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ABSTRACT
I/O data access is a recognized performance bottleneck of high-end
computing. Several commercial and research parallel file systems
have been developed in recent years to ease the performance bot-
tleneck. These advanced file systems perform well on some appli-
cations but may not perform well on others. They have not reached
their full potential in mitigating the I/O-wall problem. Data access
is application dependent. Based on the application-specific opti-
mization principle, in this study we propose a cost-intelligent data
access strategy to improve the performance of parallel file systems.
We first present a novel model to estimate data access cost of differ-
ent data layout policies. Next, we extend the cost model to calculate
the overall I/O cost of any given application and choose an appro-
priate layout policy for the application. A complex application may
consist of different data access patterns. Averaging the data access
patterns may not be the best solution for those complex applica-
tions that do not have a dominant pattern. We then further propose
a hybrid data replication strategy for those applications, so that a
file can have replications with different layout policies for the best
performance. Theoretical analysis and experimental testing have
been conducted to verify the newly proposed cost-intelligent lay-
out approach. Analytical and experimental results show that the
proposed cost model is effective and the application-specific data
layout approach achieved up to 74% performance improvement for
data-intensive applications.

Categories and Subject Descriptors
D.4.3 [File Systems Management]: Access methods; E.5 [Files]:
Optimization**

General Terms
Performance
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data layout, data-access performance modeling, data-intensive, par-
allel file systems
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1. INTRODUCTION
High-Performance Computing (HPC) applications like scientific

computation and engineering simulations often involve large scale
of data sets. They rely on parallel file systems for high-performance
I/O service. The I/O behaviors of these applications are dependent
on application characteristics and vary considerably from applica-
tion to application in terms of request frequency, access concur-
rency, and data requested. Even for a given application, data access
patterns may change from time to time. A complex application may
not have a single dominant data access pattern, rather consists of
different patterns at different phases. Data access pattern influences
the performance of data access significantly. Unfortunately, there is
no single data layout policy working well for all workloads. A data
layout policy that works well for one type of I/O workload may be a
bad choice for another workload. Therefore, finding an appropriate
data layout policy for a given application has great practical impor-
tance for HPC applications, especially data-intensive applications.
Parallel file systems, such as Lustre [1], GPFS [2], PanFS [3], and
PVFS2 [4] provide several different data layout policies for various
workloads. However, the use of these data layout policies is hectic
and rare due to several limitations. To identify an appropriate data
layout option, the user needs to understand the I/O workload of
his/her application, and needs to understand the underlying parallel
file systems. Even the user is an expert on both sides, the applica-
tion may have different patterns and may not find a perfect match
with the options provided by the underlying file system. More re-
search efforts are needed to explore an intelligent layout selection
strategy and to explore the full potential of parallel file systems. In
this paper, we propose an innovative cost-intelligent application-
specific data layout approach, in which a cost model is developed
to guide the data layout selection. An optimal data layout is deter-
mined automatically for a given application.

The bandwidth growth of storage systems has not kept pace with
the rapid progress of the computing power due to the well-known
Moore’s law effect. The widening performance gap between CPU
and I/O causes the processors to waste a large number of cycles
waiting for data arrival and leads to the so called I/O-wall problem.
Moreover, massive and out-of-order I/O requests further harm the
efficiency of disks and I/O systems. For instance, several I/O re-
quests that are issued to a disk simultaneously can cause the disk
head to move back and forth frequently, which significantly de-
grades the overall data access throughput [5][6][7][8]. Disk per-
formance reduces rapidly when serving requests in an interleav-
ing fashion, and the performance degradation is especially acute
for those read intensive applications, as the clients must wait (in a
non-asynchronous manner) for data arrival from disks. The write
performance may be less critical, because of the widely-used write
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behind technology [9][10]. Data write generally does not need to
wait for the disk to finish.

In data-intensive and high-performance computing systems, the
I/O performance optimization commonly consists of interface opti-
mizations and storage optimizations. Interface optimizations, which
are usually implemented at the I/O middleware layer, mainly focus
on request re-arrangement. Request re-arrangement optimizations
reduce I/O processing overhead by combining several small re-
quests into a large or contiguous request, such as data sieving [11],
List I/O [12], DataType I/O [13], and collective I/O [14][15][11][16].
Storage optimizations, which are usually implemented at the file
server layer, mainly focus on data re-organization, such as data par-
tition [17][18][19][20][21] or replication [22][23] to increase the
degree of I/O parallelism. In other words, while data layout man-
ners and user request patterns seriously affect the I/O performance
in data-intensive applications, current I/O performance optimiza-
tion strategies are not designed to catch data access pattern as an
application-specific feature. This is an inherited limitation of exist-
ing approaches, and we address this limitation well in this study.

