

MPI-Mitten: Enabling Migration Technology in MPI

Cong Du and Xian-He Sun
Department of Computer Science

Illinois Institute of Technology
Chicago, IL 60616, USA
{ducong, sun}@iit.edu

Abstract

Group communications are commonly used in
parallel and distributed environment. However,
existing migration mechanisms do not support group
communications. This weakness prevents migration-
based proactive fault tolerance, among others, to be
applied to MPI applications. In this study, we propose
distributed migration protocols with group
membership management to support process migration
with group changing. We design and implement a
process migration enabling MPI library, named MPI-
Mitten, to verify the protocols and enhance current
MPI platforms for reliability and usability. MPI-Mitten
is based on MPI standard and can be applied to any
MPI-2 implementations. Experimental results show the
proposed distributed process migration protocols are
solid and the MPI-Mitten system is effective and is
uniquely supporting migration-based fault tolerance.

1. Introduction

The advances in scientific computing platforms and

architectures challenge the traditional parallel
programming model. With recent advances on the
massively parallel technologies, more and more
supercomputers were built with large amount of
commodity hardware to achieve high performance and
low cost-to-performance ratio. With the most recent
upgrade, IBM Blue Gene/L [1], the current leading
supercomputer scales up to a peak computing
capability in excess of 280.6 teraflops with 65536
dual-processor PowerPC commodity nodes. With large
amount of commodity hardware in supercomputing,
reliability becomes a major concern in HPC society.
The application failure rate increases with the number
of computing nodes. Commodity hardware, even high
reliable hardware, which performs well in small
clusters, may have reliability issues because the

hardware mean time between failures (MTBF)
decreases linearly as the computing nodes increases.
The accumulated error rate limits the scalability of
applications written in traditional static group
communication model, which is most widely used in
parallel computing. Fault tolerant techniques are
demanded to migrate these applications to modern
massively parallel supercomputers.

The requirements of fault tolerance have changed
for current parallel environments. Conventional
checkpointing approaches provide fault tolerance by
periodically saving the application state to reliable
storages. Periodic recording is costly in both accessing
time and storage space. The storage needs to be both
reliable and efficient; however, it is very expensive for
massively parallel supercomputer to maintain such
storages for with tens of thousand processes.

With the advances in hardware sensing, proactive
fault tolerance has emerged as a new approach of fault
tolerance. Companies such as Intel and Sun are
providing products with hardware failure prediction
functionalities. Analytical [23] and data mining [11]
techniques are also used to support proactive fault
tolerance. With proper warning, a process can be
migrated from its fault-imminent host to a fault-free
host before the failure occurs. Traditionally used for
load balancing, process migration has shown its
increasingly important role in fault tolerance. Existing
works on process migration do not support proactive
fault tolerance. Some of them are based on sequential
applications [21][25]; others support only point-to-
point communication [7] or depend on
checkpoint/restart model [19].

Group communication is a key feature in high
performance parallel computing platforms such as
MPI. MPI standards define many collective primitives
and allow these primitives to be optimized for various
hardware platforms to achieve better performance.
However, the static group communication model poses
great difficulties in dynamic process management and
fault tolerance. In this paper, we propose new

communication protocols to manage the group
membership during a migration. We design and
implement Migration Technology Enabled MPI (MPI-
Mitten), a high-level portable process migration-
enabling library, to verify the newly proposed
protocols and enhance the current MPI platforms in
reliability and usability. Experimental results show the
proposed dynamic process management system is
feasible and efficient.

In next section, we give an overview of related
work on current fault tolerance techniques and their
communication protocols for MPI applications. Section
3 describes the problems and our distributed migration
protocols. We describe the design and implementation
of the MPI-Mitten in section 4. In section 5, we present
the experimental tests and result analysis. The
conclusion and future work are discussed in Section 6.

