - B), increases with the number of processors. The
PT algorithm is not perfectly scalable. Its scalability analy-
sis needs more deliberations. (See the prediction formula,
Equation 3, proposed in the main text of this article.)

APPLICATIONS

The PT algorithm has a smaller operation count and a
lower scalability than does the PDD algorithm. The PT
algorithm is superior to the PDD algorithm when the

38

IEEE Parallel & Distributed Technology

400

200

Execution time (us)

500

o

 Execution time (us)

2

Execution time (us)

Parallelized Thomas
algorithm

Parallelized Diagonal Dominant
algorithm

problem size and system size are small and becomes infe-
rior when the problem size and system size scale upward.
Finding the crossing point of the change in superiority
directly impacts performance optimization and execu-
tion-time reduction. Figure A depicts the time variations
of the PT algorithm and the PDD algorithm under dif-
ferent machine and problem assumptions. The crossing
points are p = 64 in Figure Al, p = 16 in Figure A2, and
p =32 in Figure A3, where p is the number of processors.
As shown by these figures, the crossing point varies with
the machine parameters, the application parameters, and
the algorithms. Therefore, scalability study has found its
role in tuning performance, optimizing compiler restruc-
turing, identifying appropriate architectures, investigat-
ing alternate algorithms, and selecting the best algo-
rithm-machine pair for an application.

References
1. X.-H. Sun and D. Rover, “Scalability of Parallel Algorithm-
Machine Combinations,” IEEE Trans. Parallel and Distrib-
uted Systems, Vol. §, No. 6, June 1994, pp. 599-613.

2. X.-H. Sun, “Application and Accuracy of the Parallel Diag-
onal Dominant Algorithm,” Parallel Computing, Vol. 21,
Aug. 1995, pp. 1241-1267.

3. T. Eidson and G. Erlebacher, “Implementation of a Fully-
Balanced Periodic Tridiagonal Solver on a Parallel Dis-
tributed Memory Architecture,” Concurrency: Practice and
Experience, Vol. 7, No. 4, June 1995.

Figure A. Execution times of PT and PDD
algorithms under different machine and
problem assumptioﬁs: (1) a (fixed startup
time) = 10-, B (incremental transmission time
per byte) = 107, Top (unit cost of a compu-
tation) = 10, % (order of the system) = 1,024,
ny (number of right sides) = 1,024; 2) &t =
102, B= 104, Toomp = 107, .= 1,024, 7; =
1,024; 3) @ = 107, B= 1075, 7oy = 10, =
512,m, = 1,024.

_

Winter 1996

39

For a large class of algorithm-machine combinations,
we can maintain the average speed by increasing prob-
lem size.? The necessary increase of problem size varies
with algorithms, machines, and their combinations. This
variation provides a quantitative measurement for scal-
ability. Let J# be the amount of work of an algorithm
when p processors are employed in a machine, and let 177
be the amount of work needed to maintain the average
speed when p”> p processors are employed. We define
the scalability from system size p to system size p”of the
algorithm-machine combination as follows:

’

vipp) = z;f M

The work }#” is determined by the isospeed constraint.
When

'
w —PW

(that is, when average speed is maintained with work
per processor unchanged) the scalability is 1. However,
this is the ideal case. In general, we might have to
increase work per processor to achieve the fixed aver-
age speed, in which case scalability will be less than 1.

Speedup is a widely used performance metric in par-
allel processing. Itis defined as sequential execution time
over parallel execution time and is used to measure the
parallel processing gain over sequential processing. Tra-
ditionally, parallel efficiency is defined as speedup
divided by p (where p, the number of processors, is the
ideal speedup). The traditional paralle] efficiency is the
efficiency in terms of speedup. Contrary to speedup,
average speed is an indicator of uniprocessor efficiency,
where uniprocessor efficiency is average unit speed
divided by sustained uniprocessor speed. Maintaining
average speed is equivalent to maintaining the
uniprocessor efficiency. Under certain assumptions,
maintaining average speed is also equivalent to main-
taining the parallel efficiency.® However, in practice,
these two approaches can lead to totally different results.
Scaled speedup is a variation of speedup. It has been pro-
posed in recent years to extend the capability of speedup
for scalable computing. The “Scalability versus scaled
speedup” sidebar shows the difference between scala-
bility and scaled speedup.

Researchers have proposed three different approaches
to finding the scalability values, as defined by Equation
1, of an algorithm-machine combination.’ The scala-
bility can be

* measured using software by a control program that
invokes the application program and searches for the
run that has the desired fixed average unit speed,

® computed by first finding the relation between average
unit speed and execution time (or work) and then .
using Equation 1 (or Equation 4), or

* predicted by deriving a general scalability formula.

The third approach, prediction, is the topic of this
article. It is the simplest among the three approaches,
provided a formula can be defined. Here, we derive a
general scalability prediction formula.

