
 1093

Toward a better parallel performance
metric *

Xian-He Sun and John L. Gustafson
Ames Laboratory, Iowa State University, Ames, IA 50011-3020, USA

Received April 1991
Revised June 1991
Errata corrected by second author, August 2013

Abstract

Sun, X.-H. and J.L. Gustafson, Toward a better parallel performance metric, Parallel Computing 17 (1991)
1093-1109.

The traditional definition of ‘speedup’ as the ratio of sequential execution time to parallel execution time has
been widely accepted. One drawback to this metric is that it tends to reward slower processors and inefficient
compilation with higher speedup. It seems unfair that the goals of high speed and high speedup are at odds with
each other. In this paper, the ‘fairness’ of parallel performance metrics is studied. Theoretical and experimental
results show that the most commonly used performance metric, parallel speedup, is ‘unfair’, in that it favors
slow processors and poorly coded programs. Two new performance metrics are introduced. The first one, sizeup,
provides a ‘fair’ performance measurement. The second one is a generalization of speedup – the generalized
speedup, which recognizes that speedup is the ratio of speeds, not times. The relation between sizeup, speedup,
and generalized speedup are studied. The various metrics have been tested using a real application that runs on
an nCUBE 2 multicomputer. The experimental results closely match the analytical results.

Keywords. Parallel processing; performance measurement; parallel speedup; scaled speedup; sizeup

1. Introduction

Parallel processing has become a common approach for achieving high performance. Various
parallel computer systems have been constructed and many parallel algorithms have been
developed. However, effective techniques for evaluating the performance of these parallel
machines and algorithms are lacking. There is no well-established metric to measure the
performance gain of parallel processing. The most frequently used performance metric of
parallel processing is parallel speedup. Almost twenty years ago, Ware [1] first summarized
Amdahl’s [2] arguments as a speedup formula, which today is widely known as Amdahl’s law.
Amdahl’s law shows the limitation of parallel processing and was the only well-known
performance criterion of parallel processing until scientists at Sandia National Laboratories
questioned its underlying assumptions [3]. Based on their experimental results, Gustafson et al.
revised Amdahl’s law and proposed the scaled speedup principle [3, 4]. The argument of
Gustafson et al. is that parallel processing gives the ability to tackle previously out-of-reach
large-scale problems. So, as problem size is increased with computation power, the serial
component as defined by Amdahl cannot be regarded as constant. Since then, intensive

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

* This research is supported by the Applied Mathematical Sciences Program of the Ames Laboratory, which is
operated for the U.S. Department of Energy under contract No. W-7405-ENG-82.

1094 X.-H. Sun, J.L. Gustafson
	

research has been conducted to seek a better understanding of parallel speedup. In 1989,
Van-Catledge [5] and Zhou [6] studied the relation between Amdahl’s law and scaled speedup;
Eager et al. [7] studied the speedup versus efficiency, Hockney [8] introduced the parameter f1/2
to characterize the influence of memory references, and Barton and Withers [9] developed a
speedup model which considers the manufacturing cost of processors as a performance factor.
In 1990, the time constraint of scaled speedup was studied by Worley [10], the relation
between different speedup models was studied by Sun and Ni [11], and a new metric was
proposed to reveal aspects of the performance that are not easily discerned from other metrics
[12].

Traditionally, speedup is defined as sequential execution time over parallel execution time.
However, there are subtle differences in the way this definition has been interpreted. One
definition emphasizes how much faster a problem can be solved with parallel processing based
on partial ordering descriptions of the algorithm. Thus, the chosen sequential algorithm is the
best sequential algorithm available. This definition is referred to as absolute speedup. Another
definition of speedup, called relative speedup, deals with the inherent parallelism as the single
processor execution time of the parallel algorithm, and defines the speedup as

 𝑆! =
execution time using one processor
execution time using 𝑁 processors . (1)

The reason for using relative speedup is that the performance of parallel algorithms varies with
the number of available processors. Comparing the algorithm itself with a different number of
processors gives information on the variations and degradations of parallelism. While absolute
speedup has been used to evaluate parallel algorithms, relative speedup is favored [13],
especially in performance studies. The relative speedup (1) was used in all the above referenced
studies. In this study we also focus on relative speedup, and we reserve the phrase traditional
speedup for definition (1), unless we explicitly state otherwise.

In contrast with all the above referenced work, in our research the ‘fairness’ of performance
metrics of parallel algorithms is studied. Experimental and analytical results are first presented to
show that the traditional speedup favors slow processors and poorly-coded programs. Then,
a new performance measurement metric, sizeup, is proposed. Our results show that the new
performance metric provides a better ‘fairness’ than the traditional speedup. Another perfor-
mance metric, which is a generalization of traditional speedup and which first appeared in [14],
is also described and studied. Finally, the relation between sizeup, the generalized speedup, and
the traditional speedup is presented. A real, scientific application is used to test the various
metrics. The implementation results using the application provide confirmation of our theoretical
results.

We assume the target machines are homogeneous, distributed-memory multiprocessors. We
do not specifically consider vector architectures, because they can be considered a special form
of parallel execution. The assumption of distributed memory is similarly unrestrictive. If we
take the network and memory contention as the communication cost, then all the presented
results can be extended to shared-memory parallel systems directly.