2. Related Work

Most fault tolerant MPI implementations are based

on checkpoint/restart model. Examples of such
implementations include Lam/MPI [22], MPICH-VCL
[4] and Cocheck [24]. However, these platforms are
not appropriate to proactive fault tolerance. First,
periodically checkpointing applications with tens of
thousands processes are expensive. Second, all
processes, including non-faulty processes, have to be
restarted from the previous checkpoint when a failure
occurs. Third, complicated and expensive
synchronization protocols are introduced to avoid a
domino effect where coordinating processes need to
rollback repeatedly trying to reach a consistent global
state. Rather than restarting a complete application
from the previous consistent checkpoint in checkpoint-
based rollback recovery, the pessimistic log-based
rollback recovery protocols, which are implemented in
MPICH-V1 [3] and MPICH-V2 [5], bring the restarted
process forward to the current consist global state by
replaying the nondeterministic events logged. Each
nondeterministic event is logged to a stable storage
before the event affects the application state. The block
waiting incurs much performance overhead during
normal execution. FT-MPI uses a different method to
handle failures based on HARNESS distributed
computing framework [10]. Starfish MPI [2] provides
failure detection and recovery at run time but it uses
low-level strict atomic communication to maintain the
communication state. MPI-FT [6] supports fault
tolerance with all communicators building with pre-
defined spare processes, which are utilized when there
is a failure.

Our method is novel compared with other fault
tolerant MPI implementations, which follow the
checkpoint/restart model and do not support proactive

fault tolerance with process migration. They are either
independent implementation of a MPI platform [10][2]
[22] or based on a specific implementation of MPI
[16]. None of them is compatible with existing parallel
programming environments. Our protocol, however, is
implemented as a portable communication library,
which is a high-level add-on layer to various existing
implementations. The performance optimization for
hardware and communication channels is preserved to
maximize the performance. In this way, we save much
effort in redesigning a complete fault tolerant platform
from scratch.

3. Distributed Migration Protocols

There are three major challenges in supporting

proactive fault tolerance of parallel applications. They
are how to manage and update the communication
group; how to synchronize the processes and maintain
a consistent global communication state; and how to
collect the execution state, memory state and I/O state
and restore them to a new process.

We solve the third problem in our previous work
[9]. In this section, we present our protocols to
synchronize the processes, update the communication
group view and maintain a consistent global
communication state.

3.1. Problem Description

A collection of processes forms a communication

group G and communicates by point-to-point and
collective communication. Processes are identified by
their ranks within group G. Communication operations

include point-to-point and collective primitives. The
point-to-point primitives involve two peers and can be
blocked or unblocked, buffered or non-buffered. All
the processes in group G participate collective
operations. The communication channels are
bidirectional First-In-First-Out (FIFO) for each
communication peer and communication tag. Dynamic
group management functions, including process
spawning, merging, splitting etc., and one-sided

Figure 1. Communication group and messages

communication functions, including put, get etc., are
supported by the underlying platforms. These
operations are defined in MPI-2 standards and are

supported by several general MPI-2 platforms [12][15].
Without loss of generality, we have two

assumptions. First, the process to-be-migrated can
properly receive the migration signal from an external
runtime scheduling system. The migration signal can
be delivered in different ways including Unix signal,
monitoring daemon, or shared file system depending
on the systems. The choice can be made considering
the characteristics of the platform with parallel
applications running on it. Second, the group of
processes can designate a destination machine where to
spawn a new process. When a group of processes
spawn a child process, it may optionally use an
information argument to tell the runtime environment
where and how to start the process. For simplicity, we
presented one migration inside one communication
group in this paper. However the protocols do not
impose limitation to one group. The MPI application
with multiple groups can be similarly migrated.

As shown in Figure 1, there is an imminent failure
detected on the host of process 1. As a member of
Group A, the absence of process 1 causes failures to all
communication operations it participates including all
collective communication operations and some point-
to-point operations. To replace process 1 in Group A
with a new process on a stable host, all processes are
notified about the replacement and update their local
group representation. All messages transmitted through
the old communication group, such as msg 1, have to
be correctly delivered to the new group. Another
scenario is that one process is waiting for a message
through the old group, but the sender is migrated and
the message is sent through the new group. For
example, process 2 is waiting for msg 2 from process 1
through group A; however process 1 is replaced by a
new process x and process x is going to send msg 2
through the new communication group.

Collective communications encounter similar
problem in updating a group. As shown in Figure 2, all

processes participate in a collective operation but the
collective operations are asynchronous. That is, when a
process is migrating because of a predicted fault, the
other processes, such as process 0 and process 3, may
have finished this collective operation and all the
results have been committed. Replacing the
communication group at this time results in an
inconsistent collective operation.

3.2. Protocols

Based on our previous experiences in process

migration [7] on PVM, we propose communication
protocols for group communication based on common
parallel programming paradigms, such as the ones
adopted in MPI.

