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1 EXTENDED ABSTRACT
With a suitable analysis and an understanding of the application
I/O behavior, valuable insights into the causes of poor performance
can be derived. In this work, we aim to characterize the I/O of
an application and using this understanding try to answer the
following questions:
a) Can we decompose an application profile into a simple sequence

or "genome" sequence that describes the application?
b) Can we compare these different "genomes" using a simple simi-

larity metric?
c) Canwe compare the I/O characteristics of 2 or more applications

using their "genomes"?,
d) Can we use a simpler mechanism to recreate the I/O behavior

of the application?
e) Can we infer useful information about the profiled application’s

behavior?
To answer the above questions, we use the Darshan[4] profiler to
analyze and classify these applications using a simple cosine simi-
larity metric. Our first goal is to understand the predictive power
and the limitations of the chosen similarity metric for understand-
ing the I/O of an application. Our second goal is to approximate
the I/O of a target application using a similar but a simpler proxy
application. The systematic approximation of the I/O of an appli-
cation might yield insight into poor application performance and
clues as to how we can improve it.

2 METHODOLOGY
We profile the I/O behavior of an application using Darshan. From
the performance counters we decompose them to feature vectors.
These feature vectors essentially represent the I/O behavior of the
application. Using them, we can compare the I/O behaviors of the
other application using cosine similarity [3]. To understand the
performance of these applications and the metric we compared
them to applications[1, 2] whose I/O behavior was already known.
We then attempted to emulate the I/O behavior of these applications
using a workload generator. This is a simpler mechanism that can be
used to recreate the I/O behavior of an application without needing
the input application.

(1) Extraction of Signatures The Darshan profile has a num-
ber of different I/O modules, POSIX, MPI-I/O, HDF5 (H5F
+ H5D), STDIO, and more. We have limited it to POSIX,
MPI-I/O, and HDF5. The Darshan profile of an application
includes a set of record IDs whose number is equal to the
number of files accessed by the application plus the number
of HDF5 datasets accessed. We use the cosine similarity to
organize all record IDs in equivalence classes, where each

equivalence class represents a different kind of I/O behavior
in the application. We extract one Record ID from each class
to form an application signature. In the creation of the HDF5
application signature, we combine POSIX and MPI-I/O (if
PHDF5 is used) performance counters for a given HDF5 file.
Currently, we have only studied HDF5 applications with
application signatures that consist of a single equivalence
class.

(2) Application Comparison Applications are compared via
the cosine similarity of their application signatures. Prior
to comparison, the signatures need to be converted into
normalized feature vectors. The first step is to convert the
signature to a feature vector. The individual components of
the Darshan record can be represented as key/value pairs
in a dictionary, this ensures the formation of consistent fea-
ture vectors across applications. We create feature vectors
such that values at every index of the vector correspond to
the same performance counter across applications. Now the
feature vectors are ready to be normalized
Normalization The main purpose of normalization is to
prevent one or a small set of features to dominate and distort
the similarity calculation. Two types of normalization were
considered in this project:
• Feature-Range Normalization. We vertically stack the
application signatures and normalize each column vector
of the newly formed application signature matrix between
0 and 1 through a min max normalization technique.

• Pairwise Normalization. We apply max normalization
on the two values of the Feature Vectors at an index.

(3) Create an Approximation This is done using a genetic al-
gorithm. It takes 𝑛 random configurations of the workload
generator. It then creates a population of size 𝑛, these indi-
viduals are evaluated using cosine similarity to the target
application. They are selected (tournament style), crossed
over (2 point cross-mate), mutated (on a certain probability),
and subsequently generate a certain number of new indi-
viduals for a specified number of generations. It then tries
to find the most (cosine) similar configuration for the given
input application profile.

(4) Generate Workloads These workload generators have dif-
ferent I/O based on different configurations. These workload
generators and a configuration describing an I/O pattern
would be used as a proxy application for a target application.
Three workload generators were used:
• IOR, which can emulate simple I/O behavior
• H5Perf, which can emulate simple HDF5 specific behaviors



(a) Pairwise Normalization

(b) Feature Range Normalization

Figure 1: Heatmap of Cosine Similarity of applications with-
different I/O behaviors

• Fio, which can emulate a variety of complex I/O behaviors
using different I/O engines and can support so-called job
files

Workload generators are used for the search algorithm, as
approximators. To assess and quantify the approximation
limits, as resonators. The run time of the genetic algorithm
can be reduced through parallel evaluation and memoization
of previous runs.

(5) Quantify limitations The aim is to find how close an ap-
plication can get to the target application and figure out
how effective the workload generator can be. To give us an
understanding for how effective searching for a workload
generator configuration can be.

3 ANALYSIS
a) Application Profiling: While profiling the application we no-

tice that the most information we can get about the I/O is limited
by the performance counters available in Darshan. Also, cur-
rently we have made the assumption that an application has
only one equivalence class in its signature. This however, is
not the case in reality and applications can have more than
one equivalence class in its signature. One way to deal with
this is to create a collection of application signatures of all the
different unique equivalence classes. We can now go about pro-
filing, approximating and further analysing each of the different
signatures and combine them to get an understanding and a
proxy application of the profiled application.

b) Application Analysis (Figure 1(a), 1(b)): In order to analyze
and understand different unknown application it is useful to
have a collection of known applications that we understand as
completely as possible. Then using the understanding of the
known applications we can attempt to understand how similar
the unknown application is to our collection of known ones. This
should give us an understanding of the unknown applications.
We see that the more context, in terms of known applications,
we have of the I/O of an application we more we can infer about
an unknown information. Also, once again the understanding
of the application is bound by how the I/O of an application has
been described by the profiler, in our case Darshan.

c) Quantifying an Application (as referenced in Figure: 3, Fig-
ure: 4 in poster): The workload generator has certain limitations
when emulating workloads not native to it. This is why it helps
to have a collection of workload generators so that we can map
an application to a workload generator that can emulate it as
close as possible. Hence, the I/O emulated by a Workload Gen-
erator is at best an approximation of the I/O behavior of the
application. It is hard to get a perfect match.

d) Application Approximation: The Approximations are a lot
closer to the profiled application when the approximator has
information about total I/O size and block size information as
it prunes the search space of the genetic algorithm. It helps to
have multiple solutions for an approximation that way different
configurations to a workload generator can give a good enough
approximation but pruning it down can help increase its accu-
racy by simply reducing the vast search space. This must be
done carefully so as to not over prune it.

4 CONCLUSION
When profiling an applications I/O, the more variety of application
profiles available the more accurate it is to compare different I/O
behavior types. While the application can be approximated, there
are limitations based on the available workload generator for the
kind of I/O patterns it can possibly do. Emulating these patterns
also depends on the different Performance Counters that can aptly
describe various aspects of I/O Behavior.
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