This paper is organized as follows: In section 2 we introduce some preliminary information
and terminology. The need for better-defined performance metrics is discussed in section 3. A
new performance metric, sizeup, is introduced in section 4. Analytical and empirical results
suggest that sizeup provides a performance measure that is better than traditional speedup
when the goal is to solve larger problems rather than reduce execution time. In section 5,
another performance metric, which is a generalization of traditional speedup, is introduced.
The relation between the new metrics and traditional speedup is also given in section 5.
Conclusions and remarks are given in section 6.

 Toward a better parallel performance metric

1095

2. Background and terminology

In our study we consider two main degradations of parallelism, load imbalance and

communication cost. The former degradation is due to the uneven distribution of workload
among processors, and is application-dependent. The latter degradation is due to the communi-
cation processing and latency. It depends on both the application and the parallel computer
under consideration. To give an accurate performance measurement, both of the degradations
need to be considered. Load imbalance is measured by degree of parallelism.

Definition 1. The degree of parallelism is an integer that indicates the maximum number of
processors that can be busy computing at a particular instant in time, given an unbounded
number of available processors.

The degree of parallelism is a function of time. By drawing the degree of parallelism over the
execution time of an algorithm, a graph can be obtained. We refer to this graph as the
parallelism profile. Some software tools are available to determine the parallelism profile of
large scientific and engineering applications [15]. Figure 1 is the parallelism profile of a
hypothetical divide-and-conquer computation [16]. By accumulating the time spent at each
degree of parallelism, the profile can be rearranged to form the shape of the algorithm [17]
(Fig. 2). The different shadings depict the time period of different operation costs which are
defined in Definition 2.

Let W be the amount of work (computation) of an algorithm. Let Wi be the amount of work
executed with degree of parallelism i, and m be the maximum degree of parallelism. Thus,
𝑊 = 𝑊!

!
!!! . Sequential (scalar) execution time can be written in terms of work:

 Sequential execution time = Amount of work × Processor cycles per unit of workMachine clock rate . (2)

Note that we do not break out a startup time and a time per element as would be appropriate
for vector arithmetic. Vectorization can be treated as a special form of parallelism. An
application may contain more than one work type. Different work types may require different
numbers of processor cycles and, therefore, consume different execution times. Depending on
how the work is defined (e.g., instructions, floating point operations), how the work is measured
(e.g., the number of floating point operations required for finding a square root), and the
architecture of the parallel system (e.g. the size of the cache), the difference of cycle require-
ments may be due to various reasons. One simple reason is the ratio of computation to memory
reference. Hockney studied the influence of computation to memory reference ratio on the

Fig. 1. Parallelism profile of an application.

Degree
of

Parallelism

Time0 T

1

2

3

4

1096 X.-H. Sun, J.L. Gustafson
	

Fig. 2. Shape of the application.

Fig. 3. Dot product.

performance of vector machines [8]. Here, we use two basic linear algebra operations, DOT and
AXPY [18], to demonstrate how the ratio of computation and memory reference influences
execution time. We count floating-point add and floating-point multiply each as one floating
point operation, which takes one processor cycle to finish, and assume that each memory
operation, including read and write, also takes one processor cycle to finish. In the DOT
operation (see Fig. 3) the variable s can be kept in a register. The computation to memory
reference ratio is 1. In the AXPY operation (see Fig. 4), the scalar a is kept in a register and two
read memory references and one write memory reference are required for each loop. The
computation to memory reference ratio of AXPY is !!. The work presented in Fig. 3 and the work
presented in Fig. 4 have the same number of floating point operations. However, they consume
different execution times. Since the computation to memory reference ratio of AXPY is less than
the ratio of DOT, AXPY consumes more execution time than DOT and requires more processor
cycles to execute one floating point operation than DOT does. In general, uniprocessor work rate
may vary throughout an application.

We define the operation cost of work type j, Cj, as follows:

Definition 2. The operation cost of work type j is the ratio of the number of processor cycles
required to perform one unit operation of work type j to the total number of processor cycles
in one unit of time.

The execution time for computing Wi with a single processor can be represented in terms of
operation costs:

𝑡! 1 = 𝐶!𝑊!" ,
!

!!!

where Wij is the total work of type j executed with degree of parallelism I, and we assume that

Fig. 4. Vector update.

Degree
of

Parallelism

1

2

3

4

t4 t3 t2 t1

 do 10 i=1, n
 s=s+a(i)*b(i)
 10 continue

 do 20 j=1, n
 s(j)=s(j)+a*b(j)
 20 continue

 Toward a better parallel performance metric

1097

there are k different types of work. If there are i processors available and the algorithm is
homogeneous in work type at any time, the execution time will be

𝑡! 𝑖 =
𝐶!𝑊!"

!
!!!

𝑖 .

With an infinite number of processors available, the execution time will be

𝑡! 𝑖 = 𝑡! ∞ =
𝐶!𝑊!"

!
!!!

𝑖 for 1 ≤ i ≤ 𝑚.

Therefore, without considering communication latency and assuming the algorithm is homoge-
neous in work type at any given time, the total time on a single processor and on an infinite
number of processors will be

 𝑇 1 = 𝐶!𝑊!"

!
!!!