Both request and data re-arrangement technologies have made
their own success, however, to the best of our knowledge, little
has been done to investigate a better integration of these two tech-
nologies to improve the overall I/O performance. As I/O interface
and data storage are designed separately in the past, most of the
interface optimizations focus on logical data address, without con-
sidering the physical data layout in the storage systems, which may
limit the potential of the performance improvement. While data re-
organization in parallel file system is often restricted by data access
patterns occurred at the file system level, it needs sufficient applica-
tion I/O workload information, through either profiling, tracing, or
other mechanisms, to better optimize the data layout design of the
application. Since data layout is static in nature, and I/O requests
are dynamic and may not be determined until runtime, optimizing
data layout is not an easy task.

In this paper, we propose a cost-intelligent data access strategy
to link the interface optimization with the data layout optimization
techniques, which is beneficial to various types of I/O workloads.
This study makes the following contributions. (1) We propose a
cost model of data access for parallel file systems, which can es-
timate the response time of data accesses for different data layout
policies. (2) We present a static data layout optimization based on
the overall cost estimation, which can choose an appropriate data
layout for applications with specific I/O patterns. (3) We propose
a cost-intelligent dynamic data access strategy with hybrid replica-
tion for those with mixed I/O workloads in the case that one lay-
out policy cannot benefit all data accesses. (4) We implement the
dynamic replication selection in MPI-IO library, which can auto-
matically dispatch data access to one replica with the lowest access
cost. Our analytical and experimental results show that the newly
proposed cost-intelligent application-specific data layout approach
is very promising and has a real potential in exploring the full po-
tential of parallel file systems.

The rest of this paper is organized as follows. Section 2 briefly
reviews the related work in I/O optimization technologies in data-
intensive and high-performance computing systems. In Section 3,
we present a cost model of data access under different layout poli-
cies in parallel file systems. Section 4 proposes a layout selection
strategy for a given application based on the analysis of overall data
access cost. Section 5 describes a dynamic access strategy with hy-
brid data replications. Experimental and analytical results are pre-
sented in Section 6. Section 7 discusses the applicable spheres and
potential further improvements of the cost-intelligent data access
scheme. Section 8 concludes the paper.

2. RELATED WORK
As data access performance is widely recognized as one of the

major bottlenecks in data-intensive parallel applications, a lot of
efforts have been devoted to the improvement of I/O performance.
The time consumption of an I/O request contains the time spent on
I/O device (including disk head seek time and data read/write time)
and the time spent on network (including an establish time and data
transmission time) in a parallel file system. Most I/O optimiza-
tions focus on reducing the time of these two parts. Generally, the
I/O performance suffers considerably if applications access data by
making many small and non-contiguous I/O requests, as most of
the overheads are on disk seeking and network establishing. Re-
search in software optimization techniques can be roughly clas-
sified into several categories, including request arrangement opti-
mizations, data organization optimizations, caching and prefetch-
ing techniques.

Request arrangement techniques mainly focus on merging a large
number of small and non-contiguous data accesses into a small
number of large and contiguous ones, to reduce the overall I/O
time. These optimizations are usually implemented in runtime I/O
libraries either in the parallel I/O middleware layer or parallel file
system layer. Many research efforts have been devoted in this area
for high I/O performance, such as data sieving [11], DataType I/O
[13], List I/O [12], collective I/O [11][15][14][16], and two-phase
I/O [25], etc. Data sieving technique [11] arranges requests to ac-
cess a single large contiguous chunk containing small pieces of
data from the first request to the last request instead of accessing
each portion separately. DataType I/O [13] and List I/O [12] tech-
niques are user-specified optimizations, that allow users to use one
single I/O function representing rich I/O patterns. Collective I/O
[11][15][14][16] techniques integrate many small concurrent I/O
requests into one large and contiguous I/O request, and are widely
used for parallel I/O optimization.

Research efforts on data organization mainly focus on physi-
cal data layout optimization [18][19][20][22][23][26] among mul-
tiple file server nodes according to the I/O workloads of applica-
tions. Since I/O requests usually fall into several patterns in par-
allel applications, it is possible to re-organize the data layout man-
ner to reduce disk head movements [5][6][7][8], thus to improve
the overall I/O performance. Data partition [18][19] and repli-
cation [22][23][24] techniques are also commonly used to reduce
disk head movements or to increase I/O parallelism. For example,
Zhang et al [24] proposed a data replication scheme to amortize
I/O workloads with multiple replicas to improve the performance,
so that each I/O node only serves requests from one or a limited
number of processes. Most parallel file systems, such as Lustre [1],
GPFS [2], PanFS [3], and PVFS2 [4], provide several data layout
policies. A large number of data layout optimization techniques
are based on transcendental I/O workload, such as trace or profile
analysis [18][19], to guide data partitioning across multiple disks
or storage nodes.

