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Abstract 
 
Sun, X.-H. and J.L. Gustafson, Toward a better parallel performance metric, Parallel Computing 17 (1991) 
1093-1109. 
 
The traditional definition of ‘speedup’ as the ratio of sequential execution time to parallel execution time has 
been widely accepted. One drawback to this metric is that it tends to reward slower processors and inefficient 
compilation with higher speedup. It seems unfair that the goals of high speed and high speedup are at odds with 
each other. In this paper, the ‘fairness’ of parallel performance metrics is studied. Theoretical and experimental 
results show that the most commonly used performance metric, parallel speedup, is ‘unfair’, in that it favors 
slow processors and poorly coded programs. Two new performance metrics are introduced. The first one, sizeup, 
provides a ‘fair’ performance measurement. The second one is a generalization of speedup – the generalized 
speedup, which recognizes that speedup is the ratio of speeds, not times. The relation between sizeup, speedup, 
and generalized speedup are studied. The various metrics have been tested using a real application that runs on 
an nCUBE 2 multicomputer. The experimental results closely match the analytical results. 
 
Keywords. Parallel processing; performance measurement; parallel speedup; scaled speedup; sizeup 

 
 
1. Introduction 
 

Parallel processing has become a common approach for achieving high performance. Various 
parallel computer systems have been constructed and many parallel algorithms have been 
developed. However, effective techniques for evaluating the performance of these parallel 
machines and algorithms are lacking. There is no well-established metric to measure the 
performance gain of parallel processing. The most frequently used performance metric of 
parallel processing is parallel speedup. Almost twenty years ago, Ware [1] first summarized 
Amdahl’s [2] arguments as a speedup formula, which today is widely known as Amdahl’s law. 
Amdahl’s law shows the limitation of parallel processing and was the only well-known 
performance criterion of parallel processing until scientists at Sandia National Laboratories 
questioned its underlying assumptions [3]. Based on their experimental results, Gustafson et al. 
revised Amdahl’s law and proposed the scaled speedup principle [3, 4]. The argument of 
Gustafson et al. is that parallel processing gives the ability to tackle previously out-of-reach 
large-scale problems. So, as problem size is increased with computation power, the serial 
component as defined by Amdahl cannot be regarded as constant. Since then, intensive 
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research has been conducted to seek a better understanding of parallel speedup. In 1989,  
Van-Catledge [5] and Zhou [6] studied the relation between Amdahl’s law and scaled speedup; 
Eager et al. [7] studied the speedup versus efficiency, Hockney [8] introduced the parameter f1/2 
to characterize the influence of memory references, and Barton and Withers [9] developed a 
speedup model which considers the manufacturing cost of processors as a performance factor. 
In 1990, the time constraint of scaled speedup was studied by Worley [10], the relation 
between different speedup models was studied by Sun and Ni [11], and a new metric was 
proposed to reveal aspects of the performance that are not easily discerned from other metrics 
[12]. 

Traditionally, speedup is defined as sequential execution time over parallel execution time. 
However, there are subtle differences in the way this definition has been interpreted. One 
definition emphasizes how much faster a problem can be solved with parallel processing based 
on partial ordering descriptions of the algorithm. Thus, the chosen sequential algorithm is the 
best sequential algorithm available. This definition is referred to as absolute speedup. Another 
definition of speedup, called relative speedup, deals with the inherent parallelism as the single 
processor execution time of the parallel algorithm, and defines the speedup as 
 

 𝑆! =
execution time using one processor
execution time using 𝑁 processors . (1) 

 

The reason for using relative speedup is that the performance of parallel algorithms varies with 
the number of available processors. Comparing the algorithm itself with a different number of 
processors gives information on the variations and degradations of parallelism. While absolute 
speedup has been used to evaluate parallel algorithms, relative speedup is favored [13], 
especially in performance studies. The relative speedup (1) was used in all the above referenced 
studies. In this study we also focus on relative speedup, and we reserve the phrase traditional 
speedup for definition (1), unless we explicitly state otherwise. 

In contrast with all the above referenced work, in our research the ‘fairness’ of performance 
metrics of parallel algorithms is studied. Experimental and analytical results are first presented to 
show that the traditional speedup favors slow processors and poorly-coded programs. Then, 
a new performance measurement metric, sizeup, is proposed. Our results show that the new 
performance metric provides a better ‘fairness’ than the traditional speedup. Another perfor-
mance metric, which is a generalization of traditional speedup and which first appeared in [14], 
is also described and studied. Finally, the relation between sizeup, the generalized speedup, and 
the traditional speedup is presented. A real, scientific application is used to test the various 
metrics. The implementation results using the application provide confirmation of our theoretical 
results. 

We assume the target machines are homogeneous, distributed-memory multiprocessors. We 
do not specifically consider vector architectures, because they can be considered a special form 
of parallel execution. The assumption of distributed memory is similarly unrestrictive. If we 
take the network and memory contention as the communication cost, then all the presented 
results can be extended to shared-memory parallel systems directly. 