!
!!! (3)

 𝑇 ∞ =
𝐶𝑗𝑊𝑖𝑗

𝑘
𝑗=1

𝑖
!
!!! (4)

The traditional speedup will be

 𝑆! = 𝑇 1
𝑇 ∞ =

𝐶𝑗𝑊𝑖𝑗
𝑘
𝑗=1

𝑚
𝑖=1

𝐶𝑗𝑊𝑖𝑗
𝑘
𝑗=1

𝑖
𝑚
𝑖=1

 (5)

When k = 1, all the work is done at the same operation cost, and eq. (5) becomes

 𝑆! =
𝑊𝑖

𝑚
𝑖=1

𝑊𝑖
𝑖

𝑚
𝑖=1

 (6)

which is the eq. (3) given in [11].

S∞ gives the best possible speedup based on the inherent parallelism of an algorithm. No
machine-dependent factors are considered. With only a limited number of processors and with
the communication cost considered, the speedup will be less than the ideal speedup S∞. If there
are N processors available and N < i, then some processors have to do 𝑊! 𝑖 𝑖 𝑁 work and
the rest of the processors will do 𝑊! 𝑖 𝑖 𝑁 work. In this case, assuming Wi and Wj cannot be
solved simultaneously for i ≠ j and assuming the algorithm is homogeneous in work type at any
given time, the elapsed time will be

𝑡! 𝑁 =
𝐶!𝑊!"

!
!!!

𝑖
𝑖
𝑁

1098 X.-H. Sun, J.L. Gustafson
	

and

 𝑇 𝑁 =
𝐶𝑗𝑊𝑖𝑗

𝑘
𝑗=1

𝑖 𝑖
𝑁 .𝑚

𝑖=1 (7)

The traditional speedup is

 𝑆! =
𝑇(1)
𝑇(𝑁) =

𝐶𝑗𝑊𝑖𝑗
𝑘
𝑗=1

𝑚
𝑖=1

𝐶𝑗𝑊𝑖𝑗
𝑘
𝑗=1

𝑖
𝑖
𝑁

𝑚
𝑖=1

. (8)

Communication cost is an important factor contributing to the complexity of a parallel

algorithm. Unlike degree of parallelism, communication cost is machine-dependent. It depends
on the communication network, the routing scheme, and the adopted switching technique. Let
QN(W) be the communication overhead when N processors are used and the problem size is W;
the speedup becomes

 𝑆! =
𝑇(1)
𝑇(𝑁) =

𝐶𝑗𝑊𝑖𝑗
𝑘
𝑗=1

𝑚
𝑖=1
𝐶𝑗𝑊𝑖𝑗

𝑘
𝑗=1

𝑖
𝑖
𝑁 +𝑄𝑁(𝑊)

𝑚
𝑖=1

. (9)

Three models of speedup were studied in [11]. They are fixed-size speedup, fixed-time

speedup, and memory-bounded speedup. Fixed-size speedup fixes the problem size. With more
and more computation power available, the problem can be solved in less and less time. For the
fixed-time speedup, when more computation power is available, we increase the problem size, do
more operations, get a more accurate solution, and keep the execution time unchanged. The
memory-bounded speedup also scales the problem size with the number of processors available.
The difference between memory-bounded speedup and fixed-time speedup is that in memory-
bounded speedup the memory capacity is the dominant limiting factor of the scaling. The
execution time can vary in the memory-bounded speedup model. Speedup formulation (9) is
the extended fixed-size speedup given in [11] when the operation cost is considered as an
influential factor. When the problem size is scaled up, the work at different degrees of
parallelism may vary differently. Let 𝑊!"

! be the amount of scaled work of type j executed with
degree of parallelism i in the fixed-time model, and let 𝑚! be the maximum degree of
parallelism of the scaled problem in the fixed-time model, 𝑊! = 𝑊!"

!!
!!!

!
!!! . Define 𝑊!"

∗ ,
𝑊∗, and 𝑚∗ similarly for the memory-bounded model. Following the arguments similar to those
used in [11] for fixed-time speedup and memory-bounded speedup respectively, when N
processors are available, we have

 𝑆!! =
𝐶𝑗𝑊𝑖𝑗

′𝑘
𝑗=1

𝑚′
𝑖=1

𝐶𝑗𝑊𝑖𝑗
′𝑘

𝑗=1
𝑖

𝑖
𝑁 +𝑄𝑁(𝑊

′)𝑚′
𝑖=1

=
𝐶𝑗𝑊𝑖𝑗

′𝑘
𝑗=1

𝑚′
𝑖=1

𝐶𝑗𝑊𝑖𝑗
 𝑘

𝑗=1
𝑚
𝑖=1

. (10)

 Toward a better parallel performance metric

1099

 𝑆!∗ =
𝐶𝑗𝑊𝑖𝑗

∗𝑘
𝑗=1

𝑚∗
𝑖=1
𝐶𝑗𝑊𝑖𝑗

∗𝑘
𝑗=1

𝑖
𝑖
𝑁 +𝑄𝑁(𝑊

∗)𝑚∗
𝑖=1

. (11)

Equation (10) is the fixed-time speedup when operation costs are considered, and eq. (11) is

the memory-bounded speedup when operation costs are considered. When k = 1 they are equal to
speedup (9) and speedup (10) proposed in [11], respectively.

3. The need for a better speedup definition

In recent years, many parallel algorithms have been developed for different parallel comput-
ing systems. These parallel algorithms are machine-dependent and many have been fine-tuned
for a given computer architecture to achieve high performance. The tuning process is painful
and elusive. Application codes are difficult to optimize uniformly across different architectures.
Parallel algorithms are commonly compared with different programming efforts and compared
indirectly by using results from different machines [19]. These practical approaches raise some
questions: Does the same algorithm achieve the same performance on different computer
systems? Does the optimized code, which gives the shortest execution time, provide the same or
better performance than the unoptimized code? For a performance metric to be ‘fair’, we want
the same algorithm to achieve the same or better performance than the unoptimized code. Two
new terminologies are needed for the ‘fairness’ study.