Caching and prefetching can optimize the I/O performance largely
because of locality and regularity of data accesses. In parallel I/O
systems, caching techniques usually aim at storing data at client
side buffer in a collective way [27][28][29][30], so that all I/O
client processes can share data in their memories among multiple
nodes through network. Data prefetching techniques aim at fetch-
ing data in advance, and can be roughly classified into two cate-
gories: informed way and speculative way. Informed data prefetch-
ing [31][32] [33][34] obtains data access patterns before data ac-
cessing, usually based on I/O trace analysis, profiling or hints. While
speculative way usually prefetches data aggressively based on run-
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Data Layout
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Storage Storage Storage Storage

node 1 node 2 node 3

P0 P1 P2 P3

Client node 0 Client node 1

Data Layout

node 0
Storage Storage Storage Storage

node 1 node 2 node 3

P0 P1 P2 P3

Client node 0 Client node 1

2−D1−DH1−DV

Data file accessed by Process 0 (P0)
Data file accessed by Process 0 (P1)

Data file accessed by Process 0 (P2)
Data file accessed by Process 0 (P3)

Figure 1: Three commonly used data layout strategies.

time analysis, it is more suitable for data accesses without explicit
patterns [35][36][37].

In parallel file systems, data is distributed among multiple stor-
age servers to achieve high degree of I/O parallelism. There has
been numerous research efforts devoted to data access performance
and cost analysis in parallel file systems. Welch et al [3] provided
an analysis of the performance for parallel file systems from several
aspects, including I/O performance, system recovery performance,
and metadata operation performance. Several other research work
[17][38][39] analyzed how file system performance can be affected
by many factors of workload such as the distribution manners of
files, I/O request sizes, and I/O access characteristics.

Our approach is different from existing work. We propose a new
cost model to guide data layout optimization for parallel I/O sys-
tems. We also propose a hybrid data replication strategy for ap-
plications with mixed I/O workloads, which can automatically per-
form I/O on one replica with the lowest cost for each data access.

3. COST ANALYSIS MODEL
Parallel file systems such as Lustre[1], GPFS[2], PanFS[3], and

PVFS2[4], provide more than one data layout policy for different
I/O workloads. We consider three most commonly used data lay-
out policies: one dimensional vertical (1-DV for short), one dimen-
sional horizontal (1-DH for short), and two dimensional (2-D for
short) layout. These policies are demonstrated in Figure 1. The
1-DV data layout refers to the policy that data to be accessed by
each I/O client process is stored on one given storage node. The 1-
DH data layout is the simple striping method which distributes data
across all storage nodes in a round-robin fashion. The 2-D data lay-
out refers to the policy in which data to be accessed by each process
is stored on a subset (called storage group) of storage nodes. What
needs to be emphasized is that the data layout is process-oriented,
rather than file-oriented.

Different layout policies in parallel I/O systems lead to differ-
ent interactive behaviors between I/O client processes and storage
nodes, and thus introduce different data access costs. Here the
cost is defined as the time consumption for each data access, and it
mainly consists of two parts: the time spent on the network trans-

mission (denoted as Tnetwork) and the time spent on the local I/O
operations of storage nodes (denoted as Tstorage).

Table 1: Parameters and descriptions

Parameters Description

p Number of I/O client processes.

n Number of storage nodes (file servers).

m Number of processes on one I/O client node.

s Data size of one access.

e Cost of single network connection establishing.

v Network transmission cost of one unit of data.

α Start up time of one disk I/O operation.

β Cost of reading/writing one unit of data.

g Number of storage groups in 2-D layout.

Table 1 lists the most critical factors and the parameters in our
model. Before getting into the details of the cost model, we make
the following reasonable assumptions and considerations.

1. There is no overlap between client nodes and storage nodes,
which means every data access involves network transmis-
sions.

2. Each single I/O access is a contiguous request. Ideally, in
1-DH layout, each data access involves all n storage nodes;
while in 2-D layout, all �n

g
� storage nodes in the correspond-

ing storage group are involved.

3. Although each computing or storage node is featured with
multi-process support, the application-layer parallel opera-
tions have to be handled one by one sequentially at the hard-
ware layer, such as establishing multiple network connec-
tions and the startup operations for multiple data accesses to
local disks.
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Table 2: Cost formulas for three layout policies

Layout Type Condition
Network Cost Tnetwork Storage Cost Tstorage

Establish Te Transmission Tx Startup Ts I/O Trw

1-DV

p ≤ n me msv

� p

n
�α � p

n
�sβ

p > n

m ≤ � p

n
� � p

n
�e � p

n
�sv

m > � p

n
� me msv

1-DH
m ≤ � p

n
� pe

psv

n
pα

psβ

n
m > � p

n
� mne msv

2-D

p ≤ g m�n

g
�e msv

�p

g
�α � p

g
�sβ

�n
g
�

p > g

m ≤ � p
g
�

�n
g
� �p

g
�e � p

g
�sv

�n
g
�

m >
� p

g
�

�n
g
� m�p

g
�e msv

Taking the network cost as an example, the basic idea of con-
structing the cost model is described as follows. For each data
access, the time spent on network, Tnetwork, consists of Te, the
time spent on establishing the connection, and Tx, the time spent
on transferring the data. In general cases of 1-DV data layout,
each storage node is accessed by � p

n
� processes and needs to es-

tablish network connections with all of them sequentially. Here
the number of sequential operations is � p

n
�, thus Te = � p

n
�e and

Tx = � p
n
�sv. The number of sequential operations should be cho-

sen prudentially as network connections are affected by both com-
puting nodes and storage nodes. In our model, we always choose
the larger one when the two numbers of serial operations are differ-
ent between storage nodes and computing nodes. Take 1-DV as an
example, if the number of network connections on client nodes is
larger than that of storage nodes (m > � p

n
�), the number of client

connections m is used, and thus Te = me and Tx = msv.
The storage cost Tstorage consists of Ts, the startup time, and

Trw, the time spent on actual data read/write. Compared with the
network cost, the storage cost is more straightforward. This is be-
cause the number of sequential I/O operations is only determined
by the number of assigned I/O client processes on the storage node.