This paper is organized as follows: In section 2 we introduce some preliminary information 
and terminology. The need for better-defined performance metrics is discussed in section 3. A 
new performance metric, sizeup, is introduced in section 4. Analytical and empirical results 
suggest that sizeup provides a performance measure that is better than traditional speedup 
when the goal is to solve larger problems rather than reduce execution time. In section 5, 
another performance metric, which is a generalization of traditional speedup, is introduced. 
The relation between the new metrics and traditional speedup is also given in section 5. 
Conclusions and remarks are given in section 6. 
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2. Background and terminology 
 
In our study we consider two main degradations of parallelism, load imbalance and 

communication cost. The former degradation is due to the uneven distribution of workload 
among processors, and is application-dependent. The latter degradation is due to the communi-
cation processing and latency. It depends on both the application and the parallel computer 
under consideration. To give an accurate performance measurement, both of the degradations 
need to be considered. Load imbalance is measured by degree of parallelism. 

 
Definition 1. The degree of parallelism is an integer that indicates the maximum number of 
processors that can be busy computing at a particular instant in time, given an unbounded 
number of available processors. 
 

The degree of parallelism is a function of time. By drawing the degree of parallelism over the 
execution time of an algorithm, a graph can be obtained. We refer to this graph as the 
parallelism profile. Some software tools are available to determine the parallelism profile of 
large scientific and engineering applications [15]. Figure 1 is the parallelism profile of a 
hypothetical divide-and-conquer computation [16]. By accumulating the time spent at each 
degree of parallelism, the profile can be rearranged to form the shape of the algorithm [17] 
(Fig. 2). The different shadings depict the time period of different operation costs which are 
defined in Definition 2. 

Let W be the amount of work (computation) of an algorithm. Let Wi be the amount of work 
executed with degree of parallelism i, and m be the maximum degree of parallelism. Thus, 
𝑊 = 𝑊!

!
!!! . Sequential (scalar) execution time can be written in terms of work: 

 
 Sequential  execution  time = Amount  of  work  ×   Processor  cycles  per  unit  of  workMachine  clock  rate . (2) 
 
Note that we do not break out a startup time and a time per element as would be appropriate 
for vector arithmetic. Vectorization can be treated as a special form of parallelism. An 
application may contain more than one work type. Different work types may require different 
numbers of processor cycles and, therefore, consume different execution times. Depending on 
how the work is defined (e.g., instructions, floating point operations), how the work is measured 
(e.g., the number of floating point operations required for finding a square root), and the 
architecture of the parallel system (e.g. the size of the cache), the difference of cycle require-
ments may be due to various reasons. One simple reason is the ratio of computation to memory 
reference. Hockney studied the influence of computation to memory reference ratio on the 

 

 
Fig. 1. Parallelism profile of an application. 
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Fig. 2. Shape of the application. 

 

Fig. 3. Dot product. 
 

performance of vector machines [8]. Here, we use two basic linear algebra operations, DOT and 
AXPY [18], to demonstrate how the ratio of computation and memory reference influences 
execution time. We count floating-point add and floating-point multiply each as one floating 
point operation, which takes one processor cycle to finish, and assume that each memory 
operation, including read and write, also takes one processor cycle to finish. In the DOT 
operation (see Fig. 3) the variable s can be kept in a register. The computation to memory 
reference ratio is 1. In the AXPY operation (see Fig. 4), the scalar a is kept in a register and two 
read memory references and one write memory reference are required for each loop. The 
computation to memory reference ratio of AXPY is !!. The work presented in Fig. 3 and the work 
presented in Fig. 4 have the same number of floating point operations. However, they consume 
different execution times. Since the computation to memory reference ratio of AXPY is less than 
the ratio of DOT, AXPY consumes more execution time than DOT and requires more processor 
cycles to execute one floating point operation than DOT does. In general, uniprocessor work rate 
may vary throughout an application. 

We define the operation cost of work type j, Cj, as follows: 
 

Definition 2. The operation cost of work type j is the ratio of the number of processor cycles 
required to perform one unit operation of work type j to the total number of processor cycles 
in one unit of time. 

The execution time for computing Wi with a single processor can be represented in terms of 
operation costs: 

𝑡! 1 = 𝐶!𝑊!" ,
!

!!!

 

 
where Wij is the total work of type j executed with degree of parallelism I, and we assume that 
 

Fig. 4. Vector update. 
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 do 10 i=1, n 
    s=s+a(i)*b(i) 
                   10   continue  

 do 20 j=1, n 
      s(j)=s(j)+a*b(j) 
                   20   continue  
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there are k different types of work. If there are i processors available and the algorithm is 
homogeneous in work type at any time, the execution time will be 
 

𝑡! 𝑖 =
𝐶!𝑊!"

!
!!!

𝑖 .   
 
With an infinite number of processors available, the execution time will be 
 

𝑡! 𝑖 = 𝑡! ∞ =
𝐶!𝑊!"

!
!!!