Definition 3. A performance metric is machine-independent if the performance is the same on
any computing system for a given algorithm when the communication cost is negligible.

Definition 4. A performance metric is programming-independent if the performance is indepen-
dent of the programming effort when the communication cost is negligible.

It is easy to see that speedup (1) is machine-independent if and only if it is programming-
independent. However, speedup (1), the most commonly used performance metric, is machine-
and programming-dependent. Based on his study on vector processing and fixed-size speedup,
in 1983 Hockney noticed that using speedup as a merit for parallel algorithms can be misleading
[20]. He introduced a new metric 𝑇!!! in 1987 [21] and presented a more detailed study on
what’s wrong with speedup in his latest work [13]. The tendency of traditional speedup to favor
slow processors has also been noticed. Barton and Withers [9] studied the influence of
computation capacity of the processing elements on speedup. They used four different kinds of
processing elements, namely 386 (i80386), 387, (i80387), SX (Weitek 1167), and VX (Analog
Devices) to run an algorithm on iPSC/2 systems. Their implementation results show that the
slowest processor, 386, is virtually linear in speedup, but provides low speed (in the sense of
MFLOPS). The fastest processor, the VX board, achieves a much lower speedup while it
provides the maximum speed and the shortest elapsed time. Theorem 1 shows that, even
without considering the communication cost, the traditional speedup favors slower processing
elements and is machine-dependent. In our proof we do not consider the communication cost,
and we assume that the degree of parallelism only has two cases, a sequential part and a
perfectly parallel part. The restriction on degree of parallelism is only for clarity; this result can
be extended to algorithms with a general degree of parallelism.

1100 X.-H. Sun, J.L. Gustafson
	

Lemma 1. If computing system one has operation costs 𝐶!,𝐶! for sequential work 𝑊! > 0 and
parallel work WN respectively; computing system two has operation cost 𝐶! for sequential work
and has operation cost 𝐶!! for parallel work where 𝐶!! < 𝐶! , then system two provides a smaller
traditional speedup than system one. That is, when there are N > 1 processors available and
𝑊! > 0,𝑊! > 0,

𝐶!𝑊! + 𝐶!𝑊!

𝐶!𝑊! +
𝐶!𝑊!
𝑁

>
𝐶!𝑊! + 𝐶!!𝑊!

𝐶!𝑊! +
𝐶!!𝑊!
𝑁

.

Proof. Since 𝐶! > 𝐶!! , we have 𝐶!−𝐶!! > 0. Therefore,

𝐶!−𝐶!! >
1
𝑁 𝐶!−𝐶!!

𝐶!𝑊!−𝐶!!𝑊! >
𝐶!𝑊!

𝑁 −
𝐶!!𝑊!

𝑁

𝐶!𝑊! +
𝐶!!𝑊!

𝑁 > 𝐶!!𝑊! +
𝐶!𝑊!

𝑁 .

Since 𝐶!𝑊! > 0, we have

𝐶!𝑊!𝐶!𝑊! + 𝐶!𝑊!
𝐶!!𝑊!

𝑁 > 𝐶!𝑊!𝐶!!𝑊! + 𝐶!𝑊!
𝐶!𝑊!

𝑁 ,

add terms 𝐶!𝑊!𝐶!𝑊! + 𝐶!𝑊!𝐶!!𝑊!/𝑁 to both sides and factor:

𝐶!𝑊! + 𝐶!𝑊! 𝐶!𝑊! +
𝐶!!𝑊!

𝑁 > 𝐶!𝑊! + 𝐶!!𝑊! 𝐶!𝑊! +
𝐶!𝑊!

𝑁 ,

and

!!!!!!!!!

!!!!!
!!!!
!

>
!!!!!!!!!!

!!!!!
!!
!!!
!

. ☐ (12)

In order to extend our result to more general cases, we introduce the following definition.

Definition 5. The average operation cost of degree of parallelism i is the average operation cost
divided by the work of degree of parallelism i for a given algorithm.

 Average operation cost of degree of parallelism 𝑖 = 𝑐! =
𝐶𝑗𝑊𝑖𝑗

𝑘
𝑗=1

𝑊𝑖𝑗
𝑘
𝑗=1

 (13)

We now show that traditional speedup favors slower computing systems.

Theorem 1. If computing system one has operation costs 𝐶! , 𝑗 = 1,… , 𝑘, and computing system
two has operation costs 𝐶!!, 𝑗 = 1,… , 𝑘, where 𝐶! = 𝐶!!, for 𝑗 = 1,… , 𝑡,𝐶! > 𝐶!!, for 𝑗 = 𝑡 +
1,… , 𝑘 , the computation of sequential work only involves work of type j, 1 ≤ j ≤ t and the

 Toward a better parallel performance metric

1101

computation of parallel work 𝑊! involves some work of type j where j > t, then system one
provides a greater traditional speedup than system two. That is

𝐶!𝑊!!
!
!!! + 𝐶!𝑊!"

!
!!!!!

𝐶!𝑊!!
!
!!! +

𝐶!𝑊!"
𝑁

!
!!!!!

𝑗
𝑁

>
𝐶!!𝑊!!