The complete model covering all situations is constructed based
on all the above mentioned considerations, and the cost formulas
are listed in Table 2. By examining the formulas, we can obtain the
following implications for data layout optimization.

1) While p � n, and s is large, the cost of 1-DH layout policy
is the lowest among all three policies. The reasons are that
each process is served by all n storage nodes and thus can
obtain the maximum degree of parallelism. Also on each
storage node, the small p (number of processes) and large s
make the startup time Ts insignificant compared with data
read/write time Trw.

2) While p ≈ n, 2-D layout policy produces higher bandwidth
than the other two. It provides each process more than one

server for parallel access and also lets each storage node
serve a limited number of processes to avoid excessive disk
seeks.

3) While p 	 n, 1-DV layout policy would be the best choice.
There are too many processes that all storage nodes work at
full capacity. In 1-DV layout each storage node serves the
minimum number of concurrent I/O client processes, hence
the network establishing time and storage startup time are
both less than other data layouts.

4) While the performance of network or client nodes is the bot-
tleneck rather than storage nodes, 2-D or 1-DV layout policy
is better, because 1-DH might overwhelm the load of clients
or network.

4. STATIC LAYOUT BASED ON OVERALL
I/O COST

The proposed cost model is used for estimating data access time
for each single I/O request in parallel I/O systems. Therefore, if
we have a prior knowledge of data accesses for a data-intensive ap-
plication, it can be further used to calculate the overall I/O cost.
Fortunately, most data-intensive applications have regular data ac-
cess patterns, thus I/O behavior can be learned from previous runs.
For example, numerous tools can trace I/O requests for applications
[34][43], thus it is feasible to calculate the overall cost for all data
accesses in different layout policies. By comparing these overall
costs, if a performance difference is found, the natural choice is
to take one layout manner which generates the lowest cost for that
application.

Although there are several variables among the model parame-
ters, for most applications, the runtime variables such as m, p and
n are fixed for each run. In general, for a given system, e, v, α
and β can be regarded as constants. The network transmission time
and read/write time on storage nodes are proportional to data size,
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Figure 2: The hybrid data replication scheme

while I/O startup time with sequential data accesses is smaller than
that of random data read/write.

Based on the overall cost calculated via I/O trace files, we are
able to choose an optimal data layout policy. However, to fully
utilize a data layout policy, we also need to consider some imple-
mentation issues. Application features and specific access patterns
should be brought into consideration. Some revelation and opti-
mization guidelines used in our implementation are discussed as
follows.

1) If the chosen layout policy is 1-DV, there are two cases. In
the first case when all I/O client processes access one shared
file, it is recommended to stripe the file across all storage
nodes with a stripe size equalling to the most common re-
quest size of the application. The stripe size is neither too
large (otherwise a large number of I/O requests from multiple
processes unevenly fall into one storage node), nor too small
(otherwise data requested by each process is striped across
many storage nodes like in 1-DH or 2-D layout). In the sec-
ond case when each process reads/writes an independent file,
it is recommended to place different files on different storage
nodes.

2) If the chosen layout policy is 1-DH, it is suggested to dis-
tribute files with a relatively small stripe size to make full use
of all available storage nodes, so that every I/O request can
benefit from data access with highest degree of parallelism.

3) If the chosen layout is 2-D, there are also two cases. With the
case of all processes accessing one shared file, it is recom-
mended to stripe the file across all storage nodes with a stripe
size that is g

n
times larger of the most common request size,

thus most processes can access data from n
g

storage nodes.
With the case of each process accessing one independent file,
it is recommended to set file striped across n

g
storage nodes

(this is natively supported by many parallel file systems, such
as “pvfs2-xattr -s -k user.pvfs2.num_dfiles...” in PVFS2 and
“lfs setstripe ... -c OST_NUM” in Lustre).

5. DYNAMIC ACCESS WITH HYBRID DATA
REPLICATION

5.1 Hybrid Data Replication Strategy
The trace-based analysis of overall data access cost is practical

for data layout optimization if the I/O workload has specific pat-
terns, which makes it easy to choose one layout policy with the
lowest cost. For example, as mentioned before, 1-DV layout pol-
icy is more suitable for a large number of concurrent I/O processes,
while 1-DH is more applicable for the cases with less number of
concurrent I/O processes and large requests. However, in some ap-
plications, there are mixed I/O workloads with various data access
patterns. The difference of overall data access costs with different
layout policies might be insignificant, thus it is not easy to deter-
mine which policy is the best. For example, during one run of an
application with mixed I/O workloads, there might be a small num-
ber of concurrent I/O requests at one moment, or a burst of I/O
requests at another moment. In addition, the request size could be
large or small at different moments. This makes it impossible for
a static data layout policy to serve all data accesses in the most
efficient way.

