
173

⁄
0743-7315/02 $35.00

© 2002 Elsevier Science (USA)
All rights reserved.

Journal of Parallel and Distributed Computing 62, 173–192 (2002)
doi:10.1006/jpdc.2001.1773, available online at http://www.idealibrary.com on

Scalability versus Execution Time in
Scalable Systems1

1 This research was supported in part by NSF under Grants ASC-9720215 and CCR-9972251, and by
ONR under Navoceano PET/Logicon.

Xian-He Sun

Department of Computer Science, Illinois Institute of Technology, Chicago, Illinois 60616
E-mail: sun@cs.iit.edu

Received July 28, 1997; revised April 13, 2001; accepted May 7, 2001

Parallel programming is elusive. The relative performance of different
parallel implementations varies with machine architecture, system and
problem size. How to compare different implementations over a wide range
of machine architectures and problem sizes has not been well addressed due
to its difficulty. Scalability has been proposed in recent years to reveal scaling
properties of parallel algorithms and machines. In this paper, the relation
between scalability and execution time is carefully studied. The concepts of
crossing point analysis and range comparison are introduced. Crossing point
analysis finds slow/fast performance crossing points of parallel algorithms
and machines. Range comparison compares performance over a wide range
of ensemble and problem size via scalability and crossing point analysis.
Three algorithms from scientific computing are implemented on an Intel
Paragon and an IBM SP2 parallel computer. Experimental and theoretical
results show how the combination of scalability, crossing point analysis, and
range comparison provides a practical solution for scalable performance
evaluation and prediction. While our testings are conducted on homogeneous
parallel computers, the proposed methodology applies to heterogeneous and
network computing as well. © 2002 Elsevier Science (USA)

Key Words: parallel processing; performance evaluation and measurement;
scalability; execution time; numerical algorithms.

1. INTRODUCTION

In sequential computing, algorithms are well characterized in terms of operation
count and memory requirement. Assuming sufficient memory is available, the exe-
cution time of a sequential algorithm is proportional to the work performed. While
problem size2 and memory requirements remain essential factors in parallel

2 Some authors refer to problem size as the parameter that determines the work, for instance, the
order of matrices. In this paper, problem size refers to the work to be performed, and we will use
problem size and work alternatively.

computing, communication overhead and load balance complicate determining
parallel execution time. In general, load balance over processors decreases with the
ensemble size (the number of processors available) while communication overhead
increases with ensemble size; both may reduce performance considerably. More
importantly, this ‘‘decrease’’ in load balancing and ‘‘increase’’ in communication
vary with algorithms, machines, and algorithm–machine combinations (AMCs).
They are functions of system ensemble size and problem size. An initially fast par-
allel implementation may slow when system and problem size increase. A superior
algorithm may only be superior for a given architecture and only over a limited
range of system and problem sizes. Finding the range of superiority is inherently
difficult. Superiority/inferiority is determined in terms of execution time, whereas
execution time is set at a given parallel platform and at a specified system and
problem size. The lack of a performance evaluation mechanism for range compari-
son is a current barrier of parallel/distributed programming.
Scalability is a property that exhibits performance linearly proportional to the
number of processors employed. During the past few years, scalability has received
intensive attention. Depending on how the performance power is defined and
measured, different scalability metrics have been proposed [1–6]. Compared with
execution time, an advantage of scalability is its ‘‘dimensionless’’: it depends on the
initial state only. Scalability has different applications. One important application
of the ‘‘dimensionless’’ is in performance prediction, where premeasured perfor-
mance data are collected, stored, and used for predicting the future performance3.

3 In many case studies, the performance of the algorithm under study can be formulated in terms of
machine parameters. The performance of the algorithm, therefore, can be predicted based on the per-
formance formula. This approach of performance prediction has two shortcomings in scalable comput-
ing practice: the value of the machine parameters may vary with problem size and machine ensemble
size; performance formulation is not widely available.

Execution time is the ultimate measure of interest in practice. Performance predic-
tion should be in terms of execution. Since execution time depends on problem size
and there are numerous possible combinations of problem size and data distribu-
tion, execution time is hardly likely to be collected in a manageable way for
performance prediction. A practical solution seems to be a combination of
scalability and execution time, stored performance in terms of scalability, and use
the prestored scalability to predict the performance in terms of execution time.
Integrating scalability into performance prediction requires an in-depth under-
standing of the relation between scalability and execution time. Scalability,
however, has traditionally been studied separately. Its relation to execution time has
not been well understood. In this paper, we carefully study the relation between
scalability and time. Based on newly uncovered relations, the concept of range
comparison is introduced. Unlike conventional execution time comparison in which
performance is compared at a given parallel platform and at a specified system and
problem size, range comparison compares performance over a wide range of
ensemble and problem size via performance crossing point analysis. The idea of
range comparison is straightforward: find the first performance superior/inferior

174 XIAN-HE SUN

crossing point. Before meeting the first crossing point, over a wide range of system
and problem sizes, a fast program will remain fast and a slow program will remain
slow. The key question is how to find the crossing point. This question is addressed
in this study. Theoretical foundation is built to find the crossing point via isospeed
scalability [3]. Since the relation between isospeed scalability and other scalabilities
has been studied [7], results presented in this paper can be extended to other
scalabilities as well.
In Section 2, we present the relation between scalability and execution time. In
Section 3, we introduce the concepts of crossing point analysis and range compari-
son. Two algorithms are also given to determine the crossing point and perfor-
mance range comparison. We present three parallel algorithms in Section 4.
Comparison and scalability analysis of the three algorithms are also performed.
Experimental results of the three algorithms are given in Section 5 to confirm our
analytical findings. Section 6 summarizes the work.