All the processes in a group need to synchronize to
create a new process and update the group membership
information. We divide the synchronization process
into two phases: collective synchronization and point-
to-point synchronization. We define a superstep as the
execution block between any two collective operations.
Within a superstep, processes can send messages only
through point-to-point (pt2pt) communication
channels. After receiving a migration signal, collective
synchronization protocol brings all the processes in a
group to the same superstep. Then point-to-point
synchronization wakes up all processes waiting for
messages through the old communication group, drains
the communication buffer and preserves the messages
in transmission. After synchronization, all the
processes coordinate to spawn a new process, create a
new group, and update the group information. The
preserved communication state, together with local
process states, is transmitted to the new process for
continuous execution.

The group information updating, and local process
state management are shown in the distributed
migration protocol given by Figure 3. All processes are
initialized to asynchronously receive the migration
command from other members. Once a process Pj
receives a migration command, it will distribute it to
all other processes. Then all processes in the same
group coordinate to reach a synchronization point
where all processes have a consensus to spawn a new
process as the destination. All processes in the group
including the newly spawned process collectively
replace the migrating process with the newly spawned
process in a new communicator Cnew. After migration,
communicator Cnew = {<P0, P1, Pj-1, Pn, Pj+1…Pn-1 >}
replaces the original communicator C = {<P0, P1, …
Pn-1 >}. The migrating process Pj and the spawned
process Pn coordinate to collect, transmit and restore
the local process state and communication state. After

Figure 2. Collective Communication

migration, Pj exits and Pn replaces Pj in continuous
execution.

The key point to migrate a parallel process with
group communication is how to reach a
synchronization point while all the processes are
running asynchronously. The synchronization
protocols are shown in Figure 4 and Figure 5. The
synchronization is performed in two steps. First all the
processes coordinate to reach the same superstep and

then reach a synchronization point within the
superstep.

MPI provides more collective communication
operations than any other parallel communication
platform. By optimizing the performance of collective
operations according to each system and
communication infrastructure, MPI can achieve higher
performance. However because collective
communication operations’ implementation details are
transparent to the user, the group membership imposes
great difficulty on high-level group membership
management. In our protocol, the processes are
allowed to execute asynchronously for better
performance. The processes synchronize only when
some process is commanded to migrate. One-sided
communication is used to asynchronously obtain the
process state from other processes. A one-sided
communication window is created, which is visible to

P0, P1,…Pn-1 : Initiation
Initiation()
Begin
Asynchronously waiting for migration notification;
End

Pj: On migration signal to migrate to machine m
OnMigration()
Begin

Send a migration notification (MIG_CMD Pj) to each
process Pi in application App = {P0, P1,…Pn-1 }
CollectiveSyn();

End
Pi : Reaching a synchronization point where Pi ∈ { P0,
P1,…Pn-1 };
Pn : After Initiated
CommUpdate()
Begin:

If (i < n) then
Spawn a new process Pn and establishing an
intercommunicator Cinter = {<P0, P1,…Pn-1 >, <Pn >}
from communicator C ={<P0, P1,…Pn-1 >};

Else if (i == n) then
Process initiation
Get the parent intercommunicator Cinter;

End if
Establish a new intracommunicator Cnew = {<P0, P1, Pj-1,
Pn, Pj+1…Pn-1 >};
Replace C with Cnew;
If (i == j) then

Send local communication state to Pn;
Local process state collection;
Send process state to Pn;
Process finalization

Else if (i == n) then
Receive local communication state to from Pj;
Receive process state to Pn;
Local process state restoration;
Reset migration and synchronization flags;

Else
Repeat pending pt2pt operation op;
Reset migration and synchronization flags;

End if
End

Figure 3. Distributed Migration Protocol

Pj: After distributing the migration cmd;
CollectiveSyn()
Begin

Lock super_step for read;
step = 0;
For i = 0 to n-1 do

If (super_stepi > step) then
step = super_stepi;

End if
End for
For i = 0 to n-1 do

If (i <> j) then
Send step to Pj

End if
End for
Unlock super_step

End
Pi: Before entering a collective communication; where Pi
∈ {P0, P1,… Pj-1, Pj+1 …Pn-1};
BeforeCollective()
Begin

Test migration cmd;
If (cmd == MIG_CMD Pj) then

Recv migration cmd;
Recv global_superstep from Pj;

End if
If (superstep == global_superstep) then

P2Psyn();
End if
Increase superstep;

End
Pi: After a communication operation; where Pi ∈ { P0, P1,
…Pn-1 };
AfterOp()
Begin

If (Pi is in synchronization phase and
superstep == global_superstep) then

P2Psyn();
End

Figure 4. Collective Synchronization Protocol

all processes. In this window, each process records its
collective communication step. After broadcasting the
migration command, the migrating process checks the
current superstep of each process and determines the
maximum step as the global superstep. The global
superstep is sent to each process and all processes keep
execution until all of them reach the global superstep.