By the definition of scalability (Equation 1), we can pre-
dict scalability if and only if we can predict the scaled work
size W”. Proposition 1 provides a way to determine 17",

Proposition 1: If parallel degradation exists, then for
scalability (Equation 1),

_a-pT)

l-a-7

W)

where 4 is the fixed average speed, 7is the computing
rate (reciprocal of speed) of a single processor, and T
is the parallel processing overhead. -

Proof: Since I¥7is the scaled work satisfying the isospeed
requirement,
W/
ﬂ = 4 r
b T, 07
"The parallel execution time 7,/(F”) can be divided into

two parts: ideal parallel processing time, and parallel pro-
cessing overhead 7.

Wzt

’

’ _T' ’_ ’
T, W) =T+T; = +T

where TY is the sequential execution time and 77/p”is
the ideal parallel execution time. Thus,

— W/
W"T""Zﬂa"p,
and
W/:ﬂ_p/_]"ol
l-a-1

Note that in Equation 2, # is the achieved average
speed considering the parallel processing overhead, and
7 is the computing rate without considering the over-
head. When parallel degradation does exist (when 7, >

40

IEEE Parallel & Distributed Technology

Scalability versus scaled speedup

In scalable computing, we scale up the problem size and
the parallel-system ensemble size to explore the computa-
tional power of parallel computers for solving otherwise
intractable, large problems. Both scalability and scaled
speedup are performance metrics of scalable computing.
They are, however, fundamentally different. The speedup
metric was introduced more than three decades ago to jus-
tify the value of parallel processing. It measures the execu-
tion-time reduction of parallel processing over sequential
processing. Scaled speedup, namely the fixed-time speedup
and the memory-bounded speedup, are models of speedup
for scalable computing.! As the ensemble size increases,
fixed-time speedup scales problem size to meet the fixed
execution time, and memory-bounded speedup scales prob-
lem size to use the associated memory increase. We also
solve the scaled problem sequentially to get the speedup.
The problem size increase provides sufficient work for par-
allel processing and, therefore, more reasonably compares
parallel and sequential processing in terms of execution-
time reduction.

With the continuous development of parallel comput-
ers, scalability has emerged and has been recognized in
recent years as an important property of parallel algorithms
and architectures. Scalability measures the effort needed to
maintain the current efficiency, if possible, when system
ensemble size increases. Researchers have proposed a few
scalability metrics, with different qualitative definitions and
quantitative measurements of efficiency and effort. In
isospeed scalability, the efficiency is defined in terms of
average unit speed, and the effort is measured in terms of
problem size increase. Scalability and scaled speedup quan-
tify different properties of parallel processing. These quan-
titative measurements are distinct.

For instance, in the Householder Transformation algo-
rithm, when the ensemble size scales up from p to 7z - p, the
increase of problem size in the memory-bounded scaled
speedup will be 7= m/m . The reason is that the memory
requirement of the Householder Transformation algorithm
is a square function of #, the order of the matrix. The cor-
responding scaled speedup is

Memory-bounded speedup

_ Sequential solving timeof thescaled problem
" Parallel solving timeof the scaled problem

[0y + 36mmy? e
2l Sonlmy? e+ ol
[Znsx/_n; + 3nZ]T

23 2 2
<43 it+n
L pim } A

The memory-bounded scaled speedup is greater than the
fixed-size speedup, where the problem size is fixed and
m=1.

Although they are distinct, scalability and scaled speedup
are related. One noticeable result is that an algorithm-
machine combination is ideally scalable if and only if it
achieves the ideal scaled (fixed-time or memory-bounded)
speedup.? Vipin Kumar and Anshul Gupta® and Sartaj
Sahni and Venkat Thanvantri* survey parallel processing
performance metrics, including speedup, scaled speedup,
and scalability. :

References
1. X.-H. Sun and L. Ni, “Scalable Problems and Memory-
Bounded Speedup,” 7. Parallel and Distributed Computing, Vol.
19, Sept. 1993, pp. 27-37.

2. X.-H. Sun, “The Relation of Scalability and Execution Time,”
Proc. Int’l Parallel Processing Symp. *96, IEEE Computer Soci-
ety Press, Los Alamitos, Calif., 1996, pp. 457-462.

3. V. Kumar and A. Gupta, “Analyzing Scalability of Parallel
Algorithms and Architectures,” 7. Parallel and Distributed Com-
puting, Vol. 22, No. 3, Sept. 1994, pp. 379-391.

4. S. Sahni and V. Thanvantri, “Performance Metrics: Keeping
the Focus on Runtime,” IEEE Parallel & Distributed Technol-
0gy, Vol. 4, No. 1, Spring 1996, pp. 43-56.

