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Abstract* 
Intensive research has been conducted on dynamic job 

scheduling, which dynamically allocates jobs to 
computing systems. However, most of the existing work is 
limited to redistribute independent tasks or at the 
algorithm design level. There is no runtime system 
available to support automatic redistribution of a running 
process in a heterogeneous network environment. In this 
study, we present the design and implementation of a 
system that dynamically reschedules running processes 
over a network of computing resources via automatic 
decision-making and process migration. The system is 
implemented on top of MPI-2 and HPCM (High 
Performance Computing Mobility) middleware. 
Experimental and analytical results show that the runtime 
system works well. It makes dynamic rescheduling of 
running tasks possible and improves system performance 
considerably. While the implementation is for MPI 
programs and using HPCM, the design of the system is 
general and can be extended to other distributed 
environments as well. 
 
 
1. Introduction 
 

Runtime dynamic scheduling is a fundamental issue of 
parallel and distributed computing. The emergence of 
Grid [9], provides a promising platform for large-scale 
and resource intensive applications. The Grid provides the 
basic software infrastructure with mechanisms for 
resource sharing over a distributed heterogeneous 
network. The job scheduling and management system is 
an integrated component of Grid computing. When one 
system encounters some difficulties, such as a system 
failure, temporary resource unavailability, network 
outrage, system reconfiguration, or just performance 
degradation caused by preemption from high priority local 
jobs, the Grid jobs need to be rescheduled to another host 
to continue. In traditional job scheduling systems, task 
allocation is static. Once a task is assigned, it will stay 
where it is until it finishes or restarts at another site from 

                                                 
*  This research was supported in part by National Science Foundation 
under NSF ACI-0130458, ANI-0123930, and EIA-0130673. 

the beginning. In these systems, a reassignment means the 
loss of all partial results. The nature of static allocation 
may cause dramatic performance loss in practice. Also, 
jobs may have to be rejected when a certain host cannot 
satisfy the jobs for required resources. However, if the 
mobility is supported and the decision is made 
automatically at runtime, a job can move from one host to 
another for both resource availability and performance 
gain. In this study, we intend to develop a novel system 
enabling dynamical reschedule of running processes over 
a network of computing resources, via automatic decision-
making and process migration. We present the design and 
implementation of a runtime support system, which 
enables dynamic re-allocation of processes in a 
heterogeneous distributed environment. We also present a 
highly configurable and extensible rule-based mechanism 
for policy making that supports various system conditions 
in such environment.  

Process migration is the act of transferring an active 
process from one computer to another. The process retains 
its execution sequence and memory state during a 
migration. The process is interrupted on the source 
machine and then is resumed at the break point with the 
same memory state on the destination machine [8]. HPCM 
is a heterogeneous process migration middleware [5, 6, 8].  

The Message Passing Interface (MPI) is a standard 
library specification for message passing. It is proposed, 
developed broadly by vendors, implementers, and users. 
MPI-2 includes an extension to MPI-1 standard. It 
supports process creation and management, one-sided 
communications, extended collective operations, external 
interfaces, I/O, and additional language bindings [17].   

In this study, we design and implement a runtime 
system on top of HPCM and MPI-2, providing resource 
registration, resource monitoring, process registration, and 
soft-state management to support dynamic rescheduling of 
MPI tasks. The system has a rule-based decision-making 
component that coordinates with other components of 
HPCM as a commander, and invokes the migration when 
it reaches a migration decision according to a highly 
configurable and extensible rule-based mechanism. 
Though the system is implemented on top of the MPI and 
HPCM middleware, it is general and can be extended for 



 

checkpointing-based or mobile computing systems, and 
for other distributed environments. 

This paper is organized as follows. In Section 2, we 
give an overview of related works on process migration 
and job scheduling. In Section 3, we present the features 
of the rescheduler and describe the implementation 
details. We present the rule-based decision-making 
mechanism in Section 4. Section 5 shows the performance 
results and analysis. Section 6, finally, concludes this 
paper and presents future works. 