In order to solve this problem, we propose a dynamic access
strategy with ‘hybrid’ data replications. Here, ‘hybrid’ means each
file has several copies with different data layout policies in the par-
allel file system. For each data access, the strategy dynamically
chooses one replica with the lowest access cost. Since each data
access is assigned to the best fit replica, the hybrid data replica-
tion strategy can serve various kinds of I/O workloads with high
performance. Figure 2 shows an example of the hybrid replication
strategy. In this example, there are 4 files stored in 4 storage nodes,
and each file has three replications in 1-DV, 1-DH, and 2-D data
layout policies respectively. Each data access will be directed to
one replica with the lowest data access cost, to improve the overall
I/O performance. Generally, data read is simple, but data write is
more complicated. There are a couple of possible solutions to han-
dle write operations. In our design and implementation, we first
write data to one replica with the lowest cost, and then apply lazy
strategies [40][41] to synchronize data to the other replicas. Hence,
for write operations, we only count data access cost on the chosen
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replica, and the cost of lazy data synchronization is considered as a
background operation.

As mentioned in previous sections, three layout policies (1-DV,
1-DH, and 2-D) are defined based on the distribution manners of
data accessed by each process. For the cases that each I/O client
process reads/writes an independent file, it is natural to place sev-
eral replicas with different layout policies. However, for the cases
that all processes access a shared file, replicas with different layout
policies can be defined in terms of stripe size: a big stripe size lets
each process read/write data from a single file server, which is sim-
ilar to 1-DV layout manner; a small stripe size lets each I/O process
be served by all file servers in parallel, which is similar to 1-DH;
and a medium stripe size can be regarded as 2-D layout manner,
where each data access only involves a part of all storage nodes.

Admittedly, the hybrid data replication strategy needs more stor-
age space. There is a tradeoff between data access performance and
storage capacity. With the ever-increasing disk capacities and ever-
increasing performance gap between CPU and disk, the tradeoff
should be increasingly important for some performance-crucial and
data-intensive applications. The hybrid strategy provides a good al-
ternative of existing strategies.

5.2 Implementation
The selection of replica for each data access is determined based

on the cost estimation by the proposed model. We implement a
prototype of cost estimation and dynamic data replica selection in
MPI-IO libraries.

(1) File open and close. With the hybrid data replication strategy,
in each MPI_File_open() or MPI_File_close() func-
tion, the library opens or closes all corresponding replicas
with different layout policies. When opening the first file,
it initiates the layout parameters for all the replicas. When
closing a file, it synchronizes data for all replications.

(2) Data read/write. For each MPI_File_read_xxx() or
MPI_File_write_xxx() function, the dynamic strategy
first calculates I/O costs for all replicas, and then chooses one
replica with the lowest cost to conduct read/write. When data
access finished, it must synchronize data and offsets for all
replicas. The data access procedure is shown as follows.

double cost_tmp;
int rep_idx;

// calculate data access cost for all replicas,
// and then choose the one with the lowest cost
cost_tmp = cost_cal(rep[0]);
for (i=1;i<rep_num;i++){

if(cost_tmp > cost_cal(rep[i])){
cost_tmp = cost_cal(rep[i]);
rep_idx = i;

}
}

//handle data read on the chosen replica
error = PMPI_File_xxx(rep[rep_idx], ...);

//synchronous offsets for all replicas.
off_sync();
...

For data reads, file offsets synchronization is to set the same off-
set for all file descriptors. For data writes, however, it is more com-
plicated. As data is only written to one replica for each request,
it has to synchronize data to other replicas to keep data consis-
tency for different copies. In the prototype, after each data write,
it will issue write requests of other replicas into a request queue.
We design a dedicated data synchronization thread in client side to

perform data write requests in the queue. Because data synchro-
nization is a background operation, each data write can return right
after putting the write requests into the queue, to be simple, we do
not take the write costs of other data replicas into account.

The ‘hybrid replication scheme’ and ‘dynamic data access strat-
egy’ are both transparent to users, and require no modification to
existing programs. When I/O requests are issued, the embedded
cost estimation function calculates data access cost automatically,
and then decides which replica to access. In our experiments pre-
sented in Section 6, we use explicit data replications to show the
effect of this strategy, where replications are fixed with certain lay-
out policies and filenames. Compared with data access overhead,
the overhead of the cost calculation for each data access is trivial
and negligible.

