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A three-level parallelization of spatial direct

numerical simulation
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The parallelization of a NASA Navier—Stokes simulation code is carefully and
systematically investigated. Based on numerical. dependence and partition analysis,
three different levels of parallelization have been proposed and implemented. The low-
level parallelization is at the kernel level. A previously developed parallel tridiagonal
solver is used for concurrent processing. The middle-level parallelization solves the
multiple right-hand-sides of the tridiagonal systems concurrently. The high-level
parallelization is at the level of time step iterations. A PVM implementation of the
parallelization has been accomplished. Different communication patterns and different
PVM communication calls have been examined for best performance. The paralielized
code has been tested on two parallel platforms, a cluster of workstations available at
Louisiana State University and the IBM SP2 parallel computer available at Cornell
Supercomputing Center. Experimental results confirm our analytical findings: the three-
level parallelization is feasible and effective. A linear speedup is measured. In addition to
parallelization, through profiling and performance analysis, the original sequential code is
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optimized as well. © 1998 Published by Elsevier Science Limited. All rights reserved.

1 INTRODUCTION

One CFD simulation code which is of interest to many
researchers is the code developed by Man M. Rai and his
colleagues at NASA."? This code (we call it Rai’s code)
adopts fifth-order finite-difference discretizations and
Newton—Rapson-type techniques for solving Navier—
Stokes equations. In our study, the parallelization of Rai’s
code is carefully and systematically investigated. Based on
numerical, dependence, and partition analysis, three different
levels of paralielization have been proposed and implemented
on the sequential code. The low-level parallelization is at the
kernel level. A previously developed tridiagonal solver” is
used along the X-dimension. The middle-level parallelization
solves the multiple right-hand-sides of the tridiagonal systems
concurrently. The high-level parallelization is at the level of
time step iterations. Time step iteration has inherited data and
flow dependence; the next iteration uses the resuit of the cur-
rent iteration. In general, parallelization of time step iteration
is not feasible. However, with a thorough dependence analy-
sis, we identified that, with some manipulation, /O indepen-
dence can be achieved. Output of different iterations can be
conducted concurrently. Parallel 1/O is significant. /O cost
appears to be the single most important contributing factor
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in the performance of Rai’s code. Corresponding to Rai’s
code, the middle-level and high-level paralielization is rea-
lized through the concurrent processing of the outermost
loop of the procedure LHS I and an inner loop of the procedure
CONTROL, respectively.

Our three-level parallelization is based on formal
dependence analysis. The correctness of the parallelization
is guaranteed. A PVM implementation of the parallelization
has been accomplished. Different communication patterns
and different PVM communication calls have been
examined for best performance. The parallelized Rai’s
code has been tested on two parallel platforms, a cluster
of workstations available at Louisiana State University
and the IBM SP2 parallel computer available at Cornell
Supercomputing Center. Experimental results confirm our
analytical findings: the three-level parallelization is feasible
and effective. A linear speedup is measured. In addition to
parallelization, based on profiling and performance analysis,
we have optimized the sequential implementation of the
original version of Rai’s code as well. For instance, with
stride minimization and array reconstruction, we have
reduced sequential I/O time by 47% for our test cases.

2 NUMERICAL MODELING

Rai’s code is developed based on a numerical model given
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by Rai and Moin' for direct numerical simulation. By their
model, the corresponding unsteady, compressible, noncon-
servative formulation of the Navier—Stokes equation in
three spatial dimensions is
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where Q is the vector of dependent variables
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and p is the density; u, v, w are the velocities in the X, Y,
and Z directions, respectively; and p is the pressure. The
components in the above Navier—Stokes equations are
reflected in modules of the Rai’s code. For examples, mod-
ules LHS] and RHSI1 represent contribution from the X
direction; modules LHS2 and RHS2 represent contribution
from the Y direction; and modules LHS3 and RHS3
represent contribution from the Z direction.

In time direction, the second-order-accurate fully upwind
(backward) difference for a first derivative is used. Higher
order difference is used for the unknown vector O of
dependent variables. Let Q" and Q" be the forward and back-
ward differences of the vector @, respectively. Then the
fifth-order-accurate forward- and backward-finite differ-
ences using a seven-point stencil are
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Using the Newton-Raphson-type iterative technique and
factorization technique, eqn (1) can be expressed as
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Eqn (5) (corresponding to Equation 11 in Ref. ') represents
some of the major modules in the sequential code. The
solvers for left-hand-sides are modules LHS1, LHS2 and
LHS3 for the X, Y and Z directions respectively. The sol-
vers for right-hand-sides are RHS1, RHS2, and RHS3 for
the X, ¥, and Z directions respectively. Solver RHSV is for
the remaining terms.

