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Abstract 
 

Group communications are commonly used in 
parallel and distributed environment. However, 
existing migration mechanisms do not support group 
communications. This weakness prevents migration-
based proactive fault tolerance, among others, to be 
applied to MPI applications.   In this study, we propose 
distributed migration protocols with group 
membership management to support process migration 
with group changing. We design and implement a 
process migration enabling MPI library, named MPI-
Mitten, to verify the protocols and enhance current 
MPI platforms for reliability and usability. MPI-Mitten 
is based on MPI standard and can be applied to any 
MPI-2 implementations. Experimental results show the 
proposed distributed process migration protocols are 
solid and the MPI-Mitten system is effective and is 
uniquely supporting migration-based fault tolerance. 

 
 

1. Introduction 
 
The advances in scientific computing platforms and 

architectures challenge the traditional parallel 
programming model. With recent advances on the 
massively parallel technologies, more and more 
supercomputers were built with large amount of 
commodity hardware to achieve high performance and 
low cost-to-performance ratio. With the most recent 
upgrade, IBM Blue Gene/L [1], the current leading 
supercomputer scales up to a peak computing 
capability in excess of 280.6 teraflops with 65536 
dual-processor PowerPC commodity nodes. With large 
amount of commodity hardware in supercomputing, 
reliability becomes a major concern in HPC society. 
The application failure rate increases with the number 
of computing nodes. Commodity hardware, even high 
reliable hardware, which performs well in small 
clusters, may have reliability issues because the 

hardware mean time between failures (MTBF) 
decreases linearly as the computing nodes increases. 
The accumulated error rate limits the scalability of 
applications written in traditional static group 
communication model, which is most widely used in 
parallel computing. Fault tolerant techniques are 
demanded to migrate these applications to modern 
massively parallel supercomputers.   

The requirements of fault tolerance have changed 
for current parallel environments. Conventional 
checkpointing approaches provide fault tolerance by 
periodically saving the application state to reliable 
storages. Periodic recording is costly in both accessing 
time and storage space. The storage needs to be both 
reliable and efficient; however, it is very expensive for 
massively parallel supercomputer to maintain such 
storages for with tens of thousand processes.  

With the advances in hardware sensing, proactive 
fault tolerance has emerged as a new approach of fault 
tolerance. Companies such as Intel and Sun are 
providing products with hardware failure prediction 
functionalities. Analytical [23] and data mining [11] 
techniques are also used to support proactive fault 
tolerance. With proper warning, a process can be 
migrated from its fault-imminent host to a fault-free 
host before the failure occurs. Traditionally used for 
load balancing, process migration has shown its 
increasingly important role in fault tolerance. Existing 
works on process migration do not support proactive 
fault tolerance. Some of them are based on sequential 
applications [21][25]; others support only point-to-
point communication [7] or depend on 
checkpoint/restart model [19]. 

Group communication is a key feature in high 
performance parallel computing platforms such as 
MPI. MPI standards define many collective primitives 
and allow these primitives to be optimized for various 
hardware platforms to achieve better performance. 
However, the static group communication model poses 
great difficulties in dynamic process management and 
fault tolerance. In this paper, we propose new 



  

communication protocols to manage the group 
membership during a migration. We design and 
implement Migration Technology Enabled MPI (MPI-
Mitten), a high-level portable process migration-
enabling library, to verify the newly proposed 
protocols and enhance the current MPI platforms in 
reliability and usability. Experimental results show the 
proposed dynamic process management system is 
feasible and efficient. 

In next section, we give an overview of related 
work on current fault tolerance techniques and their 
communication protocols for MPI applications. Section 
3 describes the problems and our distributed migration 
protocols. We describe the design and implementation 
of the MPI-Mitten in section 4. In section 5, we present 
the experimental tests and result analysis. The 
conclusion and future work are discussed in Section 6. 