6. EXPERIMENTAL RESULTS AND ANAL-
YSIS

6.1 Experiments Environment
The experiments were conducted on a 65-node Sun Fire Linux-

based cluster, in which there were one head node and 64 comput-
ing nodes. The head node was Sun Fire X4240, equipped with
dual 2.7 GHz Opteron quad-core processors, 8GB memory, and
12 500GB 7200RPM SATA-II drives configured as RAID5 disk
array. The computing nodes were Sun Fire X2200 servers, each
node with dual 2.3GHz Opteron quad-core processors, 8GB mem-
ory, and a 250GB 7200RPM SATA hard drive. All 65 nodes were
connected with Gigabit Ethernet. In addition, there were 17 nodes
(including the head node) connected with 4X InfiniBand network.
All these nodes ran Ubuntu 9.04 (Linux kernel 2.6.28.10) operat-
ing system. The experiments were tested on MPICH2-1.1.1p1 re-
lease and PVFS2 2.8.1 file system. In Ethernet environment, we
employed all 64 computing nodes, of which 16 nodes work as file
servers and the other 48 work as I/O client nodes. In InfiniBand
testing, PVFS2 was configured with 8 file servers, and the rest 8
nodes were served as I/O clients. The head node is used for man-
agement, and there was no overlap between file servers and I/O
client nodes.

Our experiments consisted of two parts. The first part was to
verify the data access cost model, including parameter estimation
and accuracy verification. The second part was to use the overall
I/O cost formulas to optimize the data layout, and also to verify the
efficiency of the hybrid data replication strategy. We adopted the
widely-used parallel file system benchmark IOR and mpi-tile-io to
test the I/O performance. IOR is a software used to test random
and sequential I/O performance of parallel file systems. Mpi-tile-
io is a benchmark that tests the performance of MPI-IO for non-
contiguous access workload. PVFS2 can work with both MPI-IO
and POSIX interfaces, and the former was tested in our experi-
ments. Unless otherwise specified, in all our testing, 1-DV means
that each file was placed in one storage node; 1-DH means each file
was striped across all storage nodes; and 2-D means each file was
striped on 2 storage nodes.

6.2 Model Verification
First we conducted experiments to get the approximations of e,

v, α, and β of the cost model in our experimental platform. In or-
der to get disk startup time and read/write rate, we employed one
storage node to test α and β. We also employed a pair of nodes
to estimate network parameters, e and v, in both Ethernet and In-
finiBand environments. We performed experiments with different
request sizes and repeat these tests thousands of times for both ran-
dom and sequential I/O patterns. We got the parameter values by
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calculating the average values. For disk startup time, we measured
different startup times on storage nodes for sequential and random
data accesses, respectively. The approximate values of parameters
are listed in Table 3.

Table 3: Parameter values of the experimental platform

Parameters Ethernet InfiniBand

e 0.0003 sec 0.0002 sec

v
1

120MB

1

1000MB

α 0.0003 sec (rand), 0.0001 sec (sequent)

β
1

120MB

We then adopted these parameters to verify the accuracy of the
cost model. In the verification experiments, IOR benchmark was
tested over both Ethernet and InfiniBand interconnections. We var-
ied the request size and the number of I/O client processes, with
random and sequential data accesses. Figure 3 shows the I/O per-
formance of model estimation and testing results with InfiniBand
interconnection. In this figure, we compared performance under 1-
DV, 1-DH, and 2-D data layout policies. The x axis represents dif-
ferent request sizes with different numbers of I/O client processes.
The request sizes were 4KB, 16KB, 64KB, 256KB, 1024KB, and
4096KB, respectively. The numbers of client processes were 1, 2,
4, 8, 16, 32, and 64, respectively. As can be observed from the
results, although there are differences in I/O bandwidth between
testing value and model estimation, they show the same trends
as request size and the number of I/O clients increase for all the
three layout strategies. We also notice that when the number of I/O
clients increases, the testing value is higher than the model estima-
tion. One reason is that, the underlying Linux systems adopt buffer
and cache technologies to optimize the I/O performance.

Next, we conducted experiments to verify the ability of the model
to choose one layout policy with the lowest data access cost. Ta-
ble 4 shows the statistical results on accuracy of the model estima-
tion. In this set of experiments, we ran a large number of cases,
and all data access patterns were tested in three data layout policies
with different request sizes and process numbers. We used the cost
model to estimate the I/O performance, and to choose the layout
policy with the lowest data access cost. We compared this chosen
layout policy with actual test results. If the chosen data layout ac-
tually produced the best performance, the estimation was marked
as ‘Correct’. As can be seen from Table 4, the cost model performs
well: the correct rate is around 80% to 85% in InfiniBand environ-
ment, and 88% to 91% with Ethernet interconnection. The results
indicate that, the cost model can choose the best layout policy with
the highest I/O performance for most data access patterns. The cost
model is effective to identify the best layout policy for data inten-
sive applications. From the results, we can also find out that, the
‘Correct Rate’ is a little better for random data access, and also it
is a little better in Ethernet environment. One possible reason is
that some optimizations carried out for sequential data access or in
InfiniBand network are not included in our cost model.