The block tridiagonal equations in the X and Z directions
can be transformed to scalar tridiagonal equations to reduce
about 25% execution time." Utilizing the following equations
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where A™ and A~ are diagonal matrices containing the
positive and negative eigenvalues of A respectively. The
X direction contribution in eqn (5) can be written as
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where D, E and F are all 5 X 5 blocks. This shows that the
equations in X directions can be transformed to scalar tri-
diagonal equations from the original block tridiagonal
equations. A similar formula is valid for the Z direction.
In the Y direction, the block tridiagonal equations remain.

A step-by-step approach to the solution of the above sys-
tem of equations in eqn (5) is given as follows

PIF0IP ™ {GONTIH@IT ™' Q" =R
S, =P 'R=5,

[F(0))S; =S, = S,

$;=PS, =5,

[GO)]Sy =S; = S,

Ss=T""'8, =S5
[H(2)]Ss =55 = S

0 =75, = 0"

=0 +¢ (an
Eigenvalue analysis shows that the equations are diagonal
dominant. This diagonal dominant property is essential for
the Parallel Diagonal Dominant Solver.’
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Fig. 1. Functional decomposition of sequential code.

3 DATA DEPENDENCE AND PARTITION

Functional decomposition is the first step toward analyzing
the dependence structure of the parallelization of a sequen-
tial program. It breaks a main module into sub-modules and
reveals the parent—children relationship within a module.
Rai’s code has 4K lines of code. It consists of 36 subroutines
which can be grouped into several modules. The high level
modules are INITIA, DATA, CONTROL and ouUTPUT. Routines
INITIA and CONTROL are the main modules. They have 12
and 20 children subroutines respectively. Fig. 1 shows the
functional decomposition of Rai’s code.

While subroutine INITIA is only executed once for each
run, the CONTROL module is called at each of the iteration
steps. Execution of the coNTROL module dominates the
overall execution time. The decomposition is obtained
through analysis utilizing Unix utilities.

The sequential code is optimized through loop inter-
change and array reconstruction. For example, the code to
optimize getq is listed here.
getq (original)

do 100 iy = 1, nyn

do 100 iz = 1, nzn

do 1001 =15

gbuf(iy.iz,l) = gbn(i,iunit,iy,iz,])
100 continue

getq (optimized)

do 1001 =15

do 100 iz = l,nzn

do 100 iy = 1,nyn

gbuf(iy,iz,l) = gbn(iy,iz,l,i,iunit)

100 continue
For a study case, the overall run time is reduced by

17.6%, from the original 5324 to 4387 s. The percentage
of time distribution for putq and getg is reduced from
14.8~14.9% to 8.1~8.3%, a reduction of 44.8%. Mean-
while, the sec/call for putq and getq is reduced from
132.2~132.3 t0 59.6~61.2, a reduction of 54%. The profil-
ing result is shown in Fig. 2.

3.1 Data dependence concept

If the iterations of a loop can be executed in random order
and still produce the correct result, it is an independent

loop.* Independent loops are perfect for parallel execution.
But loops are rarely independent. Dependent loops, in which
the dependency involves all the statements in the loop, must
be executed serially on any machine due to their depen-
dency. When the dependency does not involve all the state-
ments in the loop, partial overlapping, or pipelining of
successive iterations may be possible during the execution.

Data dependence is a consequence of the flow of data in a
program. A task that uses a variable in an expression is data
dependent on the task which computes the value of that
variable. If task T1 is data-dependent on task T2, then
execution of task T2 must precede execution of task T1.

Data dependence can be further classified into five cate-
gories:

¢ Flow dependence: A statement S2 is flow-
dependent on statement S1 if an execution path
exists from S1 to S2 and if at least one output of
S1 feeds in as input to S2.

¢ Antidependence: Statement S2 is antidependent on
statement S1 if S2 follows S1 in program order and
if the output of S2 overlaps the input of S1.

e OQutput dependence: Two statements are output-
dependent if they write the same output variable.

¢ 1/O dependence: Read and write refer to the same
file.

¢ Unknown dependence: the dependence cannot be
explicitly determined.

Bernstein’s conditions imply that two processes can be
executed in parallel if they are flow-independent, anti-
independent, and output-independent.’

The above concepts of data dependence are used to ana-
lyze the CFD program for parallelism. Loops perfect for

others
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Fig. 2. Profiling of the sequential code.
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parallelization are discovered at a very high level for both
subroutines CONTROL and LHS1. Some careful manipulation
of data initialization in CONTROL is done to achieve this goal.
Since CONTROL takes more than 90% execution time, its
parallelization is very significant to the overall performance.