0), then 2 - 7< 1, and, therefore, Equation 2 is traceable.
T, > 0 is a necessary and sufficient condition of Propo-
sition 1. When T, = 0, based on the definition of scala-
bility (Equation 1), ideal scalability is achieved with y(p",
W) = 1. Parallel processing overhead is generally a func-
tion of system size and problem size. We use the nota-
tion T, instead of T}, in the derivation to reflect the fact
that the overhead is for the system/work pair (',).
Combining Equations 1 and 2, we have

W(l-a-1)

p.a.T(]’ (3)

v(p,p)=

Equation 3 is very useful. It not only gives a way to

predict scalability, but more importantly, it shows the
following properties of isospeed scalability:

(1) When the computing rate 7 is fixed, scalability
(Equation 1) increases with the decrease of the aver-
age speed 4.

7, the computing rate of a single processor, is the
inverse of single-processor speed. Equation 3 shows
that, when the average speed is fixed, scalability
increases with single-processor speed.

Scalability increases as the degradation of paral-
lelism 7, decreases.

@

3

Property 1 shows that less effort is needed to main-
tain lower efficiency, where we consider # - 7 as the

Winter 1996

a1

Figure 1. Configuration of a KSR-1 parallel computer (where P is a
processor, and M represents 32 Mbytes of local memory).

Figure 3. The Householder Transformation, where n
and m are the numbers of columns and rows in the
matrix A of Equation 6, respectively, and all bold-face
lower-case letters represent vectors of length (m + 1).
We can calculate each f and update each b; in parallel
for different values of index j.

uniprocessor efficiency. Equation 3 gives the relation
between the effort (scalability) and the performance
(fixed average speed) of an algorithm-machine combi-
nation. Property 1 also shows that, by adjusting the aver-
age speed 4, we can apply isospeed scalability to a large
class of algorithm-machine combinations, from mas-
sively parallel systems with relatively weak processing
elements to supercomputers with a few powerful proces-
sors. Equation 3 also gives the relation between isospeed
scalability, computing power of a single processor, and
degradation of parallelism. Properties 2 and 3 show that
isospeed scalability does not give credit to slow comput-
ing and fast communication. These two properties are
very important in the evaluation of computing systems.

Although Equation 3 is very useful, using it in perfor-
mance prediction might not be as simple as it looks. The
degradation of parallelism T,, which contains both com-
munication-delay and workload-imbalance degradation,
can be difficult to compute. Also, the single-processor
rate can vary with algorithm and with problem size, espe-
cially for shared-virtual-memory machines.®® The
detailed case study in the next section illustrates how the
prediction formula can be used in practice, and how the

Search Engine 0)

Processor

Subcache
512 Kbytes

Local cache
32 Mbytes

Group 0 cache
1 Gbyte

Group 1 cache
34 Gbhytes

Figure 2. Memory hierarchy of the KSR-1.

predicted scalability can be used to evaluate machine
architectures.

Finally, Equation 4 shows how we can compute par-
allel execution time from scalability:

Tp’(W/) = W_I(P’ P’) TP(W) » (4)

where T,(W) and Ty(W”) are the parallel execution times
of solving the problem with the work of % and W on
a system of p and p” processors, respectively. The com-
puting rate 7 of a single processor is machine-depen-
dent. The degradation of parallelism 7T} is both archi-
tecture- and algorithm-dependent. Equation 3 helps us
find a good algorithm-machine combination in terms
of scalability. Equation 4 shows that larger scalability
leads to smaller execution time.

The case study

Here, we discuss the case study for solving an applica-
tion problem on a KSR-1 parallel computer.

THE MACHINE

We performed our case study on a KSR-1 parallel com-
puter. It has a distributed physical memory, which makes
a large ensemble size possible, and a shared address
space, which lets users develop programs in a shared-
memory-like environment.

Figure 1 shows the architecture of the KSR-1 paral-
lel computer. Each processor on the KSR-1 has 32
Mbytes of local memory. The CPU is a super-scalar
processor with a hardware peak performance of 40

—

42

IEEE Parallel & Distributed Technology

Mflops in double precision. Processors are organized
into different rings. The local ring (Ring 0) can connect
up to 32 processors, and a higher level ring of rings
(Ring 1) can contain up to 34 local rings with a maxi-
mum of 1,088 processors.

Access to nonlocal data on the KSR-1 is provided by
a hierarchy of search engines. The search engine SE 0
locates data in the local ring, while SE 1 provides data
access between local rings. Figure 2 shows the KSR-1’s
memory hierarchy.