 
2. Related Work 

 
Most fault tolerant MPI implementations are based 

on checkpoint/restart model. Examples of such 
implementations include Lam/MPI [22], MPICH-VCL 
[4] and Cocheck [24]. However, these platforms are 
not appropriate to proactive fault tolerance. First, 
periodically checkpointing applications with tens of 
thousands processes are expensive. Second, all 
processes, including non-faulty processes, have to be 
restarted from the previous checkpoint when a failure 
occurs. Third, complicated and expensive 
synchronization protocols are introduced to avoid a 
domino effect where coordinating processes need to 
rollback repeatedly trying to reach a consistent global 
state. Rather than restarting a complete application 
from the previous consistent checkpoint in checkpoint-
based rollback recovery, the pessimistic log-based 
rollback recovery protocols, which are implemented in 
MPICH-V1 [3] and MPICH-V2 [5], bring the restarted 
process forward to the current consist global state by 
replaying the nondeterministic events logged. Each 
nondeterministic event is logged to a stable storage 
before the event affects the application state. The block 
waiting incurs much performance overhead during 
normal execution. FT-MPI uses a different method to 
handle failures based on HARNESS distributed 
computing framework [10]. Starfish MPI [2] provides 
failure detection and recovery at run time but it uses 
low-level strict atomic communication to maintain the 
communication state. MPI-FT [6] supports fault 
tolerance with all communicators building with pre-
defined spare processes, which are utilized when there 
is a failure.  

Our method is novel compared with other fault 
tolerant MPI implementations, which follow the 
checkpoint/restart model and do not support proactive 

fault tolerance with process migration. They are either 
independent implementation of a MPI platform [10][2] 
[22] or based on a specific implementation of MPI 
[16]. None of them is compatible with existing parallel 
programming environments. Our protocol, however, is 
implemented as a portable communication library, 
which is a high-level add-on layer to various existing 
implementations. The performance optimization for 
hardware and communication channels is preserved to 
maximize the performance. In this way, we save much 
effort in redesigning a complete fault tolerant platform 
from scratch.  

 
3. Distributed Migration Protocols 

 
There are three major challenges in supporting 

proactive fault tolerance of parallel applications. They 
are how to manage and update the communication 
group; how to synchronize the processes and maintain 
a consistent global communication state; and how to 
collect the execution state, memory state and I/O state 
and restore them to a new process. 

We solve the third problem in our previous work 
[9]. In this section, we present our protocols to 
synchronize the processes, update the communication 
group view and maintain a consistent global 
communication state. 

 
3.1. Problem Description 

 
A collection of processes forms a communication 

group G and communicates by point-to-point and 
collective communication. Processes are identified by 
their ranks within group G. Communication operations 

include point-to-point and collective primitives. The 
point-to-point primitives involve two peers and can be 
blocked or unblocked, buffered or non-buffered. All 
the processes in group G participate collective 
operations. The communication channels are 
bidirectional First-In-First-Out (FIFO) for each 
communication peer and communication tag. Dynamic 
group management functions, including process 
spawning, merging, splitting etc., and one-sided 

 
Figure 1. Communication group and messages 



  

communication functions, including put, get etc., are 
supported by the underlying platforms. These 
operations are defined in MPI-2 standards and are 

supported by several general MPI-2 platforms [12][15].  
Without loss of generality, we have two 

assumptions. First, the process to-be-migrated can 
properly receive the migration signal from an external 
runtime scheduling system. The migration signal can 
be delivered in different ways including Unix signal, 
monitoring daemon, or shared file system depending 
on the systems. The choice can be made considering 
the characteristics of the platform with parallel 
applications running on it. Second, the group of 
processes can designate a destination machine where to 
spawn a new process. When a group of processes 
spawn a child process, it may optionally use an 
information argument to tell the runtime environment 
where and how to start the process. For simplicity, we 
presented one migration inside one communication 
group in this paper. However the protocols do not 
impose limitation to one group. The MPI application 
with multiple groups can be similarly migrated.  

As shown in Figure 1, there is an imminent failure 
detected on the host of process 1. As a member of 
Group A, the absence of process 1 causes failures to all 
communication operations it participates including all 
collective communication operations and some point-
to-point operations. To replace process 1 in Group A 
with a new process on a stable host, all processes are 
notified about the replacement and update their local 
group representation. All messages transmitted through 
the old communication group, such as msg 1, have to 
be correctly delivered to the new group. Another 
scenario is that one process is waiting for a message 
through the old group, but the sender is migrated and 
the message is sent through the new group. For 
example, process 2 is waiting for msg 2 from process 1 
through group A; however process 1 is replaced by a 
new process x and process x is going to send msg 2 
through the new communication group.  

Collective communications encounter similar 
problem in updating a group. As shown in Figure 2, all 

processes participate in a collective operation but the 
collective operations are asynchronous. That is, when a 
process is migrating because of a predicted fault, the 
other processes, such as process 0 and process 3, may 
have finished this collective operation and all the 
results have been committed. Replacing the 
communication group at this time results in an 
inconsistent collective operation.  