 
2. Related Works 
 

The existing computation and data Grid do not support 
dynamic task re-allocation in general. Traditional static 
task scheduling requires that before scheduling, the arrival 
time and execution time of tasks and their dependencies 
be known to the scheduling system. Usually their 
relationships are defined by a DAG [12]. Clearly, this 
condition cannot be met in Grid computing. Some 
researchers have developed new algorithms for dynamic 
scheduling with limitations. Some algorithms duplicate 
the tasks and issue them simultaneously on multiple 
computing resources [14], [16]. Some issue multiple 
copies of tasks to idle computing resources [10]. These 
algorithms have limitations on the usage of resources. 
They provide dynamic features at the expense of resources 
and performance. They may also cause mutual exclusion 
problems when utilized in the tasks requiring non-
duplicable resources. Some of them are based on 
performance prediction. In this case, the system may pay a 
penalty in terms of prediction error or system failure. 
Once performance degradation or system failures occur, a 
reassignment is necessary. In practice, this can cause the 
loss of all partial results and dramatic performance 
degradation. 

Due to its importance, intensive research has been done 
in process migration. Some of the early works, such as 
MOSIX [3], V [4] and Sprite [7], combine the migration 
functionality to cluster operating systems. Because these 
systems work on clusters with specific operating systems, 
they do not use or provide a general runtime re-allocating 
function. These systems cannot be used in a Grid 
environment. 

There are several other systems implemented for 
widely used operating systems at user-level, e.g. Condor 
[15], or at kernel-level, e.g. Linux Zap [21] to support 
homogeneous process migration. Condor is geared 
towards High Throughput Computing, through resource 
and job matching. A centralized broker uses a Class-Ads 
mechanism to match jobs to resources and then, schedule 
jobs on the Condor machines. Condor uses a 
checkpointing-based mechanism to implement process 
migration at the user-level. It only supports homogeneous 
process migration. Although several job scheduling 

policies are proposed [1, 2], they do not support 
heterogeneous runtime process rescheduling. The Zap 
system supports migration of legacy applications through 
the use of loadable kernel modules and virtualization of 
both the hosts and processes with respect to each other 
[21]. It uses a checkpointing-based mechanism to support 
process migration and cannot migrate over heterogeneous 
environments. However, the Zap system has not 
implemented the mechanism for scheduling and re-
allocation. Heterogeneous process migration has been 
studied by a few researchers [22, 24] who address several 
important problems and discuss how to build their 
prototype systems. They also propose some triggering 
conditions, but they do not develop those simple triggers 
into a runtime rescheduling system. 

There are some other applications that obtain mobility 
via mobile agents or mobile codes. Compared to process 
migration, mobile agents are modularly designed 
applications that inherently need to “jump” or “goto” 
other machines. They are scheduled by the execution 
workflow itself. They work under certain predefined 
virtual environments, and work well only for certain 
special purpose applications [13]. 

 
3. System Design and Features 

The basic functionalities of our rescheduler include 
resource monitoring and registration; process registration; 

soft-state management; and a rule-based decision-making 
mechanism. It provides services that enable: effective 
communication between and within the hosts; transparent 
sharing, resources discovery and usage; and rule-based 
intelligent monitoring and decision-making.  

Our system model consists of system state monitoring 
entities, commander entities and a process registration and 
decision-making entity. Figure 1 shows the system model.  

A monitor and a commander entity reside on each host, 
including candidate destination hosts. There is also a 
central or hierarchical registry/scheduler, which can reside 
on any host with or without other entities. As shown in 
Figure 1, the monitor registers the host static information 
to the registry/scheduler and periodically gathers and 
updates the system status to it. The monitor determines the 
status of its local system resources as free, busy, 
overloaded or unavailable. It then reports its system status 
and other information to the registry/scheduler. The 

 
Figure 1. System Model 



 

registry/scheduler analyzes the data from monitors and 
makes a decision regarding which process to migrate and 
where to migrate it. The registry/scheduler sends a 
message to the source machine’s local commander to 
initialize the migration. After receiving the message, the 
source machine’s local commander issues a command to 
the migrating process to start the process migration. The 
migrating process, in turn, initializes a process at the 
destination machine through the dynamic process creation, 
and creates a communication channel between the 
migrating process and the initialized process. The 
initialized process, then, is ready to take over the 
computation on the destination machine. The migrating 
process transfers the execution, memory, and 
communication states to the initialized process on the 
destination host at the nearest poll-point (pre-defined 
possible point in the execution sequence where a 
migration can occur). The details of the process migration 
mechanisms can be found in [5, 6, 8].  