As shown in Figure 5, after all the processes are
within the same global superstep, the migrating
process initiates the distributed point-to-point
synchronization protocol. To break the deadlock
caused by one process block waiting for the messages
from the processes which is directly or indirectly
blocked by the migration (shown in Figure 1), the
migrating process Pj checks the dependency of each
process and notifies the corresponding process to wake
up the blocked process. Another one-sided
communication window current_op is used to record
the process’s current operation. After all the processes
are woken up, the local communication channels are

drained and all pending messages are stored as the
local communication state. Then all processes
collectively spawn new process and update their local
group information. The migrating process transmits
memory and communication states to the new process,
and finalizes its communication channels. The new
process then resumes execution as Pj in new group. If a
process is woken up from a blocking point-to-point
operation, this operation is repeated in the new group.
After migration, the processes should first lookup the
local communication state for corresponding message
before they actually receive messages from their
communication channel.

4. MPI-Mitten and its Implementation

Migrating processes over MPI platform is
challenging. The initial impetus for developing
Message Passing Interface was that each Massively
Parallel Processor (MPP) vendor created their own
message-passing API to expedite the parallel
applications running on their own hardwares.
However, the performance was optimized on the
expenses of the interoperability, flexibility and
manageability. MPI was initiated by a broad group of
parallel computer users, vendors, and software writers.
There are at least 28 MPI implementations publicly
available as listed at [13]. To achieve portability, MPI-
Mitten shall not rely on any particular implementation
besides MPI standards.

We implement our protocols on MPI platform with
dynamic process management and one-sided
communication. We manage the group membership
with dynamic process management features supported
by MPI-2. First all the processes in the same static
group reach a consensus to spawn a new process on
designate machine with MPI_Comm_spawn, and then
the processes in the group and the newly spawned
process can communicate with an intercommunicator.
The newly spawned process can get the handler of the
intercommunicator by MPI_Comm_get_parent. The
processes work together to merge the
intercommunicator into an intracommunicator. Then

Figure 6. MPI-Mitten and HPCM

Pi: reaching the global super step where Pi ∈ {P0,
P1,…Pn-1};
P2PSyn()
Begin

If (i == j) then
Lock current_op for read;
For i = 0 to n-1 do

If Pi is block waiting for Px, then
If (x == j) then

wake Px;
Else

send MIG_WAKE i to Px;
End if

End if
For i = 0 to n-1 do

If (i <> j) then
send MIG_END to Px;

End if
End for

End for
Unlock current_op;

Else
Receive cmd from Pj;
While (cmd == MIG_WAKE Px) Do

wake Px;
End while
Assert (cmd == MIG_END);

Endif
If Pi is woken up by Py,

Mark the prevous pt2pt operation op as pending;
Endif
Drain local communication channel and save the data
as local communication state;
CommUpdate()

End

Figure 5. Pt2pt Synchronization Protocol

MPI_Comm_split is utilized to remove the migrating
process from the intracommunicator and reorder the
rank of each process. We use MPI_Win_get and
MPI_Win_put for one-sided communication and
MPI_Win_lock and MPI_Win_unlock for
synchronization and mutual exclusion. All these
operations are defined in MPI-2.0 standard and there
are several MPI-2 implementations [15][12] supporting
or planning to support them.