𝑖   for  1 ≤ i   ≤ 𝑚. 
 
Therefore, without considering communication latency and assuming the algorithm is homoge-
neous in work type at any given time, the total time on a single processor and on an infinite 
number of processors will be 
  
 𝑇 1 = 𝐶!𝑊!"

!
!!!

!
!!!  (3) 

 
  

 𝑇 ∞ =
𝐶𝑗𝑊𝑖𝑗

𝑘
𝑗=1

𝑖
!
!!!  (4) 

 
The traditional speedup will be 
    

 𝑆! = 𝑇 1
𝑇 ∞ =

𝐶𝑗𝑊𝑖𝑗
𝑘
𝑗=1

𝑚
𝑖=1

𝐶𝑗𝑊𝑖𝑗
𝑘
𝑗=1

𝑖
𝑚
𝑖=1

 (5) 

 
When k = 1, all the work is done at the same operation cost, and eq. (5) becomes 
    

 𝑆! =
𝑊𝑖

𝑚
𝑖=1

𝑊𝑖
𝑖

𝑚
𝑖=1

 (6) 

 
which is the eq. (3) given in [11]. 

S∞ gives the best possible speedup based on the inherent parallelism of an algorithm. No 
machine-dependent factors are considered. With only a limited number of processors and with 
the communication cost considered, the speedup will be less than the ideal speedup S∞. If there 
are N processors available and N < i, then some processors have to do 𝑊! 𝑖     𝑖 𝑁  work and 
the rest of the processors will do 𝑊! 𝑖     𝑖 𝑁  work. In this case, assuming Wi and Wj cannot be 
solved simultaneously for i ≠ j and assuming the algorithm is homogeneous in work type at any 
given time, the elapsed time will be 

 

𝑡! 𝑁 =
𝐶!𝑊!"

!
!!!

𝑖   
𝑖
𝑁  
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and 

 

 𝑇 𝑁 =
𝐶𝑗𝑊𝑖𝑗

𝑘
𝑗=1

𝑖    𝑖
𝑁 .𝑚

𝑖=1  (7) 
 
The traditional speedup is 

 𝑆! =
𝑇(1)
𝑇(𝑁) =

𝐶𝑗𝑊𝑖𝑗
𝑘
𝑗=1

𝑚
𝑖=1

𝐶𝑗𝑊𝑖𝑗
𝑘
𝑗=1

𝑖
𝑖
𝑁

𝑚
𝑖=1

. (8) 

 
Communication cost is an important factor contributing to the complexity of a parallel 

algorithm. Unlike degree of parallelism, communication cost is machine-dependent. It depends 
on the communication network, the routing scheme, and the adopted switching technique. Let 
QN(W) be the communication overhead when N processors are used and the problem size is W; 
the speedup becomes 

 𝑆! =
𝑇(1)
𝑇(𝑁) =

𝐶𝑗𝑊𝑖𝑗
𝑘
𝑗=1

𝑚
𝑖=1
𝐶𝑗𝑊𝑖𝑗

𝑘
𝑗=1

𝑖
𝑖
𝑁 +𝑄𝑁(𝑊)

𝑚
𝑖=1

. (9) 

 
Three models of speedup were studied in [11]. They are fixed-size speedup, fixed-time 

speedup, and memory-bounded speedup. Fixed-size speedup fixes the problem size. With more 
and more computation power available, the problem can be solved in less and less time. For the 
fixed-time speedup, when more computation power is available, we increase the problem size, do 
more operations, get a more accurate solution, and keep the execution time unchanged. The 
memory-bounded speedup also scales the problem size with the number of processors available. 
The difference between memory-bounded speedup and fixed-time speedup is that in memory-
bounded speedup the memory capacity is the dominant limiting factor of the scaling. The 
execution time can vary in the memory-bounded speedup model. Speedup formulation (9) is 
the extended fixed-size speedup given in [11] when the operation cost is considered as an 
influential factor. When the problem size is scaled up, the work at different degrees of 
parallelism may vary differently. Let 𝑊!"

!  be the amount of scaled work of type j executed with 
degree of parallelism i in the fixed-time model, and let 𝑚!  be the maximum degree of 
parallelism of the scaled problem in the fixed-time model, 𝑊! = 𝑊!"

!!
!!!

!
!!! . Define 𝑊!"