 
3.2. Protocols 

 
Based on our previous experiences in process 

migration [7] on PVM, we propose communication 
protocols for group communication based on common 
parallel programming paradigms, such as the ones 
adopted in MPI. 

All the processes in a group need to synchronize to 
create a new process and update the group membership 
information. We divide the synchronization process 
into two phases: collective synchronization and point-
to-point synchronization. We define a superstep as the 
execution block between any two collective operations. 
Within a superstep, processes can send messages only 
through point-to-point (pt2pt) communication 
channels. After receiving a migration signal, collective 
synchronization protocol brings all the processes in a 
group to the same superstep. Then point-to-point 
synchronization wakes up all processes waiting for 
messages through the old communication group, drains 
the communication buffer and preserves the messages 
in transmission. After synchronization, all the 
processes coordinate to spawn a new process, create a 
new group, and update the group information. The 
preserved communication state, together with local 
process states, is transmitted to the new process for 
continuous execution. 

The group information updating, and local process 
state management are shown in the distributed 
migration protocol given by Figure 3. All processes are 
initialized to asynchronously receive the migration 
command from other members. Once a process Pj 
receives a migration command, it will distribute it to 
all other processes. Then all processes in the same 
group coordinate to reach a synchronization point 
where all processes have a consensus to spawn a new 
process as the destination. All processes in the group 
including the newly spawned process collectively 
replace the migrating process with the newly spawned 
process in a new communicator Cnew. After migration, 
communicator Cnew = {<P0, P1, Pj-1, Pn, Pj+1…Pn-1 >} 
replaces the original communicator C = {<P0, P1, … 
Pn-1 >}. The migrating process Pj and the spawned 
process Pn coordinate to collect, transmit and restore 
the local process state and communication state. After 

 
Figure 2. Collective Communication 



  

migration, Pj exits and Pn replaces Pj in continuous 
execution.   

The key point to migrate a parallel process with 
group communication is how to reach a 
synchronization point while all the processes are 
running asynchronously. The synchronization 
protocols are shown in Figure 4 and Figure 5. The 
synchronization is performed in two steps. First all the 
processes coordinate to reach the same superstep and 

then reach a synchronization point within the 
superstep.    

MPI provides more collective communication 
operations than any other parallel communication 
platform. By optimizing the performance of collective 
operations according to each system and 
communication infrastructure, MPI can achieve higher 
performance. However because collective 
communication operations’ implementation details are 
transparent to the user, the group membership imposes 
great difficulty on high-level group membership 
management. In our protocol, the processes are 
allowed to execute asynchronously for better 
performance. The processes synchronize only when 
some process is commanded to migrate. One-sided 
communication is used to asynchronously obtain the 
process state from other processes. A one-sided 
communication window is created, which is visible to 

P0, P1,…Pn-1  : Initiation 
Initiation() 
Begin 
Asynchronously waiting for migration notification; 
End 
 
Pj: On migration signal to migrate to machine m 
OnMigration() 
Begin  

Send a migration notification (MIG_CMD Pj) to each 
process Pi in application App = {P0, P1,…Pn-1 } 
CollectiveSyn(); 

End 
Pi : Reaching a synchronization point where Pi ∈ { P0, 
P1,…Pn-1 }; 
Pn : After Initiated 
CommUpdate() 
Begin:  

If ( i < n ) then 
Spawn a new process Pn and establishing an 
intercommunicator Cinter = {<P0, P1,…Pn-1 >, <Pn >} 
from communicator C ={<P0, P1,…Pn-1 >}; 

Else if ( i == n ) then 
Process initiation 
Get the parent intercommunicator Cinter; 

End if 
Establish a new intracommunicator Cnew = {<P0, P1, Pj-1, 
Pn, Pj+1…Pn-1 >}; 
Replace C with Cnew; 
If ( i ==  j ) then 

Send local communication state to Pn; 
Local process state collection; 
Send process state to Pn; 
Process finalization 

Else if ( i == n ) then 
Receive local communication state to from Pj; 
Receive process state to Pn; 
Local process state restoration; 
Reset migration and synchronization flags; 

Else 
Repeat pending pt2pt operation op; 
Reset migration and synchronization flags; 