3.1 Monitoring and Decision-Making 
At each host, the monitor gathers system information 

and manages local system state based on the information. 
Local decisions of the system state are made and are 
reported to its registry/scheduler. Monitoring can be 
performed periodically or only when necessary. We chose 
the former for a better reaction time. Based on the rules 
used in monitoring, the monitor can be very light-
weighted.  

System information consists of static and dynamic 
information. Static information, such as host name, IP 
address, operating system, and memory size, is not likely 
to change during the lifetime of the specific monitoring 
entity. The static information is used only for one-time 
registration. On the other hand, dynamic information from 
computational resources, memory, networks, disks or 
applications is quite likely to change with time. We gather 
dynamic information either through the use of scripts 
(such as UNIX shell-scripts on *NIX, or batch-files on 
Windows), or through APIs provided (such as sysinfo on 
LINUX platform, or the WMI on Windows platform). We 
chose to implement a script-based mechanism, partially 
for the ease of implementation, and partially for its 
portability. We implemented the shell scripts using 
utilities like ‘vmstat’, ‘prstat’, ‘ps’ etc, on Sun Solaris 5.8 
to gather system information. These mechanisms could be 
easily ported to LINUX where the shell scripts could read 
the system parameters from ‘/proc’,  

The monitors collect various types of information. 
They are: 
� Processor utilization and load: parameters include the 
load average, CPU utilization and the number of processes 
per processor.  

� Memory state: available memory and percentage of 
available memory for both virtual and physical memory, 
and the memory statistics regarding the process. 
� Disk usage: parameters include disk space used, disk 
space available. It gathers the disk usage parameters of the 
various mount points.  
� Communication: parameters include latency, and 
bandwidth. 

Based on the information, the monitor determines the 
system status according to a rule-based mechanism. This 
decision is made locally and specifically according to the 
rules defined for a specific local system. We can 
accommodate our system into a large number of 
heterogeneous systems with very large gaps in both 
performance and resource availability.  

3.2 Registry/Scheduler 
Registry/scheduler is an entity that resides on any host 

in the HPCM system. It can also reside on a host without 
any other entities configured, and it is a global system 
state manager and decision-making entity. Although 
conceptually it is a centralized entity in the system, we can 
extend it as a service in hierarchy. Each local system has 
its own registry/scheduler and each registry/scheduler has 
its own upper level registry/scheduler. We can configure a 
local registry/scheduler on a local cluster and its upper 
level registry/scheduler to a specific organization, such as 
a Virtual Organization in a Grid environment. The lower 
level registry/scheduler has its own health condition, 
which indicates its overall workload and availability of 
each kind of resource. Usually, it is preferred that the 
migration destination is chosen inside one’s control 
domain, which includes the systems registered to the same 
registry/scheduler entity. This hierarchical design solves 
the problem of a centralized bottleneck, thereby 
improving the performance and the system scalability. 

Registration mechanisms can be either pull or push 
based. The good thing about the pull based registration 
mechanisms is that the registry/scheduler can decide when 
it needs the information and status of each host. It then 
queries the current information to make more optimized 
decisions. But, this also leads to the registry/scheduler 
having to make a query at runtime when a decision is 
expected, thus slowing down the process.  

The other side is the push model where all the 
registrants are expected to refresh their status every once 
in a while. This model forces the clients to maintain timers 
and to constantly keep querying the status of the registry, 
thus guaranteeing a certain amount of traffic. In this 
model there are chances of flooding the registry, if all the 
registrants become synchronized.  

In our system, the registration of resources is based on 
a soft-state mechanism, wherein clients have to regularly 
update their presence and state information to the 



 

registry/scheduler through the push model, otherwise the 
registry/scheduler will consider them as unavailable.  