∗ ,  
𝑊∗, and 𝑚∗ similarly for the memory-bounded model. Following the arguments similar to those 
used in [11] for fixed-time speedup and memory-bounded speedup respectively, when N 
processors are available, we have 

 

 𝑆!! =
𝐶𝑗𝑊𝑖𝑗

′𝑘
𝑗=1

𝑚′
𝑖=1

𝐶𝑗𝑊𝑖𝑗
′𝑘

𝑗=1
𝑖

𝑖
𝑁 +𝑄𝑁(𝑊

′)𝑚′
𝑖=1

=
𝐶𝑗𝑊𝑖𝑗

′𝑘
𝑗=1

𝑚′
𝑖=1

𝐶𝑗𝑊𝑖𝑗
  𝑘

𝑗=1
𝑚
𝑖=1

. (10) 
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 𝑆!∗ =
𝐶𝑗𝑊𝑖𝑗

∗𝑘
𝑗=1

𝑚∗
𝑖=1
𝐶𝑗𝑊𝑖𝑗

∗𝑘
𝑗=1

𝑖
𝑖
𝑁 +𝑄𝑁(𝑊

∗)𝑚∗
𝑖=1

. (11) 

 
Equation (10) is the fixed-time speedup when operation costs are considered, and eq. (11) is 

the memory-bounded speedup when operation costs are considered. When k = 1 they are equal to 
speedup (9) and speedup (10) proposed in [11], respectively. 

 
 

3. The need for a better speedup definition 
 

In recent years, many parallel algorithms have been developed for different parallel comput-
ing systems. These parallel algorithms are machine-dependent and many have been fine-tuned 
for a given computer architecture to achieve high performance. The tuning process is painful 
and elusive. Application codes are difficult to optimize uniformly across different architectures. 
Parallel algorithms are commonly compared with different programming efforts and compared 
indirectly by using results from different machines [19]. These practical approaches raise some 
questions: Does the same algorithm achieve the same performance on different computer 
systems? Does the optimized code, which gives the shortest execution time, provide the same or 
better performance than the unoptimized code? For a performance metric to be ‘fair’, we want 
the same algorithm to achieve the same or better performance than the unoptimized code. Two 
new terminologies are needed for the ‘fairness’ study. 

 
Definition 3. A performance metric is machine-independent if the performance is the same on 
any computing system for a given algorithm when the communication cost is negligible. 
 
Definition 4. A performance metric is programming-independent if the performance is indepen-
dent of the programming effort when the communication cost is negligible. 
 

It is easy to see that speedup (1) is machine-independent if and only if it is programming-
independent. However, speedup (1), the most commonly used performance metric, is machine- 
and programming-dependent. Based on his study on vector processing and fixed-size speedup, 
in 1983 Hockney noticed that using speedup as a merit for parallel algorithms can be misleading 
[20]. He introduced a new metric 𝑇!!! in 1987 [21] and presented a more detailed study on 
what’s wrong with speedup in his latest work [13]. The tendency of traditional speedup to favor 
slow processors has also been noticed. Barton and Withers [9] studied the influence of 
computation capacity of the processing elements on speedup. They used four different kinds of 
processing elements, namely 386 (i80386), 387, (i80387), SX (Weitek 1167), and VX (Analog 
Devices) to run an algorithm on iPSC/2 systems. Their implementation results show that the 
slowest processor, 386, is virtually linear in speedup, but provides low speed (in the sense of 
MFLOPS). The fastest processor, the VX board, achieves a much lower speedup while it 
provides the maximum speed and the shortest elapsed time. Theorem 1 shows that, even 
without considering the communication cost, the traditional speedup favors slower processing 
elements and is machine-dependent. In our proof we do not consider the communication cost, 
and we assume that the degree of parallelism only has two cases, a sequential part and a 
perfectly parallel part. The restriction on degree of parallelism is only for clarity; this result can 
be extended to algorithms with a general degree of parallelism. 
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Lemma 1. If computing system one has operation costs 𝐶!,𝐶! for sequential work 𝑊! > 0 and 
parallel work WN respectively; computing system two has operation cost 𝐶! for sequential work 
and has operation cost 𝐶!!  for parallel work where 𝐶!! < 𝐶!   , then system two provides a smaller 
traditional speedup than system one. That is, when there are N > 1 processors available and 
𝑊! > 0,𝑊! > 0, 

𝐶!𝑊! + 𝐶!𝑊!

𝐶!𝑊! +
𝐶!𝑊!
𝑁

>
𝐶!𝑊! + 𝐶!!𝑊!

𝐶!𝑊! +
𝐶!!𝑊!
𝑁

. 

 
Proof. Since 𝐶! > 𝐶!! , we have 𝐶!−𝐶!! > 0. Therefore, 
  

𝐶!−𝐶!! >
1
𝑁 𝐶!−𝐶!!  

 

𝐶!𝑊!−𝐶!!𝑊! >
𝐶!𝑊!

𝑁 −
𝐶!!𝑊!

𝑁  
 

𝐶!𝑊! +
𝐶!!𝑊!

𝑁 > 𝐶!!𝑊! +
𝐶!𝑊!

𝑁 . 
 
Since 𝐶!𝑊! > 0, we have 

𝐶!𝑊!𝐶!𝑊! + 𝐶!𝑊!
𝐶!!𝑊!

𝑁 > 𝐶!𝑊!𝐶!!𝑊! + 𝐶!𝑊!
𝐶!𝑊!

𝑁 , 
 
add terms 𝐶!𝑊!𝐶!𝑊! + 𝐶!𝑊!𝐶!!𝑊!/𝑁 to both sides and factor: 
 

𝐶!𝑊! + 𝐶!𝑊! 𝐶!𝑊! +
𝐶!!𝑊!