End if 
End 

Figure 3. Distributed Migration Protocol

Pj: After distributing the migration cmd; 
CollectiveSyn() 
Begin 

Lock super_step for read; 
step = 0; 
For i = 0 to n-1 do 

If ( super_stepi > step) then 
step = super_stepi; 

End if 
End for 
For i = 0 to n-1 do 

If ( i <> j ) then 
Send step to Pj 

End if 
End for 
Unlock super_step 

End 
Pi: Before entering a collective communication; where Pi 
∈ {P0, P1,… Pj-1, Pj+1 …Pn-1}; 
BeforeCollective() 
Begin 

Test migration cmd; 
If ( cmd == MIG_CMD Pj ) then 

Recv migration cmd; 
Recv global_superstep from Pj; 

End if 
If ( superstep == global_superstep ) then 

P2Psyn();  
End if 
Increase superstep;  

End  
Pi: After a communication operation; where Pi ∈ { P0, P1, 
…Pn-1 }; 
AfterOp() 
Begin 

If (Pi is in synchronization phase and 
superstep == global_superstep) then 

P2Psyn(); 
End 

Figure 4. Collective Synchronization Protocol 



  

all processes. In this window, each process records its 
collective communication step. After broadcasting the 
migration command, the migrating process checks the 
current superstep of each process and determines the 
maximum step as the global superstep.  The global 
superstep is sent to each process and all processes keep 
execution until all of them reach the global superstep. 

As shown in Figure 5, after all the processes are 
within the same global superstep, the migrating 
process initiates the distributed point-to-point 
synchronization protocol. To break the deadlock 
caused by one process block waiting for the messages 
from the processes which is directly or indirectly 
blocked by the migration (shown in Figure 1), the 
migrating process Pj checks the dependency of each 
process and notifies the corresponding process to wake 
up the blocked process. Another one-sided 
communication window current_op is used to record 
the process’s current operation. After all the processes 
are woken up, the local communication channels are 

drained and all pending messages are stored as the 
local communication state. Then all processes 
collectively spawn new process and update their local 
group information. The migrating process transmits 
memory and communication states to the new process, 
and finalizes its communication channels. The new 
process then resumes execution as Pj in new group. If a 
process is woken up from a blocking point-to-point 
operation, this operation is repeated in the new group. 
After migration, the processes should first lookup the 
local communication state for corresponding message 
before they actually receive messages from their 
communication channel.  

  
4. MPI-Mitten and its Implementation 

 

Migrating processes over MPI platform is 
challenging. The initial impetus for developing 
Message Passing Interface was that each Massively 
Parallel Processor (MPP) vendor created their own 
message-passing API to expedite the parallel 
applications running on their own hardwares. 
However, the performance was optimized on the 
expenses of the interoperability, flexibility and 
manageability. MPI was initiated by a broad group of 
parallel computer users, vendors, and software writers. 
There are at least 28 MPI implementations publicly 
available as listed at [13]. To achieve portability, MPI-
Mitten shall not rely on any particular implementation 
besides MPI standards.  

We implement our protocols on MPI platform with 
dynamic process management and one-sided 
communication. We manage the group membership 
with dynamic process management features supported 
by MPI-2. First all the processes in the same static 
group reach a consensus to spawn a new process on 
designate machine with MPI_Comm_spawn, and then 
the processes in the group and the newly spawned 
process can communicate with an intercommunicator. 
The newly spawned process can get the handler of the 
intercommunicator by MPI_Comm_get_parent. The 
processes work together to merge the 
intercommunicator into an intracommunicator. Then 

 
Figure 6. MPI-Mitten and HPCM 

Pi: reaching the global super step where Pi ∈ {P0, 
P1,…Pn-1}; 
P2PSyn() 
Begin 

If  ( i == j) then 
Lock current_op for read; 
For i = 0 to n-1 do 

If Pi is block waiting for Px, then 
If ( x == j ) then 

wake Px; 
Else 

send MIG_WAKE i to Px;  
End if 

End if 
For i = 0 to n-1 do 

If ( i <> j ) then 
send MIG_END  to Px; 

End if 
End for 

End for 
Unlock current_op; 

Else  
Receive cmd from Pj; 
While ( cmd == MIG_WAKE Px ) Do 

wake Px; 
End while 
Assert (cmd == MIG_END); 

Endif 
If  Pi is woken up by Py, 

Mark the prevous pt2pt operation op as pending; 
Endif 
Drain local communication channel and save the data 
as local communication state; 
CommUpdate() 

End 

Figure 5. Pt2pt Synchronization Protocol



  

MPI_Comm_split is utilized to remove the migrating 
process from the intracommunicator and reorder the 
rank of each process. We use MPI_Win_get and 
MPI_Win_put for one-sided communication and 
MPI_Win_lock and MPI_Win_unlock for 
synchronization and mutual exclusion. All these 
operations are defined in MPI-2.0 standard and there 
are several MPI-2 implementations [15][12] supporting 
or planning to support them.  

