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1 EXTENDED ABSTRACT
Feature reduction is an integral part of data preparation in ma-
chine learning. It helps denoise the data and makes it easier to
fit the model. Predicting the performance of an application using
Darshan counters can be tricky due to the large amount of data
available, with not all of them being pertinent to predicting the I/O
performance. There exist methods for feature reduction, the most
common being Recursive Feature Elimination (RFE) [1]. The RFE
method aims to correlate the features to a specific data point. We
aim to get a subset of features that are able to distinguish between
the different applications. Then compare the effectiveness of the
subset by creating a model to predict I/O performance and compare
that with a similar model created with all the features and with a
subset of features got using RFE implemented on Scikit Learn [2].

Currently, we have a variety of profiling tools like Darshan [3]
and Recorder [5] that can give us an idea about the I/O of an ap-
plication [4]. These counters while useful are not all necessary to
distinguish applications. Additionally, in order to maintain a set of
varied applications to compare new applications, fewer counters
also implies smaller size and computational requirements. In this
effort, we use evolutionary algorithms, like genetic algorithms, to
select a subset of Darshan counters which can be used to distinguish
between a varied set of applications. We then compare how well
the subset of the counters would correlate with I/O performance of
the application.

2 METHODOLOGY
(1) Data Preparation

• Darshan is highly configurable and provides a lot of data.
This causes different datasets to not have the same infor-
mation uniformly across them and, as such, need to be
processed.
– A Darshan profile can have a number of different I/O
modules, POSIX, MPI-I/O, HDF5 (H5F + H5D), STDIO,
and more. We have limited it to POSIX and MPI-I/O due
to the ubiquitous availability of those counters.

– The Darshan profile of a job is a collection of record
IDs (RID) equal to the number of files accessed by the
application. Certain RIDs would have certain counters
missing, as the counters only follow certain patterns and
increment as needed. This makes it important to unify
the counters across RIDs and fill in the missing values.
We filled the missing values with 0 as they wouldn’t
affect the cosine similarity used.

– We focus mainly on RIDs, from a varied set of jobs, to
avoid aggregating RIDs in jobs.

(2) Creating the Search Algorithm
• Search State: A search state in this algorithm is any subset
of the Darshan counters encompassing every permutation
from 1 to all features.

• Population Generation: A random selection of a subset
of the Darshan counters. These counters were in their
generic regex forms.

• Population mutation: A random removal and addition of
Darshan counters.

(3) Fitness Function
• Prior to measuring the fitness of the application of the
Darshan counters, the counters need to be normalized. To
do so, we perform column-wise min-max normalization.

• We then calculate the loss of data when using the subset,
compared to using all the counters. Here we have a mini-
mization function where the best fitness is 0 and the worst
fitness is 1.

• A consequence of the above fitness function is that when
taking a subset of the counters, you can effectively choose
a subset of counters that can create higher similarity be-
tween the respective applications. In these situations, we
set the fitness to 1.
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• We attempt to create a min-max aspect of the fitness func-
tion, in addition to the above fitness, by minimizing the
number of counters selected for the population. Here, in
order to minimize the loss in similarity between the ap-
plications, the search function will pick more counters,
acting as the maximizing force to the counter selection.
To do that, we add a minimizing fitness where we try to
minimize the number of counters picked, picking lesser
counters would cause an increase in the loss in similarity
between applications.

(4) Prediction I/O Performance
• We need to quantify the effectiveness of our subset of
features. We first calculate the throughput of the applica-
tion from the Darshan trace, after which we perform the
following methods for verification



– PCA Analysis: We calculate the correlation of the coun-
ters to the throughput of the application. The acts as a
litmus test for the effectiveness of our subset of coun-
ters.

– Model effectiveness:We create 3models, onewith all the
features in the dataset, one using a subset of features got
using the Reduced Feature Elimination method, and one
using the subset of features got from our evolutionary
algorithm using a dataset different from the one used for
feature reduction and measure the root-mean-square
error of the 3 models on a separate test dataset.

• Our subset of features had a fitness of approximately 0.150

3 LIMITATIONS
• The set of applications must be representative of as many
applications as possible, because with more contextual in-
formation about applications, the more accurate the feature
reduction would be.

• This method also is limited by issues plagued by such evolu-
tionary algorithms.

• The feature reduced model may perform worse with an ap-
plication that is drastically different from the trained appli-
cations due to the fewer features available in the feature
reduced model.

4 OBSERVATIONS
a) Data Preparation: When preparing the data, Darshan counters

are not uniform across records, and they need to be properly
combined without skewing their fitness.

b) Search Algorithm creation: The fitness function needs to be
properly bounded as per the quirks of themetrics used for fitness.
In our case, we used the cosine similarity, so there are invalid
states that need to be penalized where the similarity between
applications can increase beyond their actual value based on
the subset of features used as the subset no longer captures
the differences between the applications. In the subset, it is
possible some features, residual features, may neither positively
nor negatively affect the similarity between the applications
and can still be carried over generations.

c) I/O Performance Prediction: We observe that the feature re-
duced model is capable of effectively predicting the I/O perfor-
mance of the application. The loss of the GA feature reduced
model is lower than the RFE feature reduced model, which has
a lower loss compared to the model with all the features. We
see that features which help distinguish applications also help
to better fit the I/O performance model. The residual features
do not affect the performance of the model, and, since there is
an overall reduction in noise in the data, it is now easier for the
model to fit the data better.

5 CONCLUSION
We have presented a methodology to perform feature reduction
using genetic algorithms and have highlighted the quirks in doing
so. We then test the effectiveness of the subset of features by per-
forming a PCA analysis on a separate dataset used for the feature

reduction, where we notice that a majority of the features selected
correlated well with the I/O performance, with the other features
being residual features. We then confirm our hypothesis by using
our subset of features to train a random forest regression model,
and we observe that the feature reduced model is capable of pre-
dicting the I/O performance well. Due to the reduction in noise in
the feature reduced dataset, we also notice that the feature reduced
model has a better fit model compared to the model trained with
all the features.
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