𝑁 > 𝐶!𝑊! + 𝐶!!𝑊! 𝐶!𝑊! +
𝐶!𝑊!

𝑁 , 

 
and 

 
!!!!!!!!!

!!!!!
!!!!
!

>
!!!!!!!!!!

!!!!!
!!
!!!
!

.     ☐ (12) 

 
In order to extend our result to more general cases, we introduce the following definition.  

 
Definition 5. The average operation cost of degree of parallelism i is the average operation cost 
divided by the work of degree of parallelism i for a given algorithm. 
 

 Average operation cost of degree of parallelism 𝑖 = 𝑐! =
𝐶𝑗𝑊𝑖𝑗

𝑘
𝑗=1

𝑊𝑖𝑗
𝑘
𝑗=1

 (13) 

 
We now show that traditional speedup favors slower computing systems. 

 
Theorem 1. If computing system one has operation costs 𝐶! , 𝑗 = 1,… , 𝑘, and computing system 
two has operation costs 𝐶!!, 𝑗 = 1,… , 𝑘, where 𝐶! = 𝐶!!, for  𝑗 = 1,… , 𝑡,𝐶! > 𝐶!!, for  𝑗 = 𝑡 +
1,… , 𝑘 , the computation of sequential work only involves work of type j, 1 ≤ j ≤ t and the 
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computation of parallel work  𝑊! involves some work of type j where j > t, then system one 
provides a greater traditional speedup than system two. That is 
 

𝐶!𝑊!!
!
!!! + 𝐶!𝑊!"

!
!!!!!

𝐶!𝑊!!
!
!!! +

𝐶!𝑊!"
𝑁

!
!!!!!

𝑗
𝑁

>
𝐶!!𝑊!!

!
!!! + 𝐶!!𝑊!"

!
!!!!!

𝐶!!𝑊!!
!
!!! +

𝐶!!𝑊!"
𝑁

!
!!!!!

𝑗
𝑁

. 

 
Proof. Since 𝐶!   = 𝐶!!, for j ≤ t, the average operation cost for sequential work of computing 
system one, 𝑐!, is the same as the average operation cost for sequential work of computing 
system two, 𝑐! =    𝑐!! . Since 𝐶!   > 𝐶!! for j > t, the average operation cost for parallel work of 
computing system one, 𝑐!, is greater than the average operation cost for parallel work of 
computing system two, 𝑐!! . 
 

𝑐! =
𝐶!𝑊!"

!
!!!

𝑊!"
!
!!!

>
𝐶!!𝑊!"

!
!!!

𝑊!"
!
!!!

= 𝑐!! . 

 
Therefore, by Lemma 1, 
 

𝑐!𝑊! + 𝑐!𝑊!

𝑐!𝑊! +
𝑐!𝑊!
𝑁

>
𝑐!𝑊! + 𝑐!!𝑊!

𝑐!𝑊! +
𝑐!!𝑊!
𝑁

. 

 
That is 
 

 
!!!!!

!
!!! ! !!!!"

!
!!!

!!!!!
!
!!! !

!!!!"
!

!
!!!

!
!

>
!!
!!!!

!
!!! ! !!

!!!"
!
!!!

!!
!!!!

!
!!! !

!!
!!!"
!

!
!!!

!
!

.  ☐ (14) 

 
Operation costs not only depend on the parallel system and the algorithm, but also on the 

programming effort on the node. Operation cost can be reduced by careful coding. For 
instance, the Vector update (see Fig. 4) can be rewritten in assembly language to reduce the 
operation cost. Theorem 1 can be presented differently to show that the traditional speedup is 
programming-dependent and favors poorly-coded programs. 

 
Theorem 2. If a computing system has operation costs 𝐶! , 𝑗 = 1,… , 𝑘, for a program and has 
operation costs 𝐶!!, 𝑗 = 1,… , 𝑘  for the optimized version of the program, where 𝐶! = 𝐶!! , for  
𝑗 = 1,… , 𝑡,𝐶! > 𝐶!!, for  𝑗 = 𝑡 + 1,… , 𝑘, the computation of sequential work only involves work 
of type j, 1 ≤ j ≤ t and the computation of parallel work  𝑊! involves some work of type j where 
j > t, then the optimized version provides a smaller speedup than the original program. 
 

A real application, the radiosity application [22], is chosen to provide experimental results. 
Radiosity is the equilibrium radiation given off by a coupled set of diffuse surfaces that emit and 
absorb radiation. The sample radiosity program is a diagonally-dominant dense matrix problem 
and is easily understood: A room is painted with a separate color for each wall, plus floor and 
ceiling, and one or more of the six surfaces also emits light. Emissivity and reflectivity 
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Fig. 5. Execution time of two implementations. 

 

 
Fig. 6. The traditional speedup of two implementations 

 
are described as red-green-blue components for each wall of the room. The radiosity problem is 
to find the color variation over each wall. 

