
Characterizing and Approximating I/O Behavior of
HDF5 Applications

Neeraj Rajesh 1, Gerd Heber 2, Anthony Kougkas 1 Xian-He Sun 1

1Illinois Institute of Technology 2The HDF Group

Abstract

By characterizing the I/O behavior of applications, we try to answer the following questions:

Can we decompose an application profile into a simple sequence or ”genome” sequence that describes
the application?
Can we compare these different ”genomes” using a simple similarity metric?
Using a simple similarity metric can we,

Compare the I/O characteristics of 2 or more applications using their ”genomes”?
Can we use a simpler mechanism to recreate the I/O behavior of the application?

What can we infer about the original application’s behavior?

Motivation

From suitable analysis and understanding of application I/O behavior, we can derive insight and clues
into the causes of poor performance. In this effort, we use the Darshan profiler, we analyze and classify
using the cosine and other similarity metrics. Our first goal is to understand the predictive power and
limitations of similarity for understanding the I/O of an application. Our second goal is to approximate the
I/O of a target application using a similar but in some sense, simpler, proxy application. The systematic
approximation of the I/O of an application might yield insight into poor application performance and
provide clues as to how we can improve it.

Extraction of Signatures

The Darshan profile has a number of different I/O modules, POSIX, MPI-I/O, HDF5 (H5F + H5D),
STDIO, and more. We have limited it to POSIX, MPI-I/O, and HDF5.
The Darshan profile of an application includes a set of record IDs whose number is equal to the
number of files accessed by the application plus the number of HDF5 datasets accessed.
We use cosine similarity to organize all record IDs in equivalence classes, where each equivalence class
represents a different kind of I/O behavior in the application. We extract one Record ID from each
class to form an application signature.
In the creation of the HDF5 application signature, we combine POSIX and MPI-I/O (if PHDF5 is
used) performance counters for a given HDF5 file.
Currently, we have only studied HDF5 applications with application signatures that consist of a single
equivalence class.

Application Comparison

Applications are compared via the cosine
similarity of their application signatures.
Prior to comparison, the signatures need to be
converted into normalized feature vectors.

The first step is to convert the signature to a feature
vector. The individual components of the Darshan
record can be represented as key/value pairs in a
dictionary, this ensures the formation of consistent
feature vectors across applications.
We create feature vectors such that the values at every
index of the vector correspond to the same performance
counter across applications.
Now the feature vectors are ready to be normalized

Figure 1: Pairwise normalization used for application
comparison

Figure 2: Feature range normalization used for application comparison

Normalization

The main purpose of normalization is to
prevent one or a small set of features to
dominate and distort the similarity calcu-
lation. Two types of normalization were
considered in this project:

Feature-Range Normalization. We
vertically stack the application
signatures and normalize the
corresponding features of the newly
formed application signature matrix
between 0 and 1 through a min max
normalization technique.
Pairwise Normalization. We apply
max normalization on the two values of
the Feature Vectors at an index.

Create an Approximation

This is done using a genetic
algorithm.
It takes n random configurations
of the workload generator
It creates a population of size n,
individuals are evaluated using the
cosine similarity to the target
application. They are selected
(tournament style), crossed over
(2 point cross-mate), mutated
(on a certain probability), and
subsequently generate a certain
number of new individuals for a
specified number of generations.
It then tries to find the most
(cosine) similar configuration for
the given input application profile.

Generate Workloads

These workload generators have different I/O
based on different configurations.
The workload generator along with a specific
configuration describes an I/O pattern that would
be used as a proxy application for the target
application.
Three workload generators were used:

IOR, which can emulate simple I/O behavior
H5Perf, which can emulate simple HDF5 specific
behaviors
Fio, which can emulate a variety of complex I/O
behaviors using different I/O engines and which supports
so-called job files

Workload generators are used in two roles:
For the search algorithm, as approximators
To assess and quantify the approximation limits, as
resonators.

The run time of the genetic algorithm can be
reduced through parallel evaluation and
memoization of previous runs.

Quantify limitations

Find how close a proxy application
can get to the target application.
Figure out how effective the
workload generator can be
To give us an understanding for
how effective searching for a
workload generator configuration
can be.

Figure 3: H5Perf to approximate IOR HDF5 workload

Analysis

When trying to profile the applications
Our information about the I/O behavior of
an application is limited by the performance
counters available in the Darshan profiler
An application can have more than one
equivalence class in its signature.

When analyzing an unknown
applications

A collection of different known workloads
might help to ”position” an unknown
application.
The more context we have the better our
understanding

With quantifying the Workload
Generators

The workload generator has certain
limitations with emulating workloads not
native to it.
The I/O emulated by a Workload Generator
is at best an approximation of the I/O
behavior of the application. It is hard to get
a perfect match

Figure 4: Using H5Perf to approximate HDF5 I/O Tests

When making the approximation
The approximations are a lot closer when it is has information about
total I/O size and Block Size information as it prunes the search
space.
It helps to have multiple solutions for an approximation but pruning it
down can help increase its accuracy. This must be done carefully so
as to not over prune it.

Conclusions

When profiling an application’s I/O, the more variety of application profiles available the more accurate
it is to compare different I/O behavior types. While the application can be approximated, there are
limitations based on the available workload generator on the kind of I/O patterns it can possibly do.
Emulating these patterns also depends on the different performance counters that can aptly describe
various aspects of I/O Behavior.

References

[1] Joe Glenski David Richards.
Best practices for using proxy apps as benchmarks.
Available athttps://www.youtube.com/watch?v=JpdvGz-2LKI and
http://ideas-productivity.org/wordpress/wp-content/uploads/2020/04/
webinar039-bpproxyapps.pdf April 15, 2020.

[2] James Dickson, Steven Wright, Satheesh Maheswaran, Andy Herdman, Mark C Miller, and Stephen
Jarvis.
Replicating hpc i/o workloads with proxy applications.
In 2016 1st Joint International Workshop on Parallel Data Storage and data Intensive Scalable
Computing Systems (PDSW-DISCS), pages 13–18. IEEE, 2016.

[3] Thomas Kistler and Michael Franz.
Computing the similarity of profiling data.
In Workshop on Profile and Feedback-Directed Optimization. Citeseer, 1998.

[4] Gerasimos Spanakis, Georgios Siolas, and Andreas Stafylopatis.
Exploiting wikipedia knowledge for conceptual hierarchical clustering of documents.
The Computer Journal, 55(3):299–312, 2012.

SC Conference 2020, Atlanta, GA nrajesh@hawk.iit.edu

https://www.youtube.com/watch?v=JpdvGz-2LKI
http://ideas-productivity.org/wordpress/wp-content/uploads/2020/04/webinar039-bpproxyapps.pdf
http://ideas-productivity.org/wordpress/wp-content/uploads/2020/04/webinar039-bpproxyapps.pdf
mailto:nrajesh@hawk.iit.edu