Scheduling involves decision-making utilizing static 
information and runtime data. The registry/scheduler 
makes a decision on where to migrate a process based on 
“first fit” policy. From the machine list, the 
registry/scheduler chooses the first host, which is ready 
and owns all the resources required, as the migration 
destination host.   

3.3 Communication 
The monitor, commander and registry/scheduler of our 

system are components of communication. In addition to 
these, the migrating process and the initialized process are 
also involved in communication during process migration. 
Altogether, five kinds of communication parties 
coordinate and communicate with each other to form an 
automatic migration system as shown in Figure 1. We 
have developed several communication mechanisms, so 
that we can achieve high performance, scalability and 
extensibility. We discuss these mechanisms as follows: 
� Migrating process and initialized process: The 
communication data between the migrating process and 
initialized process include the execution state and memory 
state. The amount of communication highly depends on 
the application. We have built up mechanisms to reduce 
the communication cost in process state transfer. We still 
need faster communication to improve the migration 
performance. In the following discussions, we use the 
communication channel of LAM MPI-2 [18] in process 
state transfer. Currently, we have tested several 
communication channels for the process state transfer 
including TCP/IP, MPI and PVM. We take advantage of 
the MPI-2 standard dynamic communicator management 
to support communication state migration over MPI-2. To 
enable process migration over MPI-2, we need to 
dynamically create a process with a communicator and 
join the communicators together, so that the migrating 
process and initialized process can communicate in one 
communicator. Fortunately, dynamic process management 
is defined in MPI-2 standard and LAM is one of the few 
MPI environments that support these functions. We 
cannot use other MPI such as MPICH-2 [19] and Sun MPI 
[20] because they do not support the dynamic process 
management, and the implementation is in their future 
schedule. 
� Rescheduler, migrating and initialized process: The 
commander needs to issue a migration command to the 
migrating process. Then the address and the port of the 
destination machine are written to a temporary file and are 
read by the migrating process. We defined this command 
as a user-defined signal, which is simple, efficient and 
easy to bind to most systems and communication 
environments. The detailed application information, 
parameters, and resource requirements are encapsulated in 

an application schema in a XML format and sent to the 
destination machine to initialize the process on the 
destination machine. The application schema contains 
information such as: application characteristics, which 
include data, communication, or computing intensive; 
estimated communication data size; resources requirement; 
and estimated execution time on workstation with certain 
computing power. The application schema is initially 
provided by the users and is updated according to the 
statistics of actual executions. 
� Entities of rescheduler: We combine a custom XML 
based protocol with TCP/IP sockets to form the 
communication subsystem of the rescheduler. The XML 
based protocol is used for communications between the 
monitor, registry/scheduler and commander entities. We 
chose this combination because its implementation can be 
easily extended, its protocol is simple to implement, and it 
is easy to debug. As its name suggests, XML is extensible 
and is transmitted using plain ASCII format and it is also 
transport independent. Even though we have chosen 
TCP/IP as our transport protocol, it could be changed in 
the future to another communication channel, such as 
various channels of MPI. 
 
4. Rule-based Decision-Making Mechanism 
 

We established a rule to describe the requirement of the 
system based on one or some specific performance or 
availability parameters. A rule is built to define the 
resource status of a system. We defined a policy as a 
group of rules. The policy defines the transformation 
mechanism of hosts or resources states. We classify the 
system states with a fine granularity using a series of 
numbers to support more complex migration rules and 
policies. Here we use a simplified three-state 
representation to introduce our mechanisms, which can be 
easily reconfigured to a finer granularity representation. 

The relationship between the actions and the states is 
shown in Table 1. We define the system states as: 
 free: The host is willing and able to accept incoming 
HPCM-enabled applications. 
busy: The host is no longer accepting any incoming 
applications. It is a state of “as is”. The host does not try 
to migrate the migration-enabled applications out. 
overloaded: This host needs to offload its applications 
onto other host, in order to switch either to busy or to free.  