We implemented the radiosity algorithm on a 64-node nCUBE 2 multicomputer with two 
different versions of the program. One was written in FORTRAN and another version optimized 
certain subroutines of the FORTRAN code with assembly language. The implemented results of 
the two codes are depicted in Fig. 5 and Fig. 6. From the implementation results we can see that, 
while the optimized version provides a shorter elapsed time, the unoptimized version provides a 
higher traditional speedup. A researcher attempting to achieve high speedup on a parallel system 
is therefore at odds with the more basic goal of achieving high net performance. 
 
4. A new performance metric 
 

Theorem 1 and Theorem 2 show that the traditional speedup favors slow processors and 
poorly-coded programs even when the communication cost is not considered. Thus, performance 
measurements given in terms of speedup must be interpreted with particular care. New, better-
defined performance metrics are needed to provide a ‘fair’ performance measurement. The 
scaled speedup concept [3,4] lets the problem size increase with computation power and 
emphasizes how much work is done in a fixed time. A natural step in the search for a better 
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metric is to follow the scaled concept and define a new metric, called sizeup, as parallel work 
over sequential work: 
 Sizeup = parallel work

sequential work. (15) 
 
In a sizeup measurement, the problem size is scaled so as to keep the parallel execution time a 
constant, as the number of processors increase. Since more than one process is used in parallel 
processing, in general more work will be done in parallel processing. Sizeup indicates the ratio 
of the work increase. The term sizeup was coined by G. Montry in 1987 during the experiments 
done at Sandia [3]. 

Theorem 3 shows that sizeup is machine-independent. 
 
Lemma 2. If computing system one has operation costs 𝐶! and 𝐶! for sequential work 𝑊! and 
parallel work 𝑊! respectively; computing system two has operation cost 𝐶! for sequential work 
and has operation cost 𝐶!!  for parallel work where 𝐶!! < 𝐶!, then, system one and system two 
provide the same sizeup. 
 
Proof. In sizeup, the workload is scaled with the number of processors available. Let the original 
workload be 𝑊,𝑊 =𝑊! +𝑊! , and let the scaled workload for system one be 
𝑊! =𝑊! +𝑊!

!  and the scaled workload for system two be 𝑊∗ =𝑊! +𝑊!
∗ . Since, by the 

definition of sizeup, the parallel execution time is fixed with the sequential execution time, we 
have 

𝐶!𝑊! + 𝐶!𝑊! = 𝐶!𝑊! +
𝐶!𝑊!

!

𝑁  
𝑊!

! = 𝑁𝑊!, 
and 

𝐶!𝑊! + 𝐶!!𝑊! = 𝐶!𝑊! +
𝐶!𝑊!

∗

𝑁  
𝑊!

∗ = 𝑁𝑊!, 
Therefore, 

𝑊!
! =𝑊!

∗ 

 
!!

!
=
!∗

!
.     ☐ (16) 

 
Theorem 3. If computing system one has operation costs 𝐶! , 𝑗 = 1,… , 𝑘 and computing system 
two has operation costs 𝐶!!, 𝑗 = 1,… , 𝑘 , where 𝐶! = 𝐶!!  for 𝑗 = 1,… , 𝑡 ; the computation of 
sequential work is independent of the number of processors available and only involves work of 
type 𝑗, 1 ≤ 𝑗 < 𝑡, then system one and system two provide the same sizeup. 
 
Proof. Use Lemma 2 and follow arguments similar to those used in the proof of Theorem 1. ☐ 
 

If we assume program tuning only improves the parallel portion of the algorithm, which is the 
common case in practice, then Theorem 3 also shows that sizeup is programming-independent. 
This can be shown as follows. 

 
Theorem 4. If a computing system one has operation costs 𝐶! , 𝑗 = 1,… , 𝑘 for a given program 
and has operation costs 𝐶!!, 𝑗 = 1,… , 𝑘, for the optimized version of the given program, where 
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Fig. 7. Sizeup of two implementations. 

 

 
Fig. 8. Sizeup when data collection phase is added. 

 

𝐶! = 𝐶!! for 𝑗 = 1,… , 𝑡; the computation of sequential work is independent of the number of 
processors available and only involves work of type 𝑗, 1 ≤ 𝑗 < 𝑡, then the given program and the 
optimized version achieve the same sizeup. 
 
Theorems 3 and 4 have been confirmed by empirical results from the radiosity algorithm. As 
shown in Fig. 7, under assumptions of Theorem 3 and Theorem 4 respectively, sizeup is 
 

 

 
Fig. 9. The traditional speedup when data collection is added. 