Because MPI-2.0 is not fully supported by various
MPI implementations, some limitations are imposed to
the implementation of MPI-Mitten on these platforms.
Popular MPI implementations, Lam/MPI and MPICH,
do not support multithread level
MPI_THREAD_MULTIPLE defined by MPI-2.0
standard. Instead, Lam/MPI supports multithread level
MPI_THREAD_SERIALIZED, which may cause
deadlock if used in synchronizing the processes.
Similarly, MPICH-2 is not thread-safe and can support
multithread to MPI_THREAD_FUNNELED or
MPI_THREAD_SERIALIZED level when kernel (as
opposed to user) threads are used MPICH2. Another
option using error handler in synchronization is not
possible because the MPI standard does not define the
communication state after an error occurs. MPI
applications are assumed to be error-free. After an
error is detected, the state of MPI communicator is
undefined. That is, using a user-defined error handler
or MPI_ERRORS_RETURN, does not allow users to
continuously use the communicator after an error is
detected [14] [15]. We solve synchronization problems
by allowing the processes to be locked, and we detect
the locks and break the locks.

The superstep shown in figure 3-4 is a parameter
controlling the level of synchronization. In figure 3-4,
it is set to the value of infinity for an ideal non-
synchronization scenario. In implementation, this value
can be set to a finite value to allow specific level of
synchronization. Some level of synchronization can
help reduce the cost reaching a synchronization point
but it increases the cost for normal execution. Because
the communication among the processes implicitly
imposes synchronization to communication peers,
setting superstep to infinity does not mean that
synchronization cost is unlimited. Moreover, users can
always tradeoff between the normal execution cost and
synchronization cost to reach a balance.

The protocols are implemented as a portable library,
named MPI-Mitten. MPI-Mitten features:
Portability - There is no need to modify current MPI
implementations and the fault tolerance is achieved by
adding a thin high-level library.
Scalability - The distributed migration protocols are
distributed without designated central control. The

implementation is scalable and does not introduce
single failure point.
Minimized overhead - Synchronization is only
performed during migration when it is necessary. The
protocols do not introduce extra overhead to point-to-
point operations. The semantics of collective
operations are preserved and any optimization to a
particular implementation is still effective.

The layered system architecture of MPI-Mitten is
shown in Figure 6. MPI-Mitten is a thin high-level
library sitting between the MPI layer and the
application layer. MPI-Mitten enhances the application
with dynamic management and fault tolerance. An
external runtime system is provided to monitor the
status of processes and decide when and where to
migrate a process when it detects an imminent failure.

MPI-Mitten can be used on both homogeneous and
heterogeneous platforms. It uses HPCM middleware to
preserve local process execution state and maintain
active disk IO channels. We choose HPCM to preserve
the local process state because of its heterogeneity and
efficiency. HPCM (High Performance Computing
Mobility) is a middleware supporting user-level
heterogeneous process migration of legacy codes
written in C, Fortran or other stack-based programming
languages via denoting the source code. HPCM is
customized to different scenarios on heterogeneous and
homogeneous platforms. Live variable analysis,
pipelining and memory block analysis [9] are
performed to reduce the migration cost.

MPI-Mitten is implemented on the HPCM
middleware but our method is general and works with
other process migration or checkpointing middleware.
HPCM middleware [9] and its runtime monitoring and
decision system [8] are not built-in components of
MPI-Mitten. Other checkpointing packages to preserve
the local process state at kernel level [26] or user level
[20] can also be hooked up to MPI-Mitten.

5. Experiments

To verify the practical feasibility, effectiveness, and

scalability of our distributed migration protocols, we
have implemented the MPI-Mitten library and tested it
on the sunwulf Computer Farm in the Scalable
Computing Software (SCS) laboratory at the Illinois
Institute of Technology. Sunwulf is composed of one
Sun Enterprise 450 server node (sunwulf node), 64 Sun
Blade workstations 100 (hpc-1 to hpc-64) and 20 Sun
Fire V210R (hpc-65 to hpc-84) compute nodes. The
Sun Enterprise 450 server has four CPUs, 8M cache
and 4GB memory. Each CPU is 480 MHz. The Sun
Blade computing node has one 500-MHz CPU, 256K
L2 cache, and 128M memory. The Sun Fire V210R
computing node has two 1GHz CPUs, 1M L2 cache

and 2GB memory. All the systems are running SunOS
5.9 operating system. All the Sun Fire 210R servers are
connected with a Gigabits Ethernet. The maximum
bandwidth is 89.1M bytes/s. Other communication
channels within the workstations or between the
servers and the workstations are 100Mbps internal
Ethernet. The maximum bandwidth is 11.8M bytes/s.
The workstations are organized as a “fat tree”
structure.