!
!!! + 𝐶!!𝑊!"

!
!!!!!

𝐶!!𝑊!!
!
!!! +

𝐶!!𝑊!"
𝑁

!
!!!!!

𝑗
𝑁

.

Proof. Since 𝐶! = 𝐶!!, for j ≤ t, the average operation cost for sequential work of computing
system one, 𝑐!, is the same as the average operation cost for sequential work of computing
system two, 𝑐! = 𝑐!! . Since 𝐶! > 𝐶!! for j > t, the average operation cost for parallel work of
computing system one, 𝑐!, is greater than the average operation cost for parallel work of
computing system two, 𝑐!! .

𝑐! =
𝐶!𝑊!"

!
!!!

𝑊!"
!
!!!

>
𝐶!!𝑊!"

!
!!!

𝑊!"
!
!!!

= 𝑐!! .

Therefore, by Lemma 1,

𝑐!𝑊! + 𝑐!𝑊!

𝑐!𝑊! +
𝑐!𝑊!
𝑁

>
𝑐!𝑊! + 𝑐!!𝑊!

𝑐!𝑊! +
𝑐!!𝑊!
𝑁

.

That is

!!!!!

!
!!! ! !!!!"

!
!!!

!!!!!
!
!!! !

!!!!"
!

!
!!!

!
!

>
!!
!!!!

!
!!! ! !!

!!!"
!
!!!

!!
!!!!

!
!!! !

!!
!!!"
!

!
!!!

!
!

. ☐ (14)

Operation costs not only depend on the parallel system and the algorithm, but also on the

programming effort on the node. Operation cost can be reduced by careful coding. For
instance, the Vector update (see Fig. 4) can be rewritten in assembly language to reduce the
operation cost. Theorem 1 can be presented differently to show that the traditional speedup is
programming-dependent and favors poorly-coded programs.

Theorem 2. If a computing system has operation costs 𝐶! , 𝑗 = 1,… , 𝑘, for a program and has
operation costs 𝐶!!, 𝑗 = 1,… , 𝑘 for the optimized version of the program, where 𝐶! = 𝐶!! , for
𝑗 = 1,… , 𝑡,𝐶! > 𝐶!!, for 𝑗 = 𝑡 + 1,… , 𝑘, the computation of sequential work only involves work
of type j, 1 ≤ j ≤ t and the computation of parallel work 𝑊! involves some work of type j where
j > t, then the optimized version provides a smaller speedup than the original program.

A real application, the radiosity application [22], is chosen to provide experimental results.
Radiosity is the equilibrium radiation given off by a coupled set of diffuse surfaces that emit and
absorb radiation. The sample radiosity program is a diagonally-dominant dense matrix problem
and is easily understood: A room is painted with a separate color for each wall, plus floor and
ceiling, and one or more of the six surfaces also emits light. Emissivity and reflectivity

1102 X.-H. Sun, J.L. Gustafson
	

Fig. 5. Execution time of two implementations.

Fig. 6. The traditional speedup of two implementations

are described as red-green-blue components for each wall of the room. The radiosity problem is
to find the color variation over each wall.

We implemented the radiosity algorithm on a 64-node nCUBE 2 multicomputer with two
different versions of the program. One was written in FORTRAN and another version optimized
certain subroutines of the FORTRAN code with assembly language. The implemented results of
the two codes are depicted in Fig. 5 and Fig. 6. From the implementation results we can see that,
while the optimized version provides a shorter elapsed time, the unoptimized version provides a
higher traditional speedup. A researcher attempting to achieve high speedup on a parallel system
is therefore at odds with the more basic goal of achieving high net performance.

4. A new performance metric

Theorem 1 and Theorem 2 show that the traditional speedup favors slow processors and
poorly-coded programs even when the communication cost is not considered. Thus, performance
measurements given in terms of speedup must be interpreted with particular care. New, better-
defined performance metrics are needed to provide a ‘fair’ performance measurement. The
scaled speedup concept [3,4] lets the problem size increase with computation power and
emphasizes how much work is done in a fixed time. A natural step in the search for a better

Execution

time

Number of Nodes

10

10

15

20

25

30

35

40

5

20 30 40 50 60

Original
Optimized

Speedup

Number of Nodes

10

10

15

20

25

30

35

5

20 30 40 50 60

Original

Optimized

 Toward a better parallel performance metric

1103

metric is to follow the scaled concept and define a new metric, called sizeup, as parallel work
over sequential work:
 Sizeup = parallel work

sequential work. (15)

In a sizeup measurement, the problem size is scaled so as to keep the parallel execution time a
constant, as the number of processors increase. Since more than one process is used in parallel
processing, in general more work will be done in parallel processing. Sizeup indicates the ratio
of the work increase. The term sizeup was coined by G. Montry in 1987 during the experiments
done at Sandia [3].

Theorem 3 shows that sizeup is machine-independent.

Lemma 2. If computing system one has operation costs 𝐶! and 𝐶! for sequential work 𝑊! and
parallel work 𝑊! respectively; computing system two has operation cost 𝐶! for sequential work
and has operation cost 𝐶!! for parallel work where 𝐶!! < 𝐶!, then, system one and system two
provide the same sizeup.

Proof. In sizeup, the workload is scaled with the number of processors available. Let the original
workload be 𝑊,𝑊 =𝑊! +𝑊! , and let the scaled workload for system one be
𝑊! =𝑊! +𝑊!