Speedup

Number of Nodes

10

10

20

30

40

50

60

20 30 40 50 60

Original

Optimized

Speedup

Number of Nodes

10

10

20

30

40

50

60

20 30 40 50 60

Original Optimized

Speedup

Number of Nodes

10

10

15

20

25

30

35

5

20 30 40 50 60

Original

Optimized



 Toward a better parallel performance metric  
 

1105 

machine- and programming-independent. However, if the sequential work increases with the 
problem size, then sizeup is no longer independent of either. To test this case, we modified the 
radiosity algorithm to contain a data collection phase: All computed results are collected to a 
single mass storage device. The data collection phase is a sequential process and increases with 
problem size. The modified radiosity algorithm is also implemented on an nCUBE 
multicomputer. Figure 8 shows that, when the sequential portion of a program increases with the 
problem size, the sizeup also favors slower processors or poorly coded programs. However, the 
dependence is much less than with traditional speedup; compare Fig. 8 and Fig. 9. 
 
 
5. The generalized parallel speedup 
 

Computation capacity of processors is generally measured by MIPS (Millions of Instructions 
Per Second) or MFLOPS (Millions of FLoating point Operations Per Second). The performance 
of processors is given in speed: work divided by time. (The particular choice of unit for work is 
irrelevant to the arguments that follow.) Since the computing capacity of processors is given in 
speed, a natural way to measure parallel processing gain would be the ratio of parallel execution 
speed to sequential execution speed [14]. We introduce a new metric, which we call generalized 
speedup. 
 
 Generalized Speedup = parallel execution speed

sequential execution speed. (17) 
 

We have introduced two new performance metrics. In the rest of this section we study the 
relation between the newly-proposed performance metrics and traditional speedup. The results 
show that traditional speedup is the restriction of (17) to fixed work or to fixed operation cost, 
and sizeup is the restriction of (17) to fixed time. In the following we use SN to represent the 
generalized speedup (17), and use 𝑆! to represent the traditional speedup (1). 

By definition 
 
 SN =

parallel execution speed
sequential execution speed (18) 

 

 =
parallel  work

parallel  execution  time
sequential  work

sequential  execution  time
 (19) 

  

 =

𝓦′
𝐶1𝓦𝑖

′

𝑖
𝑖
𝑁 +𝑄𝑁𝓦

′𝑚
𝑖=1

𝑊
𝐶𝑗𝑊𝑖𝑗

𝑘
𝑗=1

𝑚
𝑖=1

 (20) 

 
The workload 𝓦′ is the parallel workload. It may be scaled up with system size if the fixed-time 
or memory-bounded speedup is used. If the fixed-size model of speedup is used, then 𝓦! =𝑊 
and 𝓦!

! =𝑊!. 
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When we have a unique operation cost, that is, 𝐶! = 𝐶!,  for  𝑗 = 2,… , 𝑘, then 
 

 SN =

𝓦′
𝐶1𝓦𝑖

′

𝑖
𝑖
𝑁 +𝑄𝑁 𝓦′𝑚

𝑖=1
𝑊
𝐶1𝑊𝑖

𝑚
𝑖=1

=

𝓦′
𝓦𝑖
′

𝑖
𝑖
𝑁 +𝑄𝑁

′ 𝓦′𝑚
𝑖=1

𝑊
𝑊𝑖

𝑚
𝑖=1

 

 

Where 𝑄!! 𝓦! = 𝐶!𝑄! 𝓦! , and (see eq. (9)) 
 

 𝑆!   =
𝓦′

𝓦𝑖
′

𝑖
𝑖
𝑁 +𝑄𝑁

′ 𝓦′𝑚
𝑖=1

 SN (21) 

Equation (210 shows that, when we have a unique operation cost, the new metric is the same as 
the traditional speedup. If the fixed-size speedup is used, eq. (21) is the same as eq. (9). If the 
fixed-time model is adopted, the workload is scaled up with the execution time; eq. (21) is the 
same as eq. (10). When the workload is scaled up with memory capacity, then 𝓦! =𝓦∗ and the 
speedup 𝑆! is equal to 𝑆!∗  given in eq. (11). In the fixed-time case, we also have 
 

 SN =
𝓦′

𝓦𝑖
′

𝑖
𝑖
𝑁 +𝑄𝑁

′ 𝓦′𝑚
𝑖=1

=𝓦′
𝑊 = parallel  work

sequential  work = sizeup. 

Notice, by eq. (19), that when the problem size is fixed, 
 

 SN =
sequential  execution  time

parallel  execution  time  using  N  processors. (22) 
 

which is the same as the definition of the traditional speedup. Equations (21) and (22) show, 
when the operation cost is unique or when the problem size is fixed, the generalized speedup is 
the same as traditional speedup. Since, historically, performance issues have been studied under 
the assumption that the computation capacity is unique [11], or that the problem size is fixed 
[2], the results of previous studies remain true under the new definition, and the newly-proposed 
metric can be seen as a generalization of the traditional speedup. 

By eq. (19), when the execution time is fixed, we also have 
 

 SN =
parallel  work
sequential  work = sizeup. (23) 

 
Fig. 10. The generalized speedup. 
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Sizeup is the fixed-time model of speedup (17). The relation between the generalized speedup 
(17), sizeup, and the traditional speedup (1) are summarized in Fig. 10, in which Fixed Rate 
indicates that the problem has a unique operation cost. 