Figure 4 shows the distribution of which layout policies can get
the best I/O performance for different data access patterns. The
results were collected in both Ethernet and IndfiniBand environ-
ments. In this set of experiments, we tested sequential data access
patterns, and varied the request size and the number of concur-
rent I/O processes. For each data access pattern, we measured the
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Figure 3: Comparison of I/O bandwidth between model esti-
mation and actual testing value for three data layout policies.
These results were collected in InfiniBand environment. We
varied the request size and the number of I/O client processes
in this set of experiments. In each subfigure, the upper num-
bers on ‘x’ axis represent request sizes (KB), and the lower ones
represent the numbers of I/O processes.
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Table 4: Statistics of model estimation with different interconnections

Interconnection
Access Total Case Correct Correct
Type Count Count Rate

Ethernet
Random 4200 3821 90.98%

Sequential 4200 3702 88.14%

InfiniBand
Random 2200 1867 84.86%

Sequential 2200 1763 80.14%
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Figure 4: I/O performance comparison among the three data
layout policies. In this set of experiments, we adopted sequen-
tial data access patterns. We varied the number of MPI pro-
cesses and the request size. For each data access pattern, we
tested the I/O bandwidth for all three layout policies and then
compared their performances. We plotted the layout policy
with the actual highest I/O bandwidth for each access pattern.
We also use different colors to represent the best performance
estimated by the proposed cost model.

I/O bandwidth under three data layout policies, and then compared
their performances. We only plotted the layout policy with the best
I/O bandwidth for each access pattern. We also estimated the best
performance by the proposed cost model and marked with differ-
ent colors. From the figure, we observe that, in most cases the best
testing performance is the same as the estimation of the cost model.
We can also observe that, when the request size is very small, the
1-DV layout policy can get the best bandwidth, which is because
the network communication overhead dominated the performance;
when the number of concurrent I/O processes is very high, the 1-
DV can get the best performance, which is because the 1-DV lay-
out can reduce the contention in storage nodes; when the number
of concurrent processes is small and the request size is large, the
1-DH can get the best bandwidth, as data access can benefit from
parallel processing and large data block read/write; when the num-
ber of concurrent I/O processes is medium and the request size is
not too small, the 2-D layout can get the best I/O performance. The
results are consistent with previous analysis of our cost model.

From the experimental results shown above, we can conclude
that, the proposed model can predict the access cost for all data ac-
cess patterns. Although there is a small deviation in performance
between the actual testing and the model estimation, the accuracy
of selecting the layout policy with the best performance is as high
as 80%∼91% among the three layout policies. The proposed cost
model can make accurate estimation on the performance of com-
plex I/O workloads.

6.3 Dynamic Data Access with Hybrid Repli-
cations

We designed experiments to measure the efficiency of dynamic
data access with hybrid replications. We ran two sets of mixed
workloads. For each of them, we ran a set of IOR or mpi-tile-io
instances one by one with different runtime parameters, to simulate
different data access patterns at different moments.

In IOR tests, we varied the process number and request size in
different data layout policies. The process numbers were 1, 2, 4, 8,
16, 32, 48, 96 in Ethernet tests and 1, 2, 4, 8, 16, 32, 64 in Infini-
Band tests, respectively. The request sizes were 4KB, 8KB, 16KB,
32KB, 64KB, 128KB, 256KB, 512KB, 1MB, 2MB, and 4MB, re-
spectively. We configured one independent file with size of 64MB
for each process. We measured the performance of random and
sequential access patterns in 1-DV, 1-DH, and 2-D layout policies.
We also compared them with the cost-intelligent dynamic replica-
tion selection strategy. We set these layout policies to different
directories in PVFS2 system. Since in each test the processes first
wrote the files and then read them back, the cost-intelligent policy
first chose which directory to access based on the cost estimation,
and then wrote/read files in that directory. Figure 5 shows the re-
sults of the IOR workloads, where y axis represents the compara-
tive performance improvement with 1-DH layout policy. Here the
performance is represented by the average I/O bandwidth, which is
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Figure 5: Performance improvement compared to 1-DH (IOR
benchmark). For each case, we compare the performance of
other layout manners with 1-DH layout manner. The perfor-
mance improvements are evaluated on the basis of 1-DH lay-
out manner. Label ‘Cost’ refers to the cost-intelligent dynamic
replication selection strategy.

calculated by the total data size divided by the total running time.
As shown in Figure 5, the proposed cost-intelligent layout policy
can get the best performance with both Ethernet and InfiniBand in-
terconnections. The performance improvement is around 20∼74%
compared with the other three data layout policies. The improve-
ment of I/O performance with Ethernet interconnection is higher
than that with InfiniBand connection.