Each processor has 512 Kbytes of fast subcache, which
is similar to the normal cache in other parallel comput-
ers. The 32 Mbytes of local memory in each processor is
called a Jocal cache. A local ring (Ring 0) with up to 32
processors can have 1 Gbyte of local cache, which is
called the Group 0 cache. Access to the Group 0 cache
is provided by SE 0. Finally, a higher-level ring of rings
(Ring 1) connects up to 34 local rings with 34 Gbytes of
total local cache, which is called Group 1 cache. Access
to the Group 1 cache is provided by SE 1. Kendall Square
Research calls the entire memory hierarchy Allcache. A
processor can access the Allcache memory system via dif-
ferent search engines, as shown in Figure 2. The laten-
cies for different memory locations are 2 cycles for sub-
cache, 20 cycles for local cache, 150 cycles for Group 0
cache, and 570 cycles for Group 1 cache.!®

THE APPLICATION

"The numerical algorithm used in this case study is the
Householder Transformation algorithm for the QR fac-
torization of matrices. It is used for solving the normal
equation

ATAx = A™)

without explicitly forming AT4.

In many cases—for instance, the inverse problem of
partial differential equations—the normal equation
system resulting from the discretization is too ill-
conditioned to be solved directly. Tikhnov’s regular-
ization method is frequently used in this case to increase
numerical stability.!! The key step in solving the regu-
larized least-squares problem (RLSP) is to introduce a
regularization factor o> 0. Instead of solving Equation
5 directly, we solve the system

(ATA + aDx = ATb ©)

for x. Figure 3 describes the Householder Transfor-
mation.

SCALABILITY ANALYSIS

Based on the definition of isospeed scalability, the work
W’ at processor number p” should keep the system
ensemble running at the same average speed # as with p
processors, so that

/4 w’

a= = 7
P T,00) p T, 07 @

where T,(W) and T;(W”) are the execution times using
p and p’processors, respectively.

For the particular problem discussed here, let us
assume 7 = n. On the basis of the above algorithm, the
operation count is 3#? for Steps 1 and 2, and 2#? for
Steps 3 and 4. The total work is

Win) = 2n® + 3n?)

for a matrix size of »xz in Equation 6. Because we can
parallelize the computation for Steps 3 and 4 in Fig-
ure 3 for different values of index j, whereas we can
compute Steps 1 and 2 in Figure 3 only on a single
processor (we can actually distribute this computa-
tion, too, but the gain wouldn’t be enough to cover
the loss due to interprocessor comimunications), the
runtime model is

Ty(n)= [-2-%3- + 3%2]’5 +n’p)

where p is the number of processors, 7is the rate of com-
puting without communication overhead, and B is the
latency for access of remote data. The last term in Equa-
tion 9 represents the communication cost, because a vec-
tor of length (z + 1) must be communicated # times in
the transformation process. The total communication
costis (m+ 1) * nf<mf.

On the basis of the discussion given earlier, we can
represent the runtime 7,(n) in Equation 9 as

Tyn) = T, p) + T, 1) (10)
where T(n, p) is the computing time with ideal paral-
lelism, and 7(n, p) represents the degradation of paral-
lelism. We then have

3 2
To(n, p) = @T

T,(n,p) = (n* =) +0°B

The first term of T, is due to the workload imbalance.

Winter 1996

43

"The second term is due to the communication (remote
memory access) delay. Using Equation 2, we get

a- p’(—%ﬁir +3n T+ 0"’ B)

W’ = (11

l—a-71

The matrix size # is the parameter used to adjust the
problem size. Substituting

W'=2n"+3n"
into Equation 11, we have

a p’(—%ﬁif +3n"r+ 0" B)

20" + 307
l-a-7
which eventually leads to
,_Savptafp 3 (12)
21-a-1) 1-a-7)

Equation 12 1s true for any work-processor pair that
maintains the fixed average speed, assuming that 7and
Bare unchanged. In particular,

_3a-t-pra-Bp 3 (13)
1-2-7) 21-a-7)
Combining Equations 12 and 13, we have
3a-T+a-f8
wem== = 14
i 1-2-7) P

which shows that the variation of # is directly propor-

tional to the variation of ensemble size, provided that 7

and f are independent of the number of processors.
Equation 14 indicates that the matrix size »” must

increase at the same rate as the number of processors p”

to maintain the prespecified average speed . Ifp'=m-p,
then #”=»-n. Assuming 7 is large so that the cubical
term in Equation 8 is dominant, we have the relation

W n'y=W"(m n) ~ m’W(n)

Therefore, we can estimate the scalability of this algo-
rithm-machine combination as

wp,) =y(p, mp)~ Lo
- m’

g (15)

In particular, if 7 = 2, which means the number of
processors is doubled for each case, the scalability will
be approximately .

Itis clear from Equation 14 that the parameters 7and
Bmust be determined before we can predict the execu-
tion time and scalability. With the runtime model given
by Equation 9, we can estimate Tand fin the model to
fit the measured runtimes using the method of least
squares for regression.® Assuming the executions times

1, (ns), ..., T, (m) are available on py, p, ..., pi processors,
with problem sizes #,, n,, ..., 7, we have
k & k
Zb,TpIZC z:clTZj Z
T= i=1 i=1 z=1 i=1
PR 2
Ebl Z[i _<2 z)
i=l =1
(16)
L& k k
sz zcsz, Z zzbiTp,-
ﬁ= i=l i=]
r &
DN —(Zbc)
i= l i=1
where
b; —gﬁ+3n42 ¢, =n?