Table 1. System State Description 
System state Loaded Migrate in Migrate out 

Free No Yes No 
Busy Yes No No 

Overloaded Yes No Yes 
We configure a time interval as Monitoring Frequency 

for each state. It indicates how often the system 
information is to be gathered. According to the established 
protocol, when a host reaches an overloaded state in the 



 

monitor, it consults the registry/scheduler to get a 
recommended candidate of destination machine. At the 
moment this registry/scheduler simply checks for host 
environments that are in the free state, and if there is one, 
it recommends it as the move-to host. The 
registry/scheduler then sends this message to the 
commander of the overloaded host, thus ensuing the 
migration. 

In our system architecture, a monitoring entity resides 
on each host. A monitoring entity is composed of system 
information gathering engines, the process selector, the 
monitoring information database, and the rule-evaluator. 
Each of these modules is configurable, thus it is possible 
to change the internal architecture of gathering 
information, process selection etc. A flow representation 
of the monitoring architecture is shown in Figure 2. The 
registry/scheduler selects the process to be migrated. In 
the current system, we selected a migration-enabled 
process based on the start time of the process and the 
application description information provided in the 
application schema for each application. We get the 
estimated execution time of the application from the 
application schema, and the start time of the application 
from the pid file time-stamp. The registry/scheduler tends 
to migrate a process that has the latest completing time to 
reduce the possibility of migrating multiple processes. 

A rule file contains the rule name (rl_name), the 
command to be fired to retrieve the system information 
(rl_script), description of the rule (rl_desc), the logic 
operator to evaluate the rule (rl_operator), a list of 
parameters to be passed to the shell script to retrieve the 
system information (rl_param), and the conditions for the 
system to be in busy state (rl_busy), and overloaded state 
(rl_overLd). The rules are shown in figure 3. 

Rule 1 [processorStatus]: Makes decisions based on the 
process status, i.e. the idle time of the processor, and 
amount of time spent in executing idle process. It uses the 
Unix utility ‘vmstat’ to determine the processor status. 
This rule does not require any parameter. If the 
processor’s idle time is higher than 45 but lower than 50 
then the system is kept in busy state; if the processor’s idle 

time is lesser than 45 then the system is kept in 
overloaded state; otherwise the system is put into free. 

Rule 2 [ntStatIpv4]: Determines the number of Ipv4 
sockets currently open in the system. It uses the Unix 
utility ‘netstat’ to determine the number of sockets in a 
specified state. The rule takes as input a parameter 

specifying the state of the socket to be monitored, such as 
the sockets in the ESTABLISHED state.  

 A complex rule evaluation determines the state of the 
system on the basis of a combination of rules. Figure 4 
shows a Complex Rule. The rl_type determines the type 
of the rule to be complex. The rl_script specifies how the 
decision is made based on individual rules evaluated. It 
can be represented in an expression or a file name 
containing the expression. The rl_param, rl_busy, 
rl_operator and rl_overLd need not be specified in a 
complex rule.  

Thus, as shown in Figure 4, rule numbers 4, 1, 3 and 2 
are fired in sequence and the system is in busy state if both 
rule 2 and a combination evaluation of rule 4, 1 and 3 are 
in busy or one of them is in busy and the other is in 
overloaded. We can also define a complex rule as a 
weighted sum of several simple rules.  

 
5. Evaluation 
 

We implemented and tested the rescheduler working 
with other components of the HPCM system on a platform 
of 64-node cluster running on SunOS 5.8. Each 
workstation is a Sun Blade 100 with 1 UltraSparc-IIe 
500MHz CPU, 256K L2 cache, and 128MB memory. We 
used the LAM/MPI [18] version 6.5.9 as the MPI-2 
communication platform. The communication between the 
workstations is a 100Mbps internal Ethernet with 
exclusive use. We also used a computational intensive 
migration-enabled application named “test_tree”, which 
creates binary trees with specified number of levels, 
assigns a random number to each node of the trees, sorts 
the trees and computes the sum of all the tree nodes. We 

 rl_number: 1 
rl_name: processorStatus 
rl_type: simple 
rl_script: processorStatus.sh 
rl_desc: This rule determines the 
processor status i.e. the idle time.
rl_operator: < 
rl_param: 
rl_busy: 50 
rl_overLd: 45 

rl_number: 2 
rl_name: ntStatIpv4 
rl_type: simple 
rl_script: ntStatIpv4.sh 
rl_desc: This rule determines the  
number  of sockets in a give state. 
rl_operator: > 
rl_param: ESTABLISHED 
rl_busy: 700 
rl_overLd: 900   