In mpi-tile-io tests, we varied the tile size (corresponding to
the request size) and the process numbers. The tile sizes were
1024*1024 Bytes, 1024*2048 Bytes, 2048*2048 Bytes, and the
numbers of I/O process were 4, 16, 64, 128, 256, respectively.
Since mpi-tile-io benchmark reads only one big file, we simply
striped the file across all file servers, and made 3 copies with differ-
ent stripe sizes for different replicas. The stripe sizes were 16KB,
256KB, and 4MB, respectively. We measured the performance of
collective I/O, non-collective I/O on each replica respectively, and
then compared them with cost-intelligent policy. Here the cost-
intelligent policy chooses one replica to read based on the data ac-
cess cost estimation. According to the analysis in Section 5, if the
chosen layout was 1-DH, it would access the replica with stripe size
of 16KB; if the chosen layout policy was 1-DV, then it would ac-
cess 4MB replica; and the replica with stripe size of 256KB could
be regarded as 2-D layout manner. Figure 6 shows the results, in
which y axis represents the comparative performance improvement
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Figure 6: Performance improvement compared to 16KB stripe
size (mpi-tile-io benchmark). In this set of experiments, stripe
sizes were 16KB, 256KB, and 4MB. Based on the request size
of data access, the different stripe sizes can be supposed as 1-
DH, 2-D, and 1-DV layout manners, respectively. For each case,
we compare the performance of the other layout manners with
16KB stripe size layout manner. The performance improve-
ments are evaluated on the basis of 16KB stripe layout manner.
Label ‘Cost’ refers to the cost-intelligent dynamic replication
selection strategy.

with the layout policy with 4KB stripe size. The performance im-
provement of dynamic data access with hybrid replication strategy
is around 13∼23% compared with other static layout policies.

For both configurations of mixed IOR workloads and mpi-tile-io
workloads, the hybrid data replication scheme can achieve signif-
icant performance improvement compared with any single static
data layout policy. Therefore, the cost-intelligent dynamic replica-
tion selection strategy is effective for mixed I/O workloads. The
results also show a great potential of trading unutilized storage for
higher I/O performance.

7. DISCUSSION
As described in previous paragraphs, the effectiveness of the pro-

posed cost-intelligent hybrid data layout optimization relies on the
effectiveness of the cost model and the support of the hybrid data
layout. When an application has a dominant data access pattern, the
cost model alone should work well. When an application has more
than one performance sensitive data access pattern, the hybrid data
layout mechanism becomes a good companion to support the cost
model. To be effective, the cost-model needs to be simple and ac-
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curate, whereas the accuracy is in the sense of relative performance
comparison, not the absolute bandwidth. To serve the purpose we
do not consider software overhead, such as the time spent on I/O
client and file server software. We also do not consider the impact
of cache, buffer and lock contention in data access, or the potential
TCP Incast[42][44][45]problem on the performance. We focus on
key parameters, such as latency, transmission time, number of stor-
age group, etc. Analytical and experimental results show that we
have made a good design choice. The cost model is confirmed to
be feasible and able to serve our purpose.

With the fast developing of storage technology, the capacity of
hard disk drives keeps increasing rapidly, while the price reduces
steadily. The proposed hybrid data replication optimization trades
the readily available storage capacity for better I/O performance,
which makes sense for a lot of performance-critical applications.
While how to handle write in the hybrid data layout approach is
discussed, the hybrid approach is designed for read intensive ap-
plications. It is a good alternative for certain applications, not a
solution designed for all. In a nutshell, the cost-intelligent hybrid
data layout scheme proposed in this study is designed to tune data
layout automatically to utilize existing parallel file systems. It helps
users to get better performance, but it will not deliver a better per-
formance than the peak performance that the underlying system can
deliver. We need to understand its limitations.

8. CONCLUSION
Poor I/O performance is a critical hurdle of high-performance

computing systems, especially for data-intensive applications. In-
tensive research has been conducted in recent years in developing
efficient parallel file systems and in data access optimization at dif-
ferent system I/O layers. However, little has been done in link-
ing application-specific data access characteristics and file system
data layout. In this paper, we introduce a cost-intelligent data ac-
cess optimization scheme for data-intensive applications, and have
achieved an application-specific data layout optimization through a
three-fold approach. We first derive a data access cost model for
parallel I/O systems. We then use the model to estimate the overall
I/O cost of different data layout policies and choose an appropriate
layout policy based on application I/O traces. Finally, we propose
a hybrid data replication strategy for mixed workloads, in which
each file has several replications with different layout policies and
each I/O request can automatically choose one replica with the least
access cost.

Experimental testing is conducted under the MPI program envi-
ronment and PVFS2 file system. Experimental results show that
the accuracy of the cost model in identifying an efficient data lay-
out is in the range of 80∼91%, and the hybrid replication strategy
can achieve 13∼74% performance improvement compared to sin-
gle fixed layout policy. In summary, the proposed cost-intelligent
application-specific data layout optimization is feasible and effec-
tive, and should be further investigated to explore the full potential
of parallel file systems. The proposed hybrid replication strategy
trades the available storage capacity for the precious data access
I/O performance. As we illustrate through our study, increasing
the parallelism alone is not sufficient to improve the performance
of parallel file systems. The trade-off between disk capacity and
I/O performance, as proposed by the hybrid replication strategy, is
probably a ‘must have’ mechanism for future high-performance file
systems.

The cost model proposed in this study is designed for one ap-
plication only. In principle, it should be extensible to multiple ap-
plications. The difficulty of the extension is in the separation and
identification of the data access patterns of different applications,

and the interference between them. We plan to conduct a study on
cost-intelligent data layout scheme for multiple applications in the
future.
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