LT p; 12 i i

Current progress shows that certain software tools
can automatically determine parameters 7 and .71
"Therefore, we can incorporate our prediction formula
in these tools to predict performance variations.

Scalability prediction and its
application

The peak performance specified by vendors gives the
hardware performance limit but can hardly be used to
accurately predict execution time. For most application
problems, the sustained speed is only a small percentage
of the peak performance. The same argument applies
to communication Jatency. The observed latency can be
significantly different from the machine specifications.
The architecture specification!? for KSR-1 gives
7=0.025us, B =7.5us 17)
Note that in Equation 9, S represents the latency for
access of remote data. Because the KSR-1 parallel com-

44

IEEE Parallel & Distributed Technology

puter used in our case study has two levels of remote
cache, we use 8, and f3, to represent the hardware spec-
ifications of Jatencies for data access in Group 0 and
Group 1 cache. The estimated latencies from our
numerical experiment for the two groups of cache are
represented by #7and 8.

To determine the value of Tand f3 for this particular
algorithm-machine pair, we run the code on p = 2 and
4 processors and measured the total execution time 7,,(%)
with 7 = 362 and 512, respectively. We then calculate 7
and B using the model in Equation 16. The parameters
obtained this way are

=018y, B =337us (18)
Comparing Equations 17 and 18, we see that 7”is sig-
nificantly larger than 7. The sustained computational
speed is

L =5.56 Mflops
which is about 14% of the peak performance of 40
Miflops. This speed includes all the effects of subcache
misses and other overheads. On the other hand, the
value of B”in Equation 18 is significantly smaller than
the value of B in Equation 17, which means the actual
observed communicatdon speed is faster. This can be
attributed to two factors:

* Overlapping of communications with computations. In
the Householder Transformation, one processor cal-
culates the pivoting column and then broadcasts it to
all other processors. This broadcasting process can
be partly overlapped with the other computations.

* Automatic prefetch. The KSR-1 Fortran compiler ana-
lyzes loops and, whenever possible, generates instruc-
tions to prefetch remote data needed for subsequent
loops, thus saving data access time.

Figure 4a shows both the measured execution time
and the predicted execution time in seconds. The pre-
dicted execution time is based on Equations 9 and 18.
The problem size is scaled up using the memory-
bounded scaled-up model.? For the RLSP application,
the memory requirement is a square function of the
parameter #, and the operation count is a cubical func-
tion of #. That explains why the runtime goes up with
IMOore processors.

Figure 4a makes it clear that the predicted execution
time matches the measured execution time well until p
=22. After that, the error increases significantly. This is

—— Measured execution time
........ Predicted execution time using B’

—— Measured execution time
-------- Predicted execution time using
- - Predicted execution time using 8

Figure 4. Measured and predicted execution time,
where problem size is scaled up with available
memory: (a) without using adjusted parameters;
(b) using adjusted parameters.

due to the multi-ring structure of the KSR-1. Each ring
has 32 processors.

Because several of the 32 processors are committed
to I/O and control processes and are usually not used in
computation, multi-ring communication is involved
even for p fewer than (but close to) 32. This multi-ring
communication requires data access to the Group 1
cache, which slows the computations significantly. The
listed access time for the Group 1 cache on KSR-1 is!?

B.=28.5 us 19)

Again, the measured access time for our application is

Winter 1996

45

Table 1. Predicted and measured matrix sizes.

Size 1 2 4 § 16 32 56
Predicted - 54 115 238 484 976 2,889
Measured 29 57 109 230 461 1,006 2,773

significantly different from the listed value, especially
when most communicatons are within a single ring. To
determine the communication delay for multiple rings,
we ran the code on 36 processors and measured the exe-
cution time. Then we calculated the value of 3 from
Equation 9 by setting 7= 0.18 s, as given in Equation
18. The new Bvalue is

B =627 s (20)
which is about twice as large as in Equation 18.

Figure 4b shows the execution time for p > 32. With
the new value of B, the predicted runtime matches the
measured execution time nicely.

Based on Equation 12 and the testrunsonp = 2,4, and
36 processors, we can predict the matrix size z”. Table
1 shows the predicted and measured matrix sizes. The
average speed # maintained in this test is 3.25 Mflops,
which is about 58% of the sustained speed in Equation
18. From Table 1, we see that the predicted matrix size
is very close to the actual matrix size measured by run-
ning the code on 8, 16, 32, and 56 processors.