2. ISOSPEED SCALABILITY AND ITS RELATION WITH TIME:
AN OVERVIEW

A goal of high-performance computing is to solve large problems fast. Consider-
ing both execution time and problem size, what we seek from parallel processing is
speed, which is defined as work divided by time. Average speed is the achieved
speed divided by the number of processors used. Average speed is a quantity that
ideally would be unchanged with scaled system size. For a large class of AMCs, the
average speed can be maintained by increasing the problem size. The necessary
problem size increase varies with algorithm–machine combinations. This variation
provides a quantitative measurement for scalability. Let W be the amount of work
of an algorithm when p processors are employed in a machine, and let WŒ be the
amount of work of the algorithm when pŒ > p processors are employed to maintain
the average speed. Following the isospeed scalability [3], the scalability from
system size p to system size pŒ of the algorithm–machine combination is

k(p, pŒ)=
pŒ ·W
p ·WŒ

, (1)

where the work WŒ is determined by the isospeed constraint. A formula has been
given in [8] to computeWŒ,

WŒ=
a·pŒ ·To(WŒ)
1−aD

, (2)

where a is the average speed, D is the sustained computing capacity of a single
processor (reciprocal of speed), and To(WŒ) is the parallel processing overhead on pŒ
processors. When parallel degradation does exist (i.e., T −o(WŒ) > 0), a ·D < 1 and,
therefore, Eq. (2) is traceable. T −o > 0 is a necessary and sufficient condition of
equation 2. When T −o=0, ideal scalability is achieved with k(p, pŒ)=1.

SCALABILITY VERSUS EXECUTION TIME 175

Intuitively, average speed should increase with problem size for any scalable
AMC. This intuition may not be generally true due to hardware limitations.
Definition 1 gives a definition of problem size scalability.

Definition 1 (Data Scalable). We say an algorithm–machine combination is
data scalable if this algorithm–machine combination has a nonzero parallel pro-
cessing overhead (To(W) > 0), and for any fixed ensemble size p > 1 its average
speed increases with its problem size.

Theorem 1 gives a basic relation between scalability and execution time: a better
scalability leads to a better (scaled) execution time. Scalability is supposed to be in
favor of execution time. Theorem 1 confirms the legitimacy of the isospeed scala-
bility. More importantly, it gives a quantitative measurement of the relation
between scalability and execution time. Theorem 1 is very general. Let the constant
a equal 1 and AMC 1 and 2 have the same scalability, or let a equal 1 and AMC 1
and 2 have the same execution time, etc.; then we have different corollaries. Using
the fact that Corollary 2 holds for both scaled problem sizeWŒ andW*, Corollary 1
gives a relation between the scaled execution time of AMC 1 and AMC 2. Initial
performance differences can be presented in terms of execution time, or in terms of
problem size needed for obtaining the desired average speed. Theorem 2 shows the
relation of scalability and execution time when the initial performance difference is
given in terms of problem size. For the sake of brevity, only part of the corollaries
are listed here. The proofs of the listed corollaries are also not given. Interested
readers are refered to [9] for more information.
In Theorem 1 and throughout this paper, the scaled problem size is the scaled
problem size under isospeed scalability.

Theorem 1. If algorithm–machine combinations 1 and 2 are data scalable and
have execution time a ·T(p, W) and T(p, W), respectively, at the same initial state
(the same initial ensemble and problem sizes), then combination 1 has a higher scala-
bility than combination 2 at scaled ensemble size pŒ if and only if the execution time of
combination 1 is smaller than a multiplied by the execution time of combination 2 for
solving WŒ or W*, where WŒ and W* are the scaled problem sizes of combinations 1
and 2, respectively.

Corollary 1 is a direct result of Theorem 1.

Corollary 1. If algorithm–machine combinations 1 and 2 are data scalable and
have execution time a ·T(p, W) and T(p, W), respectively, at the same initial state,
then the execution time of combination 1 is smaller than a multiplied by the execution
time of combination 2 for solving WŒ at scaled ensemble size pŒ if and only if the
execution time of combination 1 is smaller than a multiplied by the execution time of
combination 2 for solving W*, where WŒ and W* are the scaled problem sizes of
combinations 1 and 2 respectively.

When two AMCs have the same initial performance, or the same scalability, we
have the following corollaries.

176 XIAN-HE SUN

Corollary 2. If algorithm–machine combinations 1 and 2 are data scalable and
have the same performance at the same initial state, then combination 1 has a higher
scalability than that of combination 2 at scaled ensemble size pŒ if and only if combi-
nation 1 has an execution time smaller than that of combination 2 for solving WŒ or
W*, where WŒ and W* are the scaled problem sizes of combination 1 and combination
2 respectively.

Corollary 3. If algorithm–machine combinations 1 and 2 are data scalable
and have execution time a ·T and T, respectively, at the same initial state, then
combinations 1 and 2 have the same scalability at scaled ensemble size pŒ if and only if
the execution time of combination 1 is equal to a multiplied by the execution time of
combination 2 for solvingWŒ orW*, whereWŒ andW* are the scaled problem sizes of
combination 1 and combination 2 respectively.

Theorem 2 is an alternative of Theorem 1 with the initial performance difference
given in terms of problem size.

Theorem 2. If algorithm–machine combinations 1 and 2 are data scalable and
achieve the same average speed with problem size W and a ·W, respectively, at the
same initial ensemble size, then a multiplied by the scalability of combination 1 is
greater than the scalability of combination 2 at scaled ensemble size pŒ if and only if
combination 1 has an execution time smaller than that of combination 2 for solvingWŒ
or W*, where WŒ and W* are the scaled problem sizes of combination 1 and combina-
tion 2 respectively.

When AMC 1 and 2 have the same scalability, Theorem 2 leads to the following
corollary.