! and the scaled workload for system two be 𝑊∗ =𝑊! +𝑊!
∗ . Since, by the

definition of sizeup, the parallel execution time is fixed with the sequential execution time, we
have

𝐶!𝑊! + 𝐶!𝑊! = 𝐶!𝑊! +
𝐶!𝑊!

!

𝑁
𝑊!

! = 𝑁𝑊!,
and

𝐶!𝑊! + 𝐶!!𝑊! = 𝐶!𝑊! +
𝐶!𝑊!

∗

𝑁
𝑊!

∗ = 𝑁𝑊!,
Therefore,

𝑊!
! =𝑊!

∗

!!

!
=
!∗

!
. ☐ (16)

Theorem 3. If computing system one has operation costs 𝐶! , 𝑗 = 1,… , 𝑘 and computing system
two has operation costs 𝐶!!, 𝑗 = 1,… , 𝑘 , where 𝐶! = 𝐶!! for 𝑗 = 1,… , 𝑡 ; the computation of
sequential work is independent of the number of processors available and only involves work of
type 𝑗, 1 ≤ 𝑗 < 𝑡, then system one and system two provide the same sizeup.

Proof. Use Lemma 2 and follow arguments similar to those used in the proof of Theorem 1. ☐

If we assume program tuning only improves the parallel portion of the algorithm, which is the
common case in practice, then Theorem 3 also shows that sizeup is programming-independent.
This can be shown as follows.

Theorem 4. If a computing system one has operation costs 𝐶! , 𝑗 = 1,… , 𝑘 for a given program
and has operation costs 𝐶!!, 𝑗 = 1,… , 𝑘, for the optimized version of the given program, where

1104 X.-H. Sun, J.L. Gustafson
	

Fig. 7. Sizeup of two implementations.

Fig. 8. Sizeup when data collection phase is added.

𝐶! = 𝐶!! for 𝑗 = 1,… , 𝑡; the computation of sequential work is independent of the number of
processors available and only involves work of type 𝑗, 1 ≤ 𝑗 < 𝑡, then the given program and the
optimized version achieve the same sizeup.

Theorems 3 and 4 have been confirmed by empirical results from the radiosity algorithm. As
shown in Fig. 7, under assumptions of Theorem 3 and Theorem 4 respectively, sizeup is

Fig. 9. The traditional speedup when data collection is added.

Speedup

Number of Nodes

10

10

20

30

40

50

60

20 30 40 50 60

Original

Optimized

Speedup

Number of Nodes

10

10

20

30

40

50

60

20 30 40 50 60

Original Optimized

Speedup

Number of Nodes

10

10

15

20

25

30

35

5

20 30 40 50 60

Original

Optimized

 Toward a better parallel performance metric

1105

machine- and programming-independent. However, if the sequential work increases with the
problem size, then sizeup is no longer independent of either. To test this case, we modified the
radiosity algorithm to contain a data collection phase: All computed results are collected to a
single mass storage device. The data collection phase is a sequential process and increases with
problem size. The modified radiosity algorithm is also implemented on an nCUBE
multicomputer. Figure 8 shows that, when the sequential portion of a program increases with the
problem size, the sizeup also favors slower processors or poorly coded programs. However, the
dependence is much less than with traditional speedup; compare Fig. 8 and Fig. 9.

5. The generalized parallel speedup

Computation capacity of processors is generally measured by MIPS (Millions of Instructions
Per Second) or MFLOPS (Millions of FLoating point Operations Per Second). The performance
of processors is given in speed: work divided by time. (The particular choice of unit for work is
irrelevant to the arguments that follow.) Since the computing capacity of processors is given in
speed, a natural way to measure parallel processing gain would be the ratio of parallel execution
speed to sequential execution speed [14]. We introduce a new metric, which we call generalized
speedup.

 Generalized Speedup = parallel execution speed

sequential execution speed. (17)

We have introduced two new performance metrics. In the rest of this section we study the
relation between the newly-proposed performance metrics and traditional speedup. The results
show that traditional speedup is the restriction of (17) to fixed work or to fixed operation cost,
and sizeup is the restriction of (17) to fixed time. In the following we use SN to represent the
generalized speedup (17), and use 𝑆! to represent the traditional speedup (1).

By definition

 SN =

parallel execution speed
sequential execution speed (18)

 =
parallel work

parallel execution time
sequential work

sequential execution time
 (19)

 =

𝓦′
𝐶1𝓦𝑖

′

𝑖
𝑖
𝑁 +𝑄𝑁𝓦

′𝑚
𝑖=1

𝑊
𝐶𝑗𝑊𝑖𝑗

𝑘
𝑗=1

𝑚
𝑖=1

 (20)

The workload 𝓦′ is the parallel workload. It may be scaled up with system size if the fixed-time
or memory-bounded speedup is used. If the fixed-size model of speedup is used, then 𝓦! =𝑊
and 𝓦!

! =𝑊!.