The last column in Table 1 shows the predicted size
n’using 7, the inter-ring data access time. If the §’
given in Equation 18, the intra-ring data access time, is
used to predict the matrix size, then #” will be 1,715 at
p = 56, which is significantly smaller than the measured
#'. The difference shows the influence of slower remote
memory access of the Group 1 cache on scalability.

With the matrix sizes given in Table 1 and the para-
meters given in Equations 18 and 19, we can compute the
scalability y(p, p’). Tables 2 and 3 give the predicted and
measured scalabilities, respectively. We can see that the
predicted and measured scalabilities are fairly close. The
prediction for an ensemble size of 56 is based on the inter-
ring data access ime f3”. Figure 5 depicts the difference
between the measured scalability and the predicted scal-
ability obtained using . The curves in the figure repre-
sent measured and predicted y(p, 56), with p varying from
1 to 32. To clearly see the difference between the two
curves in Figure 5, we have to plot them using a log scale.
To avoid plotting the curves in the negative region, which
would be rather confusing, we use a negative log scale.
This allows the separation of curves and keeps them in
the positive region. However, the tradeoff is that the curve

Table 2. Predicted scalability of RLSP/KSR-1 combination.

ScaLaBILITY NUMBER OF PROCESSORS
vip, p) 1 2 4 8 16 32 56
1 1.00000 0.33238 0.07183 0.01652 0.00397 0.00097 0.00007
2 1.00000 0.21611 0.04971 0.01193 0.00292 0.00020
4 1.00000 0.23003 0.05520 0.01352 0.00092
8 1.00000 0.23999 0.05879 0.00398
16 1.006000 0.24499 0.01658
32 1.00000 0.06767
56 1.00000
Table 3 . Measured Scalability of RLSP/KSR-1 combination.
ScaLaBiLITY NUMBER OF PROCESSORS
vip, F) 1 2 4 8 16 32 56
1 1.00000 0.28382 0.08418 0.01830 0.00459 0.00089 0.00007
2 1.00000 0.29660 0.06446 0.01616 0.00313 0.00026
4 1.00000 0.21734 0.05449 0.01054 0.00088
8 1.00000 0.25070 0.04849 0.00406
16 1.00000 0.19343 0.01621
32 1.00000 0.08378
56 1.00000

46

IEEE Parallef & Distributed Technology

Measured scalability
Predicted scalability using

Figure 5. Measured and predicted scalability. Equation
18 is used in this prediction.

with lower —log(y(p, 56)) value actually represents higher
scalability than the curve with higher —log(y(p, 56)) value.
For the same reasons, we use the negative log scale in
plotting other figures, as well.

Assingle bus is an efficient architecture for supporting
the shared-memory communication model and has
been used successfully in several commercial shared-
memory machines. Because of network contention, the
single-bus architecture has trouble supporting many
processors efficiently.

To function as a scalable shared-virtual-memory
machine, the architecture of KSR-1 combines buses and
a multi-ring structure. Each local ring has 32 proces-
sors connected to a single bus. Then, the local rings con-
nect to form a multi-ring structure. Theoretically, we
can scale up the computing system to any number of
processors by increasing the number of levels of the con-
nection. Figure 5 shows the limitation of the multi-ring
approach. The scalability is severely reduced when inter-
ring remote access is required. It shows that, unless
inter-ring communication can be improved, uniproces-
sor efficiency will reduce quickly with the increase of
ensemble size. Increasing the number of levels in the
multi-ring hierarchy does not necessarily ensure high
computing power.

The scalability difference given in Figure 5 derives
from the measured scalability and the measured 7 and
. Figure 6a shows the scalability difference using the
theoretical performance data 7, B, and f3,, where the
average speed is fixed at 58% of the hardware peak per-
formance. This figure gives the theoretical difference
of the RLSP application when Group 1 communication
is required. Comparing the curves in Figures 5 and 6a,

— Predicted scalability using B,
Predicted scalability using B,and B,

— Predicted scalability using B,
Predicted scalability using B, and B,

Figure 6. Predicted scalability: (a) using machine
specifications for the Householder Transformation; (b)
using machine specifications for the Givens Rotation.

we can clearly see the similarity. Both figures show that
scalability with remote cache access is much lower than
scalability without remote data access. The general
trends in both figures are very similar. Because we plot-
ted the curves in Figure 6a on the basis of machine spec-
ification, we know that, although machine specification
does not adequately estimate execution time or speed, it
does help predict how architecture variation influences
performance. Equation 3 is very useful; it shows per-
formance variation based only on the hardware specifi-
cation. Architecture variation influences different algo-
rithms in different ways. When architecture scales up
from one level of hierarchy to another, an inferior algo-
rithm might become superior. The scalability formula

Winter 1996

47

(Equation 3) provides a guideline for choosing algo-
rithms for optimal performance.