Corollary 4. If algorithm–machine combinations 1 and 2 are data scalable and
achieve the same average speed with problem size W and a ·W, respectively, at the
initial ensemble size, then a multiplied by the scalability of combination 1 is the same
as the scalability of combination 2 at scaled ensemble size pŒ if and only if combina-
tion 1 has the same execution time as that of combination 2 for solving WŒ or W*,
where WŒ and W* are the scaled problem sizes of combination 1 and combination 2
respectively.

3. RANGE COMPARISON AND CROSSING POINT ANALYSIS

When the system ensemble size scales up, an originally faster code with smaller
scalability can become slower than code that has a better scalability. The definition
of crossing point is problem size-dependent. It depends on the view of scalable
computing: does problem size scale up? and if so, then how? Definition 2 gives a
formal definition of scaled crossing point based on isospeed scalability. The
correctness of the definition is given by Theorem 3. An alternative definition of
scaled crossing point in terms of parallel processing overhead can be found in [9].

Definition 2 (Scaled Crossing Point). For any a > 1, if algorithm–machine
combinations 1 and 2 have execution time aT and T respectively at the same

SCALABILITY VERSUS EXECUTION TIME 177

initial state, then we say a scaled ensemble size pŒ is a scaled crossing point of
combinations 1 and 2 if the ratio of the isospeed scalability of combination 1 and
combination 2 is greater than a at pŒ.

Let AMC 1 have execution time t, scalability F(p, pŒ), and scaled problem size
WŒ. Let AMC 2 have execution time T, scalability Y(p, pŒ), and scaled problem
sizeW*. By Definition 2, pŒ is a scaled crossing point of AMC 1 and 2 if and only if

F(p, pŒ)
Y(p, pŒ)

> a. (3)

In fact, by Eq. (1), when F(p, pŒ) \ aY(p, pŒ) we have t(pŒ, WŒ) [T(pŒ, W*) [3].
Note that since a > 1 combination 2 has a smaller execution time at the initial state,
t(p, W) > T(p, W). This fast/slow change in execution time illustrates the meaning
of scaled crossing point. Theorem 3 confirms the correctness of Definition 2.
However, scaled crossing point is not good enough for crossing point analysis. With
different scalabilities, the scaled problem size WŒ and W* could be different. For
performance crossing point analysis, we are interested in performance crossing with
the same problem size. The results given in Section 2 cannot apply directly for
crossing point analysis. Theorem 4 presents a basic result for performance
comparison with the same scaled problem sizes. Theorem 5 extends the result to a
range of problem sizes. Theorems 4 and 5 build the theoretical foundation for
crossing point analysis. The proof of Theorem 3 can be found in [9].

Theorem 3. If algorithm–machine combination 1 has an execution time larger
than that of algorithm–machine combination 2 at the initial state, then, for any scaled
ensemble size pŒ, pŒ is a scaled crossing point if and only if combination 1 has a scaled
execution time smaller than that of combination 2.

Scaled crossing point is different from the crossing point where performance
crosses with the same problem size. We call the latter equal-size crossing point, or
simply crossing point, if the content is clear. Theorem 4 gives a relation between the
scaled crossing point and equal-size crossing point.

Theorem 4. Assume algorithm–machine combinations 1 and 2 are data scalable
and combination 1 has an execution time larger than that of combination 2 at the
initial state, then the scaled ensemble size pŒ is not a scaled crossing point if and only
if combination 1 has an execution time larger than that of combination 2 for solving
both WŒ and W* at pŒ, where WŒ and W* are the scaled problem sizes of combination
1 and combination 2 respectively.

Proof. Let AMC 1 have execution time t(p, W), scalability F(p, pŒ), and scaled
problem sizeWŒ. Let AMC 2 have execution time T(p, W), scalability Y(p, pŒ), and
scaled problem sizeW*.

Proof of the ‘‘only if ’’ condition. Since pŒ is not a scaled crossing point, by
Theorem 3, T(pŒ, W*) [t(pŒ, WŒ).

178 XIAN-HE SUN

Case 1. IfWŒ <W*, then

T(pŒ, WŒ) < T(pŒ, W*) [t(pŒ, WŒ).

and

T(pŒ, W*) [t(pŒ, WŒ) < t(pŒ, W*).

Case 2. If WŒ \W*, then by the definition of isospeed scalability we have
the scalability of combination 1 is equal to or smaller than the scalability of com-
bination 2, F(p, pŒ) [Y(p, pŒ). Thus combination 1 has a larger initial time and
equal or smaller scalability, by Theorem 1, T(pŒ, WŒ) < t(pŒ, WŒ) and T(pŒ, W*) <
t(pŒ, W*).

Proof of the ‘‘if ’’ condition.

Case 1. IfWŒ \W*, then

T(pŒ, WŒ) \ T(pŒ, W*),

and, by the ‘‘if ’’ assumption,

t(pŒ, WŒ) > T(pŒ, WŒ).

Combining these two inequalities, we have

t(pŒ, WŒ) > T(pŒ, W*).

By Theorem 3, pŒ is not a scaled crossing point.

Case 2. IfWŒ <W*, then, since combination 2 is data scalable, we have

a=
WŒ

pŒ · t(pŒ, WŒ)
=

W*
pŒ ·T(pŒ, W*)

>
WŒ

pŒ ·T(pŒ, WŒ)
.

Thus,

t(pŒ, WŒ) < T(pŒ, WŒ). (4)

Inequality (4) contradicts with the ‘‘if ’’ assumption that t(pŒ, WŒ) > T(pŒ, WŒ). This
concludes that the case ofWŒ <W* does not exist under the ‘‘if ’’ assumption. L

A more interesting result is given by Theorem 5.

Theorem 5. Assume algorithm–machine combinations 1 and 2 are data scalable
and combination 1 has an execution time larger than that of combination 2 at the
initial state. Then the scaled ensemble size pŒ is not a scaled crossing point if and only
if combination 1 has an execution time larger than that of combination 2 for solving
any scaled problem W† such that W† is between WŒ and W* at pŒ, where WŒ and W*
are the scaled problem size of combination 1 and combination 2 respectively.