3.2 Data dependence analysis

The module cONTROL does the calculation at each iteration
step. It has quite a few nested loops. To get maximum
parallelization. a natural approach is to go to the outermost
loop. Observing Rai's code, the loop 10 is to get the iterative
solution at each iteration step. Since the next iteration
always uses the result of the current one, loop dependence
is internally determined. Actually, it goes through all the X
direction planes to find the solutions along the Y and Z
directions in loop 160 and then swaps to all the Y planes
for solutions in X direction (this is done by LHS!).

The analysis gives the same result. First, there is a flow
dependence from one iteration to the next. While the current
iteration writes Q using PUTQ in loop 300, the next iteration
reads vector Q in loop 150 and loop 160. Second, there is an
anti-flow dependence within each iteration because the
input @ in loop 150 is also the output in loop 300. These
two types of data dependence determine that it is very
unlikely to do parallelization at the loop 10 level. The
next highest loop level is loop 160. It has 13 direct subrou-
tine calls and the out loop goes over all the X direction
planes. It involves solving solutions along the ¥ and Z
directions and calculating all the right-hand-sides which
includes the invocation of subroutines RHS1, RHS2,
RHS3 and RHSV. It should be noticed that RHSV calls
the time-consuming subroutine STRESS directly.

There are several GETQ calls and one PUTQ call within
loop 160. This, however, does not introduce a flow or anti-
flow dependence because they operate on different units of
the @'s. The call GETQ (ifetch, I, geql) seems to be an anti-
flow dependence because the ith iteration uses the qeql
from (i + 4)th iteration X direction. The boundary elements
are exceptions. Two things should be noticed here. First, in
sequential calculation, the (/ + 4)th iteration is done after
the /th iteration and the values of geql used are from the last
time step iteration. Second, if the ith and the (i + 4)th
iterations are grouped into the same process for paralleliza-
tion. the dependence goes away. This uses the exceptions of
boundaries because their elements are not affected by the (i
+ 4)th iteration. This is exactly what comes from the data
dependence analysis: loop 160 can be parallelized perfectly.

What about /O dependence, output dependence and
unknown dependence? Since there is no file writing or reading
mvolved within loop 160, the I/O dependence is eliminated.
Although each iteration updates or writes the PUTQ, there is
no overlapping because they use different / values. This takes
care of the output dependence. Finally, the unknown depen-
dence is eliminated through tracing and analyzing all the called
subroutines. The fact that the arrays do not involve implicit or
nested subscripts makes the analyzing a little easier.

The above description for data dependence analysis
seems to be simple, but the actual work is very complicated.
When the test using random order for loop 160 is done at the
beginning, the results do not agree with the original ones.
This denies the parallelization and data dependence analysis
and it is hard to find a clue where things go wrong. After
several tries, the boundaries and loop bounds (including
upper bound and lower bound) are recognized to be the
critical points. Then the original code is modified based
on this careful observation for correctness and efficiency.
It should be emphasized that the bound may involve its own
initialization. The unknown dependence is not resolved by
itself but by test and manipulation.

The conTROL module contributes most to the overall
execution time. For a study case, in which a detailed timing
profiling is obtained for each subroutine using prof and
gprof, it takes about 90% of the total execution time of
the sequential code. Although the data independence is
not at the highest level, the parallelism achieved above is
a critical part of a successful, feasible parallelization for the
direct simulation. This justifies the effort for the above data
dependence analysis.

The module LHS1 is a tridiagonal solver for solutions in
the X direction. It iterates over all the planes in the ¥ direc-
tion. The data dependence analysis for LHS1 is done in the
same way as for cCONTROL. The analysis gives the conclu-
sions that the highest loop level of LHS1 can be parallelized
perfectly. Numerous random order loop tests have been
done to confirm that the loop is flow independent, anti-
flow independent, and output independent.

Since LHS1 is called within cONTROL and its contribution
is not significant (a study case shows about 10% execution
time), the improvement through partition in LSHI is
limited. However, the partition of LSH1 and that of
CONTROL are independent and can be done together to
achieve better performance.

3.3 Data partition analysis

Since the loops for perfect parallelization are found in
modules coNTROL and LHS1, the data partition is straight-
forward. From the partition point of view, more sub-tasks
correspond to less execution time. However, communica-
tion is necessary for parallel processing of the loops. The
communication overhead is highly determined by the net-
work conditions and by the whole virtual machine system in
the case of PVM. Massive parallelization may not
necessarily lead to a good performance. To reduce the
communication cost, multicasting mode is used for data
communication in the parallel PVM implementation.

4 EXPERIMENTAL RESULTS ON SP2

PVM implementation of Rai’s code has been tested on an
SP2 system and on a cluster of workstations. Here we
present only the experimental results on SP2. Results for a



A three-level parallelization of spatial direct numerical simulation 329

cluster of workstations can be found in Ref. *. The parallel
implementation on SP2 is carried out with an EASY-LL
batch system using architecture RS6K and data encoding
PvmbDataRaw.