We would like to compare generalized speedup and traditional speedup. Notice in Theorem 
3 and Theorem 4 that sizeup, the fixed-time case of the generalized speedup, sets the parallel 
execution time equal to the sequential execution time. But, with two different computing 
systems, the sequential time could be different. If system two has lower operation costs than 
system one, system two may provide a shorter sequential execution time than system one. With 
more than one parallel system available we have more options for comparison. In Theorem 3 
we fixed the workload on system one and system two when on processor is used, and let system 
one and system two have different sequential execution time, then the traditional speedup will be 
machine- and programming-independent, no matter whether the fixed-size model of speedup or 
the fixed-time model of speedup is used. We only give the proof for the fixed-size model of 
speedup. the result for fixed-time speedup can be obtained similarly. 

 
Proposition 1. Under the conditions of Lemma 1, if we let system one and system two have the 
same sequential execution time, then system one and system two provide the same traditional 
speedup. 
 
Proof. Since system one and system two have different computing capacity for parallel 
computation, with fixed time, the work they execute will be different. Let 𝑊 =𝑊! +𝑊! be the 
work executed by system one. Let 𝑊   ! =𝑊!

! +𝑊!
!  be the work executed by system two. Then, 

 
 𝐶!𝑊! + 𝐶!𝑊! = 𝐶!𝑊! + 𝐶!!𝑊!

!  (24) 
 
 𝑊!

! = 𝐶1
𝐶2
′ 𝑊! . (25) 

 
and the speedup of system two is equal to the speedup of system one. 
 

 
!!!!!!!!!!

!

!!!!!!!!
!!
!

!

=
!!!!!!!!

!!
!!
!!!

!!!!!!!!
!!
!!
!!!

!

=
!!!!!!!!!

!!!!!!!
!!
!

.    ☐ (26) 

 
Figure 11 depicts the machine- and programming dependence of traditional speedup and 

generalized speedup. Some of the results listed in the tables have been proven in this section, 
and the rest can be proven by following similar arguments. For instance, replacing 𝑊! by 

 
 

Fig. 11. Tables of dependence. 

Dependent Independent

Independent Independent

TimeSize

Size

Time

Generalized Speedup

Dependent Dependent

Independent Independent

TimeSize

TraditionalSpeedup

Size

Time



1108 X.-H. Sun, J.L. Gustafson  
	  

 
Fig. 12. The size-time model of traditional speedup. 

 
𝑁𝑊! and following arguments similar to those used in the proof of Lemma 1, we can show 
that the size-time model of traditional speedup also favors slow processors. The size beside the 
tables indicates that the workload of single processor execution on different systems is fixed. 
The time beside the tables indicates that the single processor execution time of different 
systems is fixed. The size and time above the tables represent that fixed-size or fixed-time 
model of speedup is used, respectively. From Fig. 11 we can see that speedup (17) is not fully 
machine- and programming-independent, but it provides less penalty than the traditional 
speedup. The implementation results of the size-size model of traditional speedup and the 
size-time model of the generalized model are shown in Fig. 6 and Fig. 7 respectively. The 
implementation results of the size-time model of traditional speedup are shown in Fig. 12. 
From Fig. 12, we can see that, while the size-time model of the generalized speedup is machine- 
and programming-independent, the size-time model of the traditional speedup is not. Generalized 
speedup provides a little more ‘fairness’ than traditional speedup. 
 
 
Conclusion and remarks 
 

We have studied the ‘fairness’ of parallel performance metrics. We have shown that the most 
frequently used performance metric, traditional speedup, favors slow processors and poorly-
programmed codes. The reason for the ‘unfairness’ of this model has been identified and 
quantified. New terminologies and concepts such as operation cost, machine dependence, and 
programming dependence, which can be used in future studies, have been introduced and 
carefully defined. Two new performance metrics have been proposed. The first new metric, 
sizeup, provides a ‘fair’ performance measurement. The second metric, generalized speedup, 
contains both sizeup and the traditional speedup as special cases. Our study focused on the 
relative speedup (1). The study results can be used to evaluate absolute speedup and other 
parallel performance metrics. For instance, since relative speedup favors slow processors when 
the operation cost is fixed (or, in a weaker sense, the faster processors reduce execution time in 
the same ratio for both the best sequential algorithm and the parallel algorithm on one 
processor), then the absolute speedup also favors slow processors. Absolute speedup is also 
machine-dependent. 

Due to the diversity of existing architectures, algorithm codes are difficult to optimize 
uniformly across architectures. Parallel algorithms are commonly compared with different 
programming efforts and compared indirectly by using implementation results from different 
machines. This situation is unlikely to change in the near future. A better-defined, ‘fair’ 
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performance metric is urgently needed. Sizeup is ‘fairer’ than traditional speedup. However, 
sizeup is based on the scaled speedup principle and only provides a ‘fair’ measurement under 
certain conditions. Can we find a better, fixed-size performance metric? Can we find a metric 
that provides an unconditional ‘fairness’? Many questions remain. 
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