Proof. We use the same notations as used in the proof of Theorem 4.

SCALABILITY VERSUS EXECUTION TIME 179

Proof of the ‘‘only if ’’ condition.

Case 1. IfW†=WŒ orW†=W*, then, by Theorem 4, we are done.

Case 2. If WŒ <W* and WŒ <W† <W*, then, since pŒ is not a scaled
crossing point, by Theorem 3, T(pŒ, W*) [t(pŒ, WŒ):

t(pŒ, W†) > t(pŒ, WŒ) \ T(pŒ, W*) > T(pŒ, W†).

Case 3. If WŒ >W* and W* <W† <WŒ, then, since combinations 1 and 2
are data scalable,

a=
WŒ

pŒ · t(pŒ, WŒ)
>

W†

pŒ · t(pŒ, W†)
,

and

a=
W*

pŒ ·T(pŒ, W*)
<

W†

pŒ ·T(pŒ, W†)
.

Combining the two inequalities, we have

W†

pŒ · t(pŒ, W†)
<

W†

pŒ ·T(pŒ, W†)
.

That is

t(pŒ, W†) > T(pŒ, W†).

Proof of the ‘‘if ’’ condition. It is a direct result of Theorem 4. L

Theorems 4 and 5 give the necessary condition for range comparison of scalable
computing: pŒ is not a scaled crossing point of p if and only if it is not an equal-size
crossing point of p for any scaled problem size within the scalable range of the two
compared algorithm–machine combinations. The ranking of execution time can be
computed from the ranking of scalability. Based on this theoretical finding, Fig. 1
gives the range comparison algorithm in terms of finding the smallest scaled cross-
ing point via scalability comparison. Figure 2 gives an alternative range comparison
algorithm in terms of finding the smallest scaled crossing point via execution time
comparison. In general, there could have been more than one scaled crossing point
over the consideration range for a given pair of AMCs. These algorithms may be
used iteratively to find successive scaled crossing points.

4. TRIDIAGONAL SOLVERS: A CASE STUDY

Solving tridiagonal systems is one of the fundamental problems in scientific
computing [10]. Many methods used for the solution of partial differential
Eqs. (PDEs) rely on solving a sequence of tridiagonal systems. In addition to PDEs,

180 XIAN-HE SUN

FIG. 1. Range comparison via crossing point analysis.

tridiagonal systems also arise in many other applications [11]. Three parallel tri-
diagonal solvers, the Parallel Partition LU (PPT), the Parallel Diagonal Dominant
(PDD), and the Reduced Parallel Diagonal Dominant (RPDD, Reduced PDD)
algorithms, are used to confirm the analytical results. Interested readers may refer
to [12] and [11] for details of the algorithms, especially for accuracy analysis and
extension of these algorithms to solve periodic systems and general banded linear
systems. Only computation and communication count of the algorithms are
presented here for scalability analysis.

4.1. Operation Comparison

Tridiagonal systems arising in many applications are multiple right-side systems.
They are usually ‘‘kernels’’ in much larger codes. The computation and communi-
cation counts for solving multiple right-side systems are listed in Table 1, in which
the factorization of the matrix is not considered. Parameter n1 is the number of
right-hand-sides (RHS). Note that for multiple RHS systems, the communication
cost increases with the number of right-hand-sides. For the PPT algorithm, the
communication cost also increases with the ensemble size. In the Reduced PDD
algorithm, only j elements of the partition vectors need to be computed for
the final modification. Formulas for computing the integer j can be found in [11],
depending on particular circumstances.

SCALABILITY VERSUS EXECUTION TIME 181

FIG. 2. An alternative range comparison algorithm.

Communication cost has great impact on overall performance. For most distrib-
uted-memory computers, the time of a processor to communicate with its nearest
neighbors is found to vary linearly with problem size. Let S be the number of bytes
to be transferred. Then the transfer time to communicate with a neighbor can be
expressed as r+Sb, where r is a fixed startup time and b is the incremental trans-
mission time per byte. Assuming 4 bytes are used for each real number, Steps 3 and
4 of the PDD and Reduced PDD algorithm take r+8b and r+4b time respectively
on any architecture that supports single-array topology. The communication cost of
the total-data-exchange communication is highly architecture-dependent. The listed
communication cost of the PPT algorithm is based on a square 2-D torus with p
processors (i.e., 2-D mesh, wraparound, square) [13]. If a hypercube topology or a
multistage Omega network is assumed the communication cost would be
log(p) r+12(p−1) b and log(p) r+8(p−1) n1 ·b for single systems and systems
with multiple right sides, respectively [12, 14].

4.2. Scalability Analysis

The scalability analysis of the PDD algorithm for solving single systems can be
found in [11]. In the following, we give a scalability analysis of the PDD algorithm
for solving systems with multiple right sides, where the number of right sides does
not increase with the ensemble size and the LU factorization of the matrix is not
considered. Scalability analysis of the PPT and the Reduced PDD algorithms is
presented under the same assumption.