Because MPI-2.0 is not fully supported by various 
MPI implementations, some limitations are imposed to 
the implementation of MPI-Mitten on these platforms. 
Popular MPI implementations, Lam/MPI and MPICH, 
do not support multithread level 
MPI_THREAD_MULTIPLE defined by MPI-2.0 
standard. Instead, Lam/MPI supports multithread level 
MPI_THREAD_SERIALIZED, which may cause 
deadlock if used in synchronizing the processes. 
Similarly, MPICH-2 is not thread-safe and can support 
multithread to MPI_THREAD_FUNNELED or 
MPI_THREAD_SERIALIZED level when kernel (as 
opposed to user) threads are used MPICH2. Another 
option using error handler in synchronization is not 
possible because the MPI standard does not define the 
communication state after an error occurs. MPI 
applications are assumed to be error-free. After an 
error is detected, the state of MPI communicator is 
undefined. That is, using a user-defined error handler 
or MPI_ERRORS_RETURN, does not allow users to 
continuously use the communicator after an error is 
detected [14] [15]. We solve synchronization problems 
by allowing the processes to be locked, and we detect 
the locks and break the locks. 

The superstep shown in figure 3-4 is a parameter 
controlling the level of synchronization. In figure 3-4, 
it is set to the value of infinity for an ideal non-
synchronization scenario. In implementation, this value 
can be set to a finite value to allow specific level of 
synchronization. Some level of synchronization can 
help reduce the cost reaching a synchronization point 
but it increases the cost for normal execution. Because 
the communication among the processes implicitly 
imposes synchronization to communication peers, 
setting superstep to infinity does not mean that 
synchronization cost is unlimited. Moreover, users can 
always tradeoff between the normal execution cost and 
synchronization cost to reach a balance. 

The protocols are implemented as a portable library, 
named MPI-Mitten.  MPI-Mitten features: 
Portability - There is no need to modify current MPI 
implementations and the fault tolerance is achieved by 
adding a thin high-level library. 
Scalability - The distributed migration protocols are 
distributed without designated central control. The 

implementation is scalable and does not introduce 
single failure point. 
Minimized overhead - Synchronization is only 
performed during migration when it is necessary. The 
protocols do not introduce extra overhead to point-to-
point operations. The semantics of collective 
operations are preserved and any optimization to a 
particular implementation is still effective.  

The layered system architecture of MPI-Mitten is 
shown in Figure 6. MPI-Mitten is a thin high-level 
library sitting between the MPI layer and the 
application layer. MPI-Mitten enhances the application 
with dynamic management and fault tolerance. An 
external runtime system is provided to monitor the 
status of processes and decide when and where to 
migrate a process when it detects an imminent failure.  

MPI-Mitten can be used on both homogeneous and 
heterogeneous platforms. It uses HPCM middleware to 
preserve local process execution state and maintain 
active disk IO channels. We choose HPCM to preserve 
the local process state because of its heterogeneity and 
efficiency. HPCM (High Performance Computing 
Mobility) is a middleware supporting user-level 
heterogeneous process migration of legacy codes 
written in C, Fortran or other stack-based programming 
languages via denoting the source code. HPCM is 
customized to different scenarios on heterogeneous and 
homogeneous platforms. Live variable analysis, 
pipelining and memory block analysis [9] are 
performed to reduce the migration cost.  

MPI-Mitten is implemented on the HPCM 
middleware but our method is general and works with 
other process migration or checkpointing middleware. 
HPCM middleware [9] and its runtime monitoring and 
decision system [8] are not built-in components of 
MPI-Mitten. Other checkpointing packages to preserve 
the local process state at kernel level [26] or user level 
[20] can also be hooked up to MPI-Mitten.  