The input data and format are:
Input Format

read(5,*) iread, iwrite

read(5,*) niter, nprint

read(5,*) imax, jmax, kmax, iplt, ilcc
read(5,*) datu, cour, amach, reperin

Imput Data:

00

11

768 48 7 728 182

0.002 0.25 2.25 635000.0

PVM is a software system that enables a collection of
heterogeneous computers to be used as a coherent and flex-
ible concurrent computational resource. User programs
written in C, C++ or Fortran access PVM through library
routines. Daemon programs provide communication and
pracess conrtrol between campuiers.

EASY-LL is a collaboration between EASY (Extensible
Argonne Scheduling sYstem) and LoadLeveler which effec-
tively divides the work of job scheduling into two parts.
Loadleveler handles the administrative part: recording
information about the resources available on each node,
the status of jobs, and the status of nodes. EASY takes
care of the job scheduling, that is, when a particular job
should run and on which nodes it should run.

Sequential runs and PVM parallel implementations are
measured on 1. 2, 4, 8, and 16 thin processors of the SP2
mactine, respectively. Rai's original sequentiat code 1s used
for the sequential run. Execution time is measured for both
sequential implementation and PVM implementation with
tasks of 2, 4, 8, and 16 on thin nodes. Average overall
CRALULIOD WITRS and spredup are Wiestiaed i Figs 3 wid
4, respectively.

As more tasks are used, the overall execution time is
reduced. However, the reduction gained fiom each task
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Fig. 3. Overall execution time (s).
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Fig. 4. Overall speedup.

tends to get smaller. The most significant reduction from
each task is seen when two tasks are used and the least is
seen when sixteen tasks are used. This is clearly shown from
both figures. As the task number increases, the speedup
tends to be constant. This observation justifies Amdahl’s
Law: for a fixed workload, the total execution time
decreases as the processor number ilncreases; eventually
the sequential part will dominate the performance because
of the sequential bottle neck, which accounts for the sequen-
tia} fraction of the whole program.”

Our parallelization is implemented at the CONTROL mod-
ule. The execution time of the paratlelized CONTROL module
is also measured for performance study. Five iterations are
conducted in the code to reach a satisfactory solution. The
execution time of each iteration of cONTROL and the corre-
sponding speedup are presented in Figs 5 and 6, respec-
tively. The parallelized coNTrROL module achieves a very
ZOOd speedup. IS measured speedup 18 a tinear function of
the number of processors.

Study cases show that when LHS! is parallelized, the
execution time can be reduced by about 10% from that
e wERR SRy CONTROL 58 pasaldielized.

Notice that the measured time of each iteration does not
include the communication cost between each iteration.

70
60 -

——— Measured

-« -- Keal

CONTROL Loop Time (Sec.)

1 2 4 8 16
Number of
Processors

Fig. 5. Execution time of CONTROL loop iteration (s).
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Fig. 6. Speedup for CONTROL Ioop.

Even without considering the communication overhead, due
to sequential/parallel portion increases, the measured
speedup gets farther away from the ideal speedup when
the number of processors increases. The power of parallel
computing can be utilized more efficiently if scaled comput-
ing is adopted, in which problem size increases with system
size.”

Due to our limited access to the Cornell SP2 machine,
only small-size problems have been tested. However, while
our current experiment results do not show the best speedup
possible, they clearly demonstrate the correctness and effec-
tiveness of our dependence analysis and partition approach.
They have shown the high potential of parallel processing
gain in solving Rai’s code. Also, our results show that using
data encoding PvmDatRaw provides a better performance
than using PvmDataDefault in solving Rai’s code.

S CONCLUSIONS

A linear speedup has been achieved on parallelizing a direct
Navier—Stokes simulation code (Rai's code). The paralleli-
zation consists of several steps. First, profiling is used to
identify the critical section of the code. Then, data depen-
dence and data partition analysis are conducted to reveal the
existence of three levels of concurrency. Finally, a PVM
implementation is fine tuned based on the three levels of
concurrency for parallel processing.

While the parallelized/optimized Rai’s code has its
practical usefulness, the parallelization process itself is
probably more valuable than its results. Rai’s code is a
general CFD simulation code. It is reasonably large and
lacks documentation. We had no previous knowledge of
the code. The parallelization is achieved through the use
of a combination of generally available UNIX utilities
such as gprof and dependence analysis techniques, such as
flow dependence, anti-dependence, output dependence, 1/O
dependence, and unknown dependence analysis, which have
been recently developed for parallel compilers. The experi-
ence gained and lessons learned during this parallelization
project can certainly be applied to parallelize other dust-
deck large scientific simulation packages as well.
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