182 XIAN-HE SUN

TABLE 1

Comparison of Computation and Communication

System Algorithm Computation Communication

Multiple Best sequential (5n−3) · n1 0

right sides PPT R9 n
p
+10p−11S · n1 (2r+8p·n1 ·b)(`p −1)

PDD R9 n
p
+1S · n1 (2r+8n1 ·b)

Reduced PDD R5 n
p
+4j+1S · n1 (2r+8n1 ·b)

Following the notation given in Section 2, we let T(p, W) be the execution time
for solving a system with W work (problem size) on p processors. By the definition
of isospeed scalability, the ideal situation would be when both the number of pro-
cessors and the amount of work are scaled up by a factor of N, the execution time
remaining unchanged:

T(N×p, N×W)=T(p, W). (5)

To incorporate the effect of numerical inefficiencies in parallel algorithms, in
practice, the flop count is based upon some practical optimal sequential algorithm.
In our case, Thomas’ algorithm [15] was chosen as the sequential algorithm. It
takes (5n−3) · n1 floating point operations for multiple right sides, where the
number 3 can be neglected for large n. As the problem size W increases N times to
WŒ, we have

WŒ=(N×5n) · n1=(5nŒ) · n1, (6)

nŒ=N·n. (7)

The PDD Algorithm. Let ycomp represent the unit of a computation operation
normalized to the communication time. The time required by the PDD algorithm
with p processors is

T(p, W)=19 n
p
+12 n1 · ycomp+2(r+8·n1 ·b),

and

T(N×p, N×W)=19 nŒ
N·p
+12 n1 · ycomp+2(r+4n1 ·b)

=19 N·n
N·p
+12 n1 · ycomp+2(r+4n1 ·b)

=19 n
p
+12 n1 · ycomp+2(r+4n1 ·b)

=T(p, W).

SCALABILITY VERSUS EXECUTION TIME 183

Thus the PDD algorithm is perfectly scalable. Its scalability equals 1. Note that in
the above analysis we assume T(p, W) contains the communication cost. The
perfect scalability does not apply for the special case where p=1.

The Reduced PDD Algorithm. The Reduced PDD algorithm has the same
computation and communication pattern as the PDD algorithm, but has an opera-
tion count smaller than that of the PDD algorithm. Similar arguments can be
applied to the Reduced PDD algorithm as well. Therefore, the PDD and the
Reduced PDD algorithm have the same scalability. They are perfectly scalable.

The PPT Algorithm. The PPT algorithm is not perfectly scalable. Its scala-
bility analysis requires more discussion. The prediction formula (2) is needed for the
scalability analysis,

WŒ=
a·pŒ ·T −o(WŒ)
1−a ·D

, (8)

where WŒ, pŒ, a, and D are as defined in (2). Parameters a and D do not vary with
the number of processors. For a given AMC and a given initial average speed,
c= a

1−a ·D is a constant. Therefore, Eq. (8) can also be written as

WŒ=c·pŒ ·T −o(WŒ) (9)

By Eq. (6),WŒ is a linear function of n. The computing time can be represented as

T(p, n)=Ts(p, n)+To(p, n), (10)

where Ts(p, n) is the computing time with ideal parallelism and To(p, n) represents
the degradation of parallelism. For the particular problem discussed here, the run
time model is (see Table 1)4

4 The constant number 11 is eliminated for convenience, since it is independent of parameters n and p.

T(p, n)=19 n
p
+10p2 · n1 · ycomp+(2r+8·n1 · p ·b)(`p −1). (11)

By Eq. (6),

Ts(p, n)=
5n
p
·n1 · ycomp. (12)

Therefore,

To(p, n)=14
n
p
+10p2 · n1 · ycomp+(2r+8·n1 · p ·b)(`p −1).

Using the prediction formula (9), we have

WŒ=c·pŒ ·T −o=c·pŒ 514
nŒ
pŒ
+10pŒ 2 · n1 · ycomp+(2r+8·n1 · pŒ ·b)(`pŒ −1)6 .

184 XIAN-HE SUN

SubstitutingWŒ=5·nŒ · n1 into the above equation,

5 · nŒ · n1 · ycomp=c·pŒ 514
nŒ
pŒ
+10pŒ 2 · n1 · ycomp+(2r+8·n1 · pŒ ·b)(`pŒ −1)6 ,

which eventually leads to

nŒ=cŒ[10pŒ2 · n1 · ycomp+(2rpŒ+8·n1 · pŒ2 ·b)(`pŒ −1)], (13)

where cŒ=c/(5−4c) · n1 · ycomp. Equation (13) is true for any work-processor pair
that maintains the fixed average speed. In particular:

n=cŒ[10 ·p2 · n1 · ycomp+(2 ·r · p+8 ·n1 · p2 ·b)(`p −1)] (14)

Combining Eqs. (13) and (14), we have

nŒ−n=cŒ[10 · n1 · (pŒ2−p2) · ycomp+2r(pŒ3/2−p3/2) (15)

+8·n1 ·b(pŒ5/2−p5/2)−2r(pŒ−p)−8 ·n1 ·b(pŒ2−p2)]. (16)

If the communication start-up time is the dominant factor of the overhead, then

nŒ−n % 2cŒ ·r · (pŒ3/2−p3/2),

which shows that the variation of n is in direct proportion to the 3/2 power of the
variation of ensemble size. By Eq. (6), W, the work, is in direct proportion to the
order of matrix n, therefore, the scalability of this AMC can be estimated as

k(p, pŒ)=k(p, Np)=
NpW
pWŒ

%
N·W
N3/2W

=
1

`N
. (17)

Similarly, if the computing is the dominant factor of the overhead, then

nŒ−n % 10cŒ · n1 · (pŒ2−p2) · ycomp,

and

k(p, pŒ)=k(p, Np)=
NpW
pWŒ

%
N·W
N2W

=
1
N
; (18)

if the transmission delay is the dominant factor of the overhead, then

nŒ−n % 8cŒ · n1 ·b(pŒ5/2−p5/2),

and

k(p, pŒ)=k(p, Np)=
NpW
pWŒ

%
N·W
N5/2W

=
1

`N3
. (19)

In any case, the PPT algorithm is far from ideally scalable. Its scalability decreases
with the increase of ensemble size and the rate of the decrease varies with machine
parameters.