Figure 6b shows the scalability curves for the Givens
Rotation algorithm,!* which can be used to solve the
least-squares problem and has a différent operation and
communication requirement than does the Householder
Transformation algorithm. (We obtained the data used
to plot Figure 6b in exactly the same way as for Figure 6a,
except we used a different performance model.) We can
see that the scalability of the Givens rotation algorithm
is less than that of the Householder Transformation
algorithm. However, the difference decreases when the
system scales up. This demonstrates that the scalability
of the Givens algorithm is less affected by the hierarchi-
cal remote cache access than is the Householder Trans-
formation algorithm. The Givens algorithm can provide
better scalability—and, therefore, a better execution
time—when the system size is large enough to require
multilevel ring communication. Figure 6b shows how to
compare algorithms using the notion of scalability.

The average speed # maintained in this study is about
58% of the sustained speed. The efficiency maintained
is reasonably high. The scalability given in Tables 2 and
3 could be higher if 2 were lower, as shown in Equation
3. Also, the computing rate 7 generally varies with the
number of processors and problem size on any machine
that has a memory hierarchy. For our implementation,
where the initial problem size is large and increases with
the number of processors, the computing rate is quite
stable. The scalability prediction will be more involved
if the computing rate varies with system size.

his article addresses two basic problems:
predicting the execution time and pre-
dicting the scalability. Like most existing
models, the prediction of execution time
relies on runtime information (such as 7
and f3), which can vary with problem size and ensemble
size. Our experiments show, however, that although
hardware does not realize the advertised performance
in solving actual applications, the relative performance
of architectures and algorithms can be predicted and
compared in terms of scalability if hardware specifica-
tions are given. As we’ve discussed, when the system size
scales up, an originally faster algorithm with lower scal-
ability can become slower than another algorithm with
better scalability. Finding the fast/slow crossing point

is critical to optimizing the performance. The scalabil-
ity prediction formula provided in this study is the first
step to finding that crossing point.

Although we conducted the numerical experiment on
a KSR-1 machine, the prediction formula and method-
ology proposed in this study are not bound to any algo-
rithm or architecture. They can be applied to any algo-
rithm-machine combination when needed runtime
information is available. Recent progress in software
development shows that the needed information can be
determined automatically during runtime or can be
approximated during compile time. The methodology
introduced in this article, therefore, is feasible and can
be incorporated into existing performance-prediction
tools in developing an integrated parallel programming
environment.

Future work will include fully exploring the use of the
prediction formulas in different machines and applica-
tions. We will also focus on integrating performance
prediction into a software system to support automatic
parallel program compilation. 7

ACKNOWLEDGMENTS

This research was supported in part by the National Aeronautics and
Space Administration under NASA Contracts NAS1-19480 and
NASI-1672. We are also grateful to the Cornell Theory Center for
providing access to the KSR-1 parallel computer, and to the referees
for their helpful comments regarding the revision of this article.

REFERENCES
1. AY. Grama, A. Gupta, and V. Kumar, “Isoefficiency: Measuring
the Scalability of Parallel Algorithms and Architectures,” IEEE
Parallel & Distributed Technology, Vol. 1, No. 3, Aug. 1993, pp.
12-21.

2. J. Gustafson, G. Montry, and R. Benner, “Development of Par-
allel Methods for a 1024-Processor Hypercube,” SIAM ¥. Sci-
ence and Statistics Computing, Vol. 9, No. 4, July 1988, pp.
609-638.

3. X.-H. Sun and D. Rover, “Scalability of Parallel Algorithm-
Machine Combinations,” IEEE Trans. Parallel and Distributed
Systems, Vol. 5, No. 6, June 1994, pp. 599-613.

4. X. Zhang, Y. Yan, and K. He, “Latency Metric: An Experimen-
tal Method for Measuring and Evaluating Parallel Program and
Architecture Scalability,” . Parallel and Distributed Computing,
Vol. 22, No. 3, Sept. 1994, pp. 392-410.

5. M.J. Clement and M.J. Quinn, “Analytical Performance Predic-
tion on Multicomputers,” Proc. Supercomputing, IEEE Computer
Society Press, Los Alamitos, Calif., 1993, pp. 886-894.

48

IEEE Parallel & Distributed Technology

Advertiser/Product Index

Winter 1996

FOR DISPLAY ADVERTISING INFORMATION, CONTACT:

Southern California and Mountain States: Richard C. Faust, 24050
Madison Street, Suite 101, Torrance, California 90505; Phone: (310)
373-9604; Fax: (310) 373-8760; e-mail: d.faust@computer.org.
Northern California and Pacific NW: Judy Harway, Toni Kerr,
4962 El Camino Real, Suite 210, Los Altos, CA 94022; Phone: (415)
965-7411; (800) 965-9970; Fax: (408) 985-0181; e-mail:
j-harway@computer.org.