1106 X.-H. Sun, J.L. Gustafson
	

When we have a unique operation cost, that is, 𝐶! = 𝐶!, for 𝑗 = 2,… , 𝑘, then

 SN =

𝓦′
𝐶1𝓦𝑖

′

𝑖
𝑖
𝑁 +𝑄𝑁 𝓦′𝑚

𝑖=1
𝑊
𝐶1𝑊𝑖

𝑚
𝑖=1

=

𝓦′
𝓦𝑖
′

𝑖
𝑖
𝑁 +𝑄𝑁

′ 𝓦′𝑚
𝑖=1

𝑊
𝑊𝑖

𝑚
𝑖=1

Where 𝑄!! 𝓦! = 𝐶!𝑄! 𝓦! , and (see eq. (9))

 𝑆! =
𝓦′

𝓦𝑖
′

𝑖
𝑖
𝑁 +𝑄𝑁

′ 𝓦′𝑚
𝑖=1

 SN (21)

Equation (210 shows that, when we have a unique operation cost, the new metric is the same as
the traditional speedup. If the fixed-size speedup is used, eq. (21) is the same as eq. (9). If the
fixed-time model is adopted, the workload is scaled up with the execution time; eq. (21) is the
same as eq. (10). When the workload is scaled up with memory capacity, then 𝓦! =𝓦∗ and the
speedup 𝑆! is equal to 𝑆!∗ given in eq. (11). In the fixed-time case, we also have

 SN =
𝓦′

𝓦𝑖
′

𝑖
𝑖
𝑁 +𝑄𝑁

′ 𝓦′𝑚
𝑖=1

=𝓦′
𝑊 = parallel work

sequential work = sizeup.

Notice, by eq. (19), that when the problem size is fixed,

 SN =
sequential execution time

parallel execution time using N processors. (22)

which is the same as the definition of the traditional speedup. Equations (21) and (22) show,
when the operation cost is unique or when the problem size is fixed, the generalized speedup is
the same as traditional speedup. Since, historically, performance issues have been studied under
the assumption that the computation capacity is unique [11], or that the problem size is fixed
[2], the results of previous studies remain true under the new definition, and the newly-proposed
metric can be seen as a generalization of the traditional speedup.

By eq. (19), when the execution time is fixed, we also have

 SN =
parallel work
sequential work = sizeup. (23)

Fig. 10. The generalized speedup.

Fixed rate
 and
fixed time

Fixed time

Generalized Speedup = Parallel Speed
Sequential Speed

Fixed rate OR

Memory-bounded

Fixed size

=

Sizeup = Parallel Work
Sequential Work

Traditional
Speedup

Scaled
Measurement

Sequential Time
Parallel Time

 Toward a better parallel performance metric

1107

Sizeup is the fixed-time model of speedup (17). The relation between the generalized speedup
(17), sizeup, and the traditional speedup (1) are summarized in Fig. 10, in which Fixed Rate
indicates that the problem has a unique operation cost.

We would like to compare generalized speedup and traditional speedup. Notice in Theorem
3 and Theorem 4 that sizeup, the fixed-time case of the generalized speedup, sets the parallel
execution time equal to the sequential execution time. But, with two different computing
systems, the sequential time could be different. If system two has lower operation costs than
system one, system two may provide a shorter sequential execution time than system one. With
more than one parallel system available we have more options for comparison. In Theorem 3
we fixed the workload on system one and system two when on processor is used, and let system
one and system two have different sequential execution time, then the traditional speedup will be
machine- and programming-independent, no matter whether the fixed-size model of speedup or
the fixed-time model of speedup is used. We only give the proof for the fixed-size model of
speedup. the result for fixed-time speedup can be obtained similarly.

Proposition 1. Under the conditions of Lemma 1, if we let system one and system two have the
same sequential execution time, then system one and system two provide the same traditional
speedup.

Proof. Since system one and system two have different computing capacity for parallel
computation, with fixed time, the work they execute will be different. Let 𝑊 =𝑊! +𝑊! be the
work executed by system one. Let 𝑊 ! =𝑊!

! +𝑊!
! be the work executed by system two. Then,

 𝐶!𝑊! + 𝐶!𝑊! = 𝐶!𝑊! + 𝐶!!𝑊!

! (24)

 𝑊!

! = 𝐶1
𝐶2
′ 𝑊! . (25)

and the speedup of system two is equal to the speedup of system one.

!!!!!!!!!!

!

!!!!!!!!
!!
!

!

=
!!!!!!!!

!!
!!
!!!

!!!!!!!!
!!
!!
!!!

!

=
!!!!!!!!!

!!!!!!!
!!
!

. ☐ (26)

Figure 11 depicts the machine- and programming dependence of traditional speedup and

generalized speedup. Some of the results listed in the tables have been proven in this section,
and the rest can be proven by following similar arguments. For instance, replacing 𝑊! by

Fig. 11. Tables of dependence.

Dependent Independent

Independent Independent

TimeSize

Size

Time

Generalized Speedup

Dependent Dependent

Independent Independent

TimeSize

TraditionalSpeedup

Size

Time

1108 X.-H. Sun, J.L. Gustafson
	

Fig. 12. The size-time model of traditional speedup.

𝑁𝑊! and following arguments similar to those used in the proof of Lemma 1, we can show
that the size-time model of traditional speedup also favors slow processors. The size beside the
tables indicates that the workload of single processor execution on different systems is fixed.
The time beside the tables indicates that the single processor execution time of different
systems is fixed. The size and time above the tables represent that fixed-size or fixed-time
model of speedup is used, respectively. From Fig. 11 we can see that speedup (17) is not fully
machine- and programming-independent, but it provides less penalty than the traditional
speedup. The implementation results of the size-size model of traditional speedup and the
size-time model of the generalized model are shown in Fig. 6 and Fig. 7 respectively. The
implementation results of the size-time model of traditional speedup are shown in Fig. 12.
From Fig. 12, we can see that, while the size-time model of the generalized speedup is machine-
and programming-independent, the size-time model of the traditional speedup is not. Generalized
speedup provides a little more ‘fairness’ than traditional speedup.