5. EXPERIMENTAL RESULTS

The PPT, PDD, and Reduced PDD algorithms were implemented on an IBM
SP2 and an Intel Paragon. Both SP2 and Paragon machines are distributed-memory

SCALABILITY VERSUS EXECUTION TIME 185

parallel computers that adopt message-passing communication paradigm and
support virtual memory. Each processor (node) of the SP2 is functionally equiva-
lent to a RISC System/6000 desktop system (thin node) or a RISC System/6000
deskside system (wide node). The Paragon XP/S supercomputer uses the i860 XP
microprocessor, which includes an RISC integer core processing unit and three
separate on-chip caches for page translation, data, and instructions. The SP2 High-
Performance Switch is a multistage packet-switched Omega network that provides a
minimum of four paths between any pair of nodes in the system. The processors of
Intel Paragon are connected in a two-dimensional rectangular mesh topology. For
SP2, the measured latency is 45 ms and the bandwidth is 35Mbytes per second. For
Paragon, the measured latency is 46 ms and the bandwidth is 80Mbytes per second.
The SP2, available at NASA Langley Research Center, has 48 wide nodes with
128-Mbyte local memory each. The Paragon available at the center has 72 nodes
with 32-Mbyte local memory each.
As an illustration of the algorithms and theoretical results given in previous
sections, a sample matrix is tested. This sample matrix is a diagonal dominant,
symmetric, Toeplitz system

A=|
1 1

3
1
3 1 1

3

· · ·
· · ·
· · ·

1
3 1 1

3
1
3 1

}=[13 , 1, 13]
arising in CFD applications [11]. j=17 has been chosen for the Reduced PDD
algorithm to reach the single precision accuracy, 10 −7.
The nodes of SP2 and Paragon have different processing powers and local
memory sizes. For a fixed 1024 right sides, following the asymptotic speed concept
[7], the order of the matrix for the SP2 has been chosen to be 6400 and the order
of the matrix for the Paragon has been chosen to be 1600 for uniprocessor process-
ing. Execution time is measured in seconds. Speed is given in MFLOPS (millionth
floating-point operation per second). Tables 2 through 6 list the measured results
on the SP2 and Paragon machines. Measurements begin with two processors, since
uniprocessor processing does not involve communication on SP2 and Paragon and,
therefore, the uniprocessor performance is not suitable for the analytical results.
From Tables 2 and 4, we can see that the execution time of the PDD and Reduced
PDD remains unchanged, except for some minor measuring perturbations when the
order of the matrix doubles with the number of processors. Since problem size
increases linearly with the order of the matrix for our applications, the constant
timing indicates that the PDD and Reduced PDD algorithms are ideally scalable.
This indication is confirmed by Tables 3 and 5, which show that the average speed
of these two algorithms are unchanged on both SP2 and Paragon machine. By
the definition of isospeed scalability, the four algorithm–machine combinations,

186 XIAN-HE SUN

TABLE 2

Measured Execution Time (in Seconds) on the SP2 Machine

Number of Processors

2 4 8 16 32

Order of matrix 12800 25600 51200 102400 204800

PDD algorithm 0.8562 0.8561 0.8564 0.8564 0.8569

Reduced PDD alg. 0.5665 0.5666 0.5668 0.5673 0.5659

PPT algorithm 0.7810 0.9826 1.004 1.103 1.288

PDD–SP2, PDD–Paragon, RPDD–SP2, and RPDD–Paragon, are perfectly
scalable, with scalability equal to 1.
Since the PDD and Reduced PDD algorithms have the same scalability, these
two algorithms satisfy the condition of Corollary 3. Their performance can be used
to verify this corollary. Observing the timing given in Tables 2 and 4, we can see
that the measured results confirm the theoretical results. For instance, based on
Table 2, the initial timing ratio between the PDD and the Reduced PDD algorithm,
a, remains unchanged when the problem size is scaled up with the ensemble size.
The Reduced PDD algorithm is superior to the PDD algorithm over the scalable
computing range. Similarly, since the scalability of the PPT algorithm is less than
the scalability of the PDD and the Reduced PDD algorithms, the performance
comparison of these three algorithms can be used to verify Theorems 1 and 3. By
Theorem 1, since the PPT algorithm is slow at the initial state on the Paragon
machine, it is inferior to the computing range, and the timing difference between
the PPT algorithm and the PDD and Reduced PDD algorithms should be enlarged
when problem size is scaled up with ensemble size. This claim is supported by the
measured data on the Paragon machine. Performance on the SP2 is more interest-
ing. The PPT algorithm is faster than the PDD algorithm at the initial state. The
initial time difference ratio is 0.8562/0.781=1.0963. By Eq. (17), the scalability of

TABLE 3

Measured Average Speed (in MFLOPS) on the SP2 Machine

Number of Processors

2 4 8 16 32

Order of matrix 12800 25600 51200 102400 204800

PDD algorithm 38.292 38.2975 38.2850 38.285 38.2625

Reduced PDD alg. 57.875 57.865 57.845 57.795 57.9375

PPT algorithm 41.979 35.9275 32.6562 29.7250 25.455

SCALABILITY VERSUS EXECUTION TIME 187

TABLE 4

Measured Execution Time (in Seconds) on the Paragon Machine

Number of Processors

2 4 8 16 32 64

Order of Matrix 3200 6400 12800 25600 51200 102400

PDD Alg. 0.7379 0.7388 0.7387 0.7397 0.7388 0.7393

Reduced PDD Alg. 0.5452 0.5524 0.5539 0.5550 0.5521 0.5563

PPT Alg. 0.8317 0.9115 1.066 1.462 2.008 3.095

the PPT algorithm F(2, 4)= 1
`2
=0.7. The PDD is ideally scalable, Y(2, 4)=1.

Therefore, following the range comparison algorithm given in Fig. 1, the first scaled
crossing point is at ensemble size 4. This predicted scaled crossing point is con-
firmed by experimental measurement (see Table 2). In summary, the following
range comparison principles have been confirmed by experimental results.