 
5. Experiments 

 
To verify the practical feasibility, effectiveness, and 

scalability of our distributed migration protocols, we 
have implemented the MPI-Mitten library and tested it 
on the sunwulf Computer Farm in the Scalable 
Computing Software (SCS) laboratory at the Illinois 
Institute of Technology. Sunwulf is composed of one 
Sun Enterprise 450 server node (sunwulf node), 64 Sun 
Blade workstations 100 (hpc-1 to hpc-64) and 20 Sun 
Fire V210R (hpc-65 to hpc-84) compute nodes. The 
Sun Enterprise 450 server has four CPUs, 8M cache 
and 4GB memory. Each CPU is 480 MHz. The Sun 
Blade computing node has one 500-MHz CPU, 256K 
L2 cache, and 128M memory. The Sun Fire V210R 
computing node has two 1GHz CPUs, 1M L2 cache 



  

and 2GB memory. All the systems are running SunOS 
5.9 operating system. All the Sun Fire 210R servers are 
connected with a Gigabits Ethernet. The maximum 
bandwidth is 89.1M bytes/s. Other communication 
channels within the workstations or between the 
servers and the workstations are 100Mbps internal 
Ethernet. The maximum bandwidth is 11.8M bytes/s. 
The workstations are organized as a “fat tree” 
structure.  

We test two typical MPI benchmarks. One is IS 
benchmark from NAS Parallel Benchmark 3.1 [18]; the 
other is mpptest [17]. NAS IS benchmark tests a 
sorting operation. It fills a vector with random integers, 
and then computes a rank for each number. NAS IS 
benchmark features significant data communication 
especially collective communication so we use it to test 
the effectiveness of the protocols and the normal 
execution overhead. Mpptest is a program that 
measures the performance of some MPI message 
passing routines in a variety of situations [17]. Mpptest 
is a communication intensive benchmark testing the 
communication performance of MPPs. We use 
Mpptest as an application with a combination of 
different MPI operations such as point-to-point 
operations and collective operations. 

The first experiment tests the system overhead 
during normal execution when there is no failure 
detected. Figure 7 shows the MPI-Mitten overhead for 
NAS IS benchmark and Mpptest benchmark. Because 
NAS IS and Mpptest benchmark have more collective 
operations, their experiment results show a worse case 
scenario. The tests are performed for data size from A 
to C where C has maximum problem size. We perform 
the test on 2 to 64 processes. The overall overhead is 
less than 4% and average overhead is 1.22% for NAS 
IS and 3.55% for Mpptest. The overhead is caused by 
the “test” operations and synchronization operations 
before and after communication primitives. Because 
the migration signal is through asynchronous 
communication primitives, this operation does not 
introduce much overhead.   

As shown in Figure 8, the second experiment tests 
the efficiency and scalability of dynamic migration on 
a predicted failure. We test NAS IS and Mpptest with 2 
to 32 processes and find that the synchronization time 
is almost constant while the number of processes 
increase. The average synchronization time is 2.21 
seconds for NAS IS and 2.42 for mpptest. When the 
processes increase to 32, the problem partition size 
decreases, so the total migration cost decreased. The 
group management time increases slowly because there 
is more time spent on the initiation of a new process at 
the destination machine. In this experiment, we 
observe that MPI_Comm_spawn and the new process 
initiation contribute 69.3% to 81.8% of the group 
management cost. The group membership management 
cost depends on the implementation of MPI platform. 
Optimizing the MPI process initialization may improve 
the group management performance.  

 
6. Conclusion and Future Work 

 
We have presented a novel method to provide 

proactive fault tolerance to MPI application based on 
process migration. Three different protocols, 
distributed migration protocol, collective 
synchronization protocol and point-to-point 
synchronization protocol, are proposed to synchronize 
MPI processes and perform migration. We 
implemented the protocols on MPICH-2 platform and 
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developed MPI-Mitten, a prototype MPI library 
enabling MPI applications to migrate for proactive 
fault tolerance, load balancing and other management 
demands. Several important implementation issues are 
identified and addressed. Experimental results confirm 
the feasibility and scalability of the newly proposed 
protocols and the efficiency of MPI-Mitten. The 
synchronization cost and normal execution cost of 
MPI-Mitten is low. Though the implementation is on 
MPI platform, the protocols’ assumptions are general 
and well stated. The protocols can also be used to other 
group communication based parallel environments. 

We proposed and implemented the protocols to 
enable the fault tolerance and dynamic management of 
MPI applications. Currently we did not consider some 
advanced features of MPI such as topology and MPI-
IO. To promote utilization of MPI-Mitten to more 
applications, we plan to extend our current work to 
more complicated scenario in the future. 
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