Conclusion and remarks

We have studied the ‘fairness’ of parallel performance metrics. We have shown that the most
frequently used performance metric, traditional speedup, favors slow processors and poorly-
programmed codes. The reason for the ‘unfairness’ of this model has been identified and
quantified. New terminologies and concepts such as operation cost, machine dependence, and
programming dependence, which can be used in future studies, have been introduced and
carefully defined. Two new performance metrics have been proposed. The first new metric,
sizeup, provides a ‘fair’ performance measurement. The second metric, generalized speedup,
contains both sizeup and the traditional speedup as special cases. Our study focused on the
relative speedup (1). The study results can be used to evaluate absolute speedup and other
parallel performance metrics. For instance, since relative speedup favors slow processors when
the operation cost is fixed (or, in a weaker sense, the faster processors reduce execution time in
the same ratio for both the best sequential algorithm and the parallel algorithm on one
processor), then the absolute speedup also favors slow processors. Absolute speedup is also
machine-dependent.

Due to the diversity of existing architectures, algorithm codes are difficult to optimize
uniformly across architectures. Parallel algorithms are commonly compared with different
programming efforts and compared indirectly by using implementation results from different
machines. This situation is unlikely to change in the near future. A better-defined, ‘fair’

Speedup

(size-time)

Number of Nodes

10

10

20

30

40

50

60

20 30 40 50 60

Original

Optimized

 Toward a better parallel performance metric

1109

performance metric is urgently needed. Sizeup is ‘fairer’ than traditional speedup. However,
sizeup is based on the scaled speedup principle and only provides a ‘fair’ measurement under
certain conditions. Can we find a better, fixed-size performance metric? Can we find a metric
that provides an unconditional ‘fairness’? Many questions remain.

References

 [1] W. Ware, The ultimate computer, IEEE Spectrum 9 (1972) 84–91.
 [2] G. Amdahl, Validity of the single-processor approach to achieving large scale computing capabilities, in Proc.

AFIPS Conf. (1967) 483–485.
 [3] J. Gustafson, G. Montry and R. Benner, Development of parallel methods for a 1024-processor hypercube,

SIAM J. SSTC 9 (Jul. 1988).
 [4] J. Gustafson, Reevaluating Amdahl’s law, CACM 31 (May 1988) 523–533.
 [5] F.A. Van-Catledge, Toward a general model for evaluating the relative performance of computer systems,

International J. Supercomputer Applications 3 (2) (1989) 100–108.
 [6] X. Zhou, Bridging the gap between Amdahl’s law and Sandia Laboratory’s result, Commun. ACM 32 (8)

(1989) 1014–1015.
 [7] D. Eager, J. Zahorjan and E. Lazowska, Speedup versus efficiency in parallel systems, IEEE Trans. Comput.

(Mar 1989) 403–423.
 [8] R.W. Hockney and I.J. Curington, f1/2: A parameter to characterize memory and communication bottlenecks,

Parallel Computing 10(3) (1989) 277–286.
 [9] M. Barton and G. Withers. Computing performance as a function of the speed, quantity, and cost of the

processors, in Proc. Supercomputing ’89 (1989) 759–764.
 [10] P. T. Worley, The effect of time constraints on scaled speedup, SIAM J. SSC. 11 (Sep. 1990) 838–858.
 [11] X.-H. Sun and L. Ni, Another view on parallel speedup, in Proc. Supercomputing’90 (1990) 324–333.
 [12] A.H. Karp and H.P. Flatt, Measuring parallel processor performance, CACM 33 (May 1990) 539–543.
 [13] R.W. Hockney, Performance parameters and benchmarking of supercomputers, Parallel Comp., this issue.
 [14] J. Gustafson, Fixed time, tiered memory, and superlinear speedup, in Proc. Fifth Conf. on Distributed Memory

Computers (1990)
 [15] M. Kumar, Measuring parallelism in computation intensive scientific/engineering applications, IEEE-TC 37

(Sep. 1988) 1088–1098.
 [16] X.-H. Sun, Parallel computation models: Representation, analysis and applications, Ph.D. Dissertation,

Computer Science Department, Michigan State University, 1990
 [17] K. Sevcik, Characterizations of parallelism in applications and their use in scheduling, in Proc. ACM SIGMET-

RICS and Performance ’89 (May 1989).
 [18] C. Lawson, R. Hanson, D. Kincaid and F. Krogh, Basic linear algebra subprograms for FORTRAN usage,

ACM Trans. Math. Soft. 5 (1979) 308–323.
 [19] T. Li, H. Zhang and X.-H. Sun, Parallel homotopy algorithm for symmetric tridiagonal eigenvalue problem,

SIAM J. Sci. Stat. Comput. 12 (May 1991).
 [20] R.W. Hockney, Characterizing computers and optimizing the FACR(1) Poisson-solver on parallel

unicomputers, IEEE Trans. Comput. c.32 (10) (1983) 933–941.
 [21] R.W. Hockney, Parameterization of computer performance, Parallel Comput. 5 (1&2) (1987) 97–103.
 [22] C. Goral, K. Torrance, D. Greenberg and B. Battaile, Modeling the interaction of light between diffuse

surfaces, Comput. Graphics 18 (Jul. 1984).