• (PDD/Reduced PDD, Theorem 1) If two programs have the same scala-
bility, then the initially faster program will remain faster over the considered
scalable range.

• (Reduced PDD/PPT, Theorem 1) If the initially faster program has a larger
scalability, then the initially faster program will be superior over the considered
scalable range.

• (PDD/PPT, Theorem 4) If the initially faster program has a smaller scala-
bility, then fast/slow performance will change when system size increases. The
scaled crossing point can be predicted. In the PDD/PPT case, the scaled crossing
point is 4.

TABLE 5

Measured Average Speed (in MFLOPS) on the Paragon Machine

Number of Processors

2 4 8 16 32 64

Order of Matrix 3200 6400 12800 25600 51200 102400

PDD Alg. 11.1 11.0925 11.0950 11.0813 11.0938 11.0875

Reduced PDD Alg. 15.03 14.8375 14.8 14.7688 14.8469 14.7359

PPT Alg. 9.855 8.9925 7.6887 5.605 4.0812 2.6484

188 XIAN-HE SUN

TABLE 6

Variation of the Reduced PDD Algorithm on the Paragon Machine

Number of Processors

4 8 16 32 64

Order of Matrix 1000 2000 4000 8000 16000

Timing 0.1154 0.1155 0.1166 0.1159 0.1159

Average Speed 11.095 11.0875 10.9812 11.0469 11.0453

Order of Matrix 6400 12800 25600 51200 102400

Timing 0.5524 0.5539 0.5550 0.5521 0.5563

Average Speed 14.8375 14.8 14.7688 14.8469 14.7359

Theorem 2 provides the foundation of range comparison from another angle.
Instead of using initial time difference, Theorem 2 uses initial efficiency (in terms of
average speed) to predict the scaled performance. Table 6 shows the performance
variation of the Reduced PDD algorithm on the Paragon. A small problem size,
n=1000, is chosen so that the Reduced PDD can reach the achieved average speed
of the PDD algorithm with larger size (see Table 6). The initial ensemble size is
chosen to be four because when the problem size is small the overall performance is
highly dependent on communication delay. With two processors the PDD and
Reduced PDD algorithms have one send and one receive communication. With
more than two processors these algorithms require two send-and-receive communi-
cations. Although theoretically each processor on Paragon can send and receive
messages concurrently, in practice the synchronization cost of concurrent sending
and receiving may lead to noticeable performance differences when the problem size
is small. The PDD algorithm and Reduced PDD algorithm reach the same average
speed at ensemble size equal to 4 with problem size W=(5n−3) f 1024+
3n−4=32, 784, 124 flops and W=(5n−3) f 1024+3n−4=5, 119, 924 flops
respectively. The ratio of problem size difference, computed as 5, 119, 924 over
32, 784, 124, is 0.15617. That is, a=0.15617. The PDD and Reduced PDD algo-
rithm have the same scalability. By Theorem 2, the execution time of the PDD
algorithm on its scaled problem size should be greater than that of the Reduced
PDD algorithm over the scalable computing range. Measured results given in
Tables 6 and 4 confirm the theoretical statement.
The PPT algorithm is programmed using Fortran and the code is identical for
both the SP2 and the Paragon except for communication commands. MPL is used
on SP2 for message passing. The all-to-all communication is implemented by calling
communication library calls, gcol is used on the Paragon, and mp_concat is used on
the SP2. From Tables 2, 4, and 3, 5, we can see that the PPT algorithm has a
smaller time increase and less average speed reduction on the SP2 than on the
Paragon. This means the PPT algorithm has a better scalability on the SP2 than on
the Paragon. The better scalability may be due to various reasons, including larger

SCALABILITY VERSUS EXECUTION TIME 189

memory and more efficient all-to-all communication subroutines available on the
SP2. Interested readers may refer to [14] for more information on all-to-all com-
munications. The emphasis here is that when an algorithm is not ideally scalable, its
scalability does vary with machine parameters.
Range comparison is not only useful in algorithm or software development. It is
also applicable in evaluating hardware variations. The best sequential tridiagonal
solver, the Thomas algorithm, can be parallelized for systems with multiple right
sides. The parallelized Thomas algorithm has less computing but more communi-
cation requirement than that of the PDD algorithm. Figures 3 and 4 demonstrate
the performance range comparison of the PDD and parallelized Thomas algorithm,
when the computing and communication capacity vary, respectively [8]. These
figures are created based on scalability analysis formula with measured machine
parameters. The number of processors used in both figures is fixed as 64. We can
see that computing speed increases do not change the superiority. The PDD algo-
rithm, its performance represented by the lower surface, remains superior in Fig. 3.
However, communication capacity will change the superiority. As depicted in
Fig. 4, when communication speed increases, the PDD algorithm, whose perfor-
mance is given by the unshaded surface, changes from superior to inferior.
Scalability formulas are derived in Section 4 to verify the experimental results. In
general, scalability also can be directly measured or computed from execution time
[3]. We used the term algorithm–machine combinations through our analytical
study. An algorithm could be implemented differently due to data distribution and
other low-level implementation details. Different implementations could lead to
different performance. The crossing point methodology applies to implementations
as well. When scalabilities are derived from algorithm analysis, the crossing point is
for the algorithm. When scalabilities are measured or computed from the imple-
mentations, the crossing point is for the implementations. The range comparison
concept has been tested in restructuring compilation for data-parallel programming,
where optimal data distribution needs to be determined for best performance [16].
Initial results are very encouraging.

FIG. 3. Speed Influence on Testing Algorithms.

190 XIAN-HE SUN

FIG. 4. Communication Influence on Testing Algorithms.