We test two typical MPI benchmarks. One is IS
benchmark from NAS Parallel Benchmark 3.1 [18]; the
other is mpptest [17]. NAS IS benchmark tests a
sorting operation. It fills a vector with random integers,
and then computes a rank for each number. NAS IS
benchmark features significant data communication
especially collective communication so we use it to test
the effectiveness of the protocols and the normal
execution overhead. Mpptest is a program that
measures the performance of some MPI message
passing routines in a variety of situations [17]. Mpptest
is a communication intensive benchmark testing the
communication performance of MPPs. We use
Mpptest as an application with a combination of
different MPI operations such as point-to-point
operations and collective operations.

The first experiment tests the system overhead
during normal execution when there is no failure
detected. Figure 7 shows the MPI-Mitten overhead for
NAS IS benchmark and Mpptest benchmark. Because
NAS IS and Mpptest benchmark have more collective
operations, their experiment results show a worse case
scenario. The tests are performed for data size from A
to C where C has maximum problem size. We perform
the test on 2 to 64 processes. The overall overhead is
less than 4% and average overhead is 1.22% for NAS
IS and 3.55% for Mpptest. The overhead is caused by
the “test” operations and synchronization operations
before and after communication primitives. Because
the migration signal is through asynchronous
communication primitives, this operation does not
introduce much overhead.

As shown in Figure 8, the second experiment tests
the efficiency and scalability of dynamic migration on
a predicted failure. We test NAS IS and Mpptest with 2
to 32 processes and find that the synchronization time
is almost constant while the number of processes
increase. The average synchronization time is 2.21
seconds for NAS IS and 2.42 for mpptest. When the
processes increase to 32, the problem partition size
decreases, so the total migration cost decreased. The
group management time increases slowly because there
is more time spent on the initiation of a new process at
the destination machine. In this experiment, we
observe that MPI_Comm_spawn and the new process
initiation contribute 69.3% to 81.8% of the group
management cost. The group membership management
cost depends on the implementation of MPI platform.
Optimizing the MPI process initialization may improve
the group management performance.

6. Conclusion and Future Work

We have presented a novel method to provide

proactive fault tolerance to MPI application based on
process migration. Three different protocols,
distributed migration protocol, collective
synchronization protocol and point-to-point
synchronization protocol, are proposed to synchronize
MPI processes and perform migration. We
implemented the protocols on MPICH-2 platform and

0

5

10

15

20

2 4 8 16 32 64
processes

 % IS-A
IS-B
IS-C
Mpptest

Figure 7. MPI-Mitten Overhead

0

2

4

6

8

10

12

14

16

seconds

2 4 8 16 32
NAS IS-C

local state migration

group managem ent

synchronization

0

2

4

6

8

1 0

1 2

1 4

1 6

second s

2 4 8 16 3 2
M pptest

local sta te migra tion

group managem ent

synchronization

Figure 8. Migration Timing

developed MPI-Mitten, a prototype MPI library
enabling MPI applications to migrate for proactive
fault tolerance, load balancing and other management
demands. Several important implementation issues are
identified and addressed. Experimental results confirm
the feasibility and scalability of the newly proposed
protocols and the efficiency of MPI-Mitten. The
synchronization cost and normal execution cost of
MPI-Mitten is low. Though the implementation is on
MPI platform, the protocols’ assumptions are general
and well stated. The protocols can also be used to other
group communication based parallel environments.

We proposed and implemented the protocols to
enable the fault tolerance and dynamic management of
MPI applications. Currently we did not consider some
advanced features of MPI such as topology and MPI-
IO. To promote utilization of MPI-Mitten to more
applications, we plan to extend our current work to
more complicated scenario in the future.

Acknowledgments

This research was supported in part by national
science foundation under NSF grant SCI-0504291,
CNS-0406328, EIA-0224377, and ANI-0123930.