East Coast/Southeast: Susan Barbash, 2 Stone Avenue, Ossining,
New York 10562; Phone: (914) 941-0195; Fax: (914) 941-8659; e-mail:
s.barbash@computer.org.

Southwest: Joe Tomaszewski, 366 Wall Street, Princeton, New Jer-
sey 08540-1517; Phone: (609) 683-7900; Fax: (609) 497-0412; e-mail:
j-tomaszewski@computer.org.

New England: Martin J. Tubridy, 3 Glenwood Road, Weston, Con-
necticut 06883; Phone: (203) 222-7004; (800) 863-7432; Fax: (203)
227-5790; e-mail: m.tubridy@computer.org.

Europe: Catherine Watkins, RD198, Thiverval-Grignon 78850
France, Phone: (33-1) 30.54.31.02; Fax: (33-1) 30.54.96.98; c¢-mail:
c.watkins@computer.org.

For production information, conference, and classified advertising,
contact Marian Anderson, IEEE Parallel & Distributed Technology,
10662 Los Vaqueros Circle, Los Alamitos, California 90720-1314;
Phone: (714) 821-8380; Fax: (714) 821-4010; email:
m.anderson@computet.org; http://www.computer.org.

ADVERTISERS/PRODUCTS

RS# PG#
Academic Press, Inc. 1 35
Cray Research Origin 21 85
IEEE Computer Society Membership --- 86
IEEE Computer Society Press - Cover IV
Silicon Graphics 21 85

Boldface denotes advertiser in this issue.

6. T. Fahringer and H.A. Zima, “Static Parameter Based Perfor-
mance Prediction Tool for Parallel Programs,” Proc. ACM Int’]
Conf. Supercomputing, ACM Press, New York, 1993, pp. 207-219.

7..S.R. Sarukkai, P. Mehra, and R J. Block, “Automated Scalability
Analysis of Message-Passing Parallel Programs,” IEEE Parallel
& Distributed Technology, Vol. 3, No. 4, Winter 1995, pp. 21-32.

8. X-H. Sun and J. Zhu, “Performance Considerations of Shared
Virtual Memory Machines,” IEEE Trans. Parallel and Distributed
Systems, Vol. 6, No. 11, Nov. 1995, pp. 1185-1194.

N

K. Hwang, Advanced Computer Architecture: Parallelism, Scalabil-
ity, Programmability, McGraw-Hill, New York, 1993.

10. KSR Technical Summary, Kendall Square Research, Waltham,
Mass., 1991.

11. Y.M. Chen et al., “ GPST Inversion Algorithm for History
Matching in 3-D 2-Phase Simulators,” IMACS Trans. Scientific
Computing, Vol. 1, 1989, pp. 369-374.

12. M. Calzarossa et al., “A Tool for Workload Characterization of
Parallel Systems,” IEEE Parallel & Distributed Technology, Vol. 3,
No. 4, Winter 1995, pp. 72-80.

13. A. Pothen and P. Raghavan, “Distributed Orthogonal Factor-
ization: Givens and Householder Algorithms,” SIAM 7. Science
and Statistics Computing, Vol. 10, 1989, pp. 1113-1135.

Xian-He Sun is an assistant professor in the Department of Com-
puter Science at Louisiana State University. His research interests
include parallel and distributed processing, parallel numerical algo-
rithms, performance evaluation, and software systems. He received a
BS degree in mathematics from Beijing Normal University, and an
MS in mathematics and an MIS and a PhD in computer science from
Michigan State University. He is a guest editor for a special issue of
the Journal of Parallel and Distributed Computing on Analyzing Scala-
bility of Parallel Algorithms and Architectures. He is a senior mem-
ber of the IEEE, and a member of the ACM and Phi Kappa Phi. Read-
ers can contact Sun at the Dept. of Computer Science, Louisiana State
Univ.,, Baton Rouge, LA 70803-4020; sun@bit.csc.lsu.edu;
htep://bit.csc.lsu.edu/~sun/sun.html.

Jianping Zhu is an associate professor in the Department of Mathe-
matics and Statistics at Mississippi State University. He also works in
the NSF Engineering Research Center for Computational Field Sim-
ulations. His major research interests include numerical methods for
solving partial differential equations, parallel computing, and large-
scale simulations. He received a BS in engineering mechanics in 1982
from Zhejiang University, China; an MS in computational mechan-
ics in 1984 from Dalian Institute of Technology, China; and a PhD
in applied mathematics in 1990 from State University of New York,
Stony Brook. He is 2 member of the AMS, the SIAM, and the ATAA.
Readers can contact Zhu at the Dept. of Math and Statistics, NSF
Engineering Research Center, Mississippi State Univ., Mississippi
State, MS 39762; jzhu@math.msstate.edu; http://www2.msstate.edu/
~jzl/index.html.

Winter 1996

49