6. CONCLUSION

Different algorithms could solve a given application, and a given algorithm could
have different implementations. The performance gain of parallel algorithms and
implementations varies with problem size and system size. A slow algorithm with
good scalability may become superior when system and problem size scale up. The
system sizes for which the performance ranking of different algorithms/programs
changes are called (performance) crossing points. Identifying crossing points is
crucial for performance optimization and compiler-assisted parallelization. In this
study, the relation between scalability and execution time is first carefully studied.
Next, based on scalability analysis, the concepts of crossing point analysis and
range comparison are proposed. Then a novel methodology for locating the cross-
ing point via scalability and for evaluating the performance of different parallel
algorithms and architectures over a range of system and problem sizes via crossing
points is developed. Two algorithms for conducting range comparison are pre-
sented. Finally, experimental results are provided to confirm the analytical findings.
Scalability makes range comparison. With initial execution time and scalability, the
execution time of different algorithms can be compared and predicted over a range
of problem size and system size. Unlike execution time, scalability is ‘‘dimen-
sionless.’’ It does not depend on problem size. The ‘‘dimensionless’’ and the range
comparison methodology provided in this study makes a manageable database for
performance prediction possible. Range comparison, in which execution time is
compared over a range of system and problem sizes, opens new ways for perfor-
mance evaluation. Its impact on scalable software development needs to be further
explored.

ACKNOWLEDGMENTS

The author is grateful to S. Moitra of NASA Langley Research Center for help in gathering the
performance data on the SP2 and to the anonymous referees for their constructive comments on the
revision of the paper.

REFERENCES

1. P. Worley, The effect of time constraints on scaled speedup, SIAM J. Sci. Stat. Comput. 11 (Sept.
1990), 838–858.

SCALABILITY VERSUS EXECUTION TIME 191

2. A. Y. Grama, A. Gupta, and V. Kumar, Isoefficiency: Measuring the scalability of parallel
algorithms and architectures, IEEE Parallel Distrib. Technol. 1 (Aug. 1993), 12–21.

3. X.-H. Sun and D. Rover, Scalability of parallel algorithm–machine combinations, IEEE Trans.
Parallel Distrib. Systems 5 (June 1994), 599–613.

4. X. Zhang, Y. Yan, and K. He, Latency metric: An experimental method for measuring and evaluat-
ing parallel program and architecture scalability, J. Parallel Distrib. Comput. 22 (Sept. 1994),
392–410.

5. S. Sahni and V. Thanvantri, Performance metrics: Keeping the focus on runtime, IEEE Parallel
Distrib. Technol. (Spring 1996), 43–56.

6. K. Hwang and Z. Xu, ‘‘Scalable Parallel Computing,’’ McGraw–Hill, New York, 1998.

7. X.-H. Sun and J. Zhu, Performance considerations of shared virtual memory machines, IEEE Trans.
Parallel Distrib. Systems (Nov. 1995), 1185–1194.

8. X.-H. Sun and J. Zhu, Performance prediction: A case study using a scalable shared-virtual-memory
machine, IEEE Parallel Distrib. Technol. (Winter 1996), 36–49.

9. X.-H. Sun, ‘‘Scalability versus Execution Time in Scalable Systems,’’ Louisiana State Uiversity,
Computer Science TR-97-003, 1997. [Revised May 1998.]

10. C. Ho and S. Johnsson, Optimizing tridiagonal solvers for alternating direction methods on boolean
cube multiprocessors, SIAM J. of Sci. and Stat. Computing 11 (1990), 563–592.

11. X.-H. Sun, Application and accuracy of the parallel diagonal dominant algorithm, Parallel Com-
puting (Aug. 1995), 1241–1267.

12. X.-H. Sun, H. Zhang, and L. Ni, Efficient tridiagonal solvers on multicomputers, IEEE Transactions
on Computers 41 (1992), 286–296.

13. V. Kumar et al., ‘‘Introduction to Parallel Computing: Design and Analysis of Algorithms,’’
Benjamin–Commings, Redwood City, CA, 1994.

14. V. Bala et al., Ccl: A portable and tunable collective communication library for scalable parallel
computers, IEEE Trans. Parallel Distrib. Systems 6 (Feb. 1995), 154–164.

15. C. Hirsch, ‘‘Numerical Computation of Internal and External Flows,’’ Wiley, New York, 1988.

16. X.-H. Sun, M. Pantano, and T. Fahringer, Integrated range comparison for data-parallel
compilation systems, IEEE Trans. Parallel Distrib. Systems 10 (May, 1999), 448–458.

XIAN-HE SUN received his Ph.D. in computer science from Michigan State University. He was a
staff scientist at ICASE and NASA Langley Research Center and was an associate professor in the
Computer Science Department at Louisiana State University. Currently he is an associate professor and
the director of the Scalable Computing Software Laboratory in the Computer Science Department at the
Illinois Institute of Technology (IIT) and a guest faculty member at the Argonne National Laboratory.
Dr. Sun’s research interests include parallel and distributed processing, performance evaluation, software
systems, and scientific computing. He has published intensively in the field and his research has been
supported by DoD, DoE, NASA, NSF, and other government agencies. He is a senior member of IEEE,
a member of ACM, New York Academy of Science, and Phi Kappa Phi, and a distinguished visitor of
the IEEE Computer Science society and has served and is serving as the chairman or on the program
committee for more than 10 different international conferences and workshops. He received the ONR
and ASEE Certificate of Recognition award in 1999 and the Best Paper Award from the International
Conference on Parallel Processing (ICPP01) in 2001.

192 XIAN-HE SUN

	1. INTRODUCTION
	2. ISOSPEED SCALABILITY AND ITS RELATION WITH TIME: AN OVERVIEW
	3. RANGE COMPARISON AND CROSSING POINT ANALYSIS
	4. TRIDIAGONAL SOLVERS A CASE STUDY
	FIG. 1
	FIG. 2
	TABLE 1

	5. EXPERIMENTAL RESULTS
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5
	TABLE 6
	FIG. 3
	FIG. 4

	6. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