References

[1] N. R. Adiga, G. Almasi, G. S. Almasi, Y. Aridor et al.
"An overview of the BlueGene/L supercomputer". In Proc.
Supercomputing (SC2002), Baltimore, MD, Nov. 2002.
[2] A. Agbaria and R. Friedman. "Starfish: Fault-tolerant
dynamic mpi programs on clusters of workstations". In 8th
International Symposium on High Performance Distributed
Computing, 1999.
[3] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, et. al,
"MPICH-V: Toward a scalable fault tolerant MPI for volatile
nodes," in Supercomputing (SC2002), Baltimore, Nov. 2002.
[4] A. Bouteiller, H.-L. Bouziane, P. Lemarinier, T.
Hérault, and F. Cappelo, "Hybrid preemptive scheduling for
mpi applications on the grids," in 5th IEEE/ACM Workshop
on Grid Computing, Nov. 2004.
[5] A Bouteiller, F Cappello, T Herault, G Krawezik, et. al.
"MPICH-V2: a fault tolerant MPI for volatile nodes based on
pessimistic sender based message logging", in
Supercomputing (SC2003), Phoenix, AZ, Nov. 2003.
[6] R. Batchu, J. Neelamegam, Z. Cui, M. Beddhua, A.
Skjellum, Y. Dandass, and M. Apte. "Mpi/ft: Architecture
and taxonomies for fault-tolerant, messagepassing
middleware for performance-portable parallel computing". In
Proc. IEEE International Symposium on Cluster Computing
and the Grid, Melbourne, Australia, May 2001.
[7] K. Chanchio, X-H. Sun, "Communication state transfer
for the mobility of concurrent heterogeneous computing,"
IEEE Trans. on Computers, vol. 53, No. 10, pp:1260-1273,
2004.
[8] C. Du, S. Ghosh, S. Shankar, and X.-H. Sun, "A runtime
system for autonomic rescheduling of MPI programs," in

Proc. International Conference of Parallel Processing,
Montreal, Canada, August 2004.
[9] C. Du, X.-H. Sun and K. Chanchio, "HPCM: A pre-
compiler aided middleware for the mobility of legacy code,"
in Proc. IEEE Cluster Computing Conference, Hong Kong,
Dec. 2003. Software available at: http://archive.nsf-
middleware.org/NMIR4/contrib/download.asp.
[10] Fagg, G., Angskun, T., Bosilca, G., Pjesivac-Grbovic,
J., Dongarra, J. "Scalable fault tolerant MPI: extending the
recovery algorithm," Euro PVM/MPI, Sorrento (Naples),
Italy, Sep, 2005.
[11] G. Hamerly, C. Andelkan, "Bayesian approaches to
failure prediction for disk drives," In Proc. 18th International
Conference on Machine Learning, Williams College, MA,
Jun. 2001.
[12] "LAM/MPI Parallel Computing," http://www.lam-
mpi.org/
[13] "MPI Implementation List," http://www.lam-
mpi.org/mpi/implementations/fulllist.php?show_inactive=1
[14] "MPI: A message-passing interface standard", http://
www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
[15] “MPICH2”, http://www-unix.mcs.anl.gov/mpi/mpich2/
[16] "MPICH-V", http://www.lri.fr/~bouteill/MPICH-V/
[17] "MPPTEST",http://www-unix.mcs.anl.gov/mpi/mpptest
[18] "NAS Parallel Benchmarks,"
http://www.nas.nasa.gov/Software/NPB/
[19] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason
Nieh, “The design and implementation of Zap: A system for
migrating computing environment”, in Proc. USENIX 5th
OSDI, Dec. 2002.
[20] J. S Plank, M Beck, G Kingsley, K Li, "Libckpt:
transparent checkpointing under Unix," USENIX, 1995.
[21] P. Smith and N. Hutchinson, "Heterogeneous process
migration: The Tui system," Software - Practice and
Experience, vol 28, No.6, pp.611-639, 1998.
[22] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J.
Duell, P. Hargrove and E. Roman. "The LAM/MPI
checkpoint/restart framework: system-Initiated
checkpointing". In LACSI Symposium. Santa Fe, NM.
October 2003.
[23] R. K. Sahoo, A. Sivasubramaniam, M. S. Squillante and
Y. Zhang, "Failure data analysis of a large-scale
heterogeneous server environment," in Proc. Intl. conf. on
dependable systems and networks(DSN’04), Florence, Italy,
Jun. 2004
[24] G. Stellner. Cocheck: "Checkpointing and process
migration for MPI," In Proc. IPPS, Honolulu, Hawaii, April
1996.
[25] M. M. Theimer and B. Hayes, "Heterogeneous process
migration by recompilation," in Proc. 11th IEEE
International Conference on Distributed Computing Systems,
Arlington, TX, Jun. 1991.
[26] P Tullmann, J Lepreau, B Ford, M Hibler, "User-level
checkpointing through exportable kernel state," in Proc. Intl.
Workshop on Object Oriented Operating System, 1996.