Figure 3. Simple Rules 

 
Figure 2. Rule Evaluation 

rl_number: 5 
rl_name: cmp_rule 
rl_type: complex 
rl_desc: A  Complex Rule. 
rl_ruleNo: 4 1 3 2  
rl script:  ( 40% * r 4 + 30% * r1 + 30% * r3 ) & r2

Figure 4: A Complex Rule 



 

used NTP (Network Time Protocol) to synchronize the 
timing on workstations. The maximum error range is no 
more than 0.02 second. 

5.1 Rescheduler Overhead 
We monitor the host performance with or without the 

rescheduler using a standalone performance sensor, named 
“sysinfo”, for performance data collection. We configure 
the monitor, the commander and the registry/scheduler on 
one workstation. Another workstation is configured with a 
monitor and a commander and is registered to the 
registry/scheduler. Several performance parameters, 
including load average, CPU utilization, and 
communication cost, are collected. The comparisons of 
the measured results are shown in Figure 5 and Figure 6.   
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Figure 6. Overhead – Communication 
The performance data is gathered at an interval of 10 

seconds. The load average value is 0.256 for 1-minute 
without the rescheduler and 0.266 with the rescheduler. 
The overhead is 3.9%. The load average value is 0.262 for 
5-minute without the rescheduler and 0.263 with the 
rescheduler. The overhead is 0.4%. The 1-minite load 
average is shown in Figure 5. The CPU utilization average 
is 0.263 and 0.260 for with and without the rescheduler 
and the overhead is 3.46%. The communication load with 
or without rescheduler is 5.82 KB/s for sending and 
5.99KB/s for receiving as illustrated in Figure 6. The 
upper two curses are for receiving and the lower two 
curves are for sending. We can see clearly that there is 
almost no overhead for communication. Through the 
testing, we see that the overhead of the rescheduler 
operation is usually less that 4%. This testing is to explore 
only the overhead of the rescheduler. The overhead of 

process migration is also small. Details of the migration 
overhead on both homogeneous and heterogeneous 
platforms can be found at our prior publication [8].  

5.2 System Efficiency 
Figure 7 and Figure 8 illustrate the efficiency of our 

system by another experiment. The tests are performed on 
two workstations and the whole duration is recorded in a 
10-second time interval. 
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Figure 7. Efficiency – CPU Utilization 
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Figure 8. Efficiency – Communication 

We start a migration-enabled process at the time point 
28 (280 seconds from the beginning of test). We then add 
an additional application, which causes a dramatic load 
increase on this workstation and the rescheduler decides to 
migrate the migration-enabled process to another 
workstation. The migration decision is made at point 50. It 
takes 72 seconds, from the time that additional task is 
loaded, for the system to warm up and for the monitor to 
find out that this is a long task and determine that the 
system is overloaded. If the additional load is a short task, 
this period of time can avoid the fault migration caused by 
small system performance variations. It is a configurable 
parameter of the rescheduler and can be optimized for 
different type of workstations. We did not configure the 
system to be more sensitive because we tried to avoid 
false migration, which may reach a wrong decision. Then 
it takes 0.002 second to make a migration decision and 
within 0.3 seconds, the initialized process is started on the 
destination machine. The initialization is performed using 



 

the LAM/MPI dynamic process management. Though the 
LAM/MPI dynamic process management operations are 
slow, currently we do not have other choice because 
MPICH-2 [19] and Sun MPI [20] do not support dynamic 
process management operations at this time. We can use 
other MPI-2 implementation in future to reduce the 
initialization time. We can also choose to improve this 
performance by pre-initializing the processes on the 
candidate destination machines. In this example, we do 
not use pre-initialization because we want to show clearly 
the entire process of the decision-making and migration. It 
takes the migrating process 1.4 seconds to reach its 
nearest poll-point. The initialized process starts data 
restoration and then resumes its execution within 1 
second. After of 7.5 seconds, the process is migrated to 
another system completely, the CPU utilization drops 
down as shown in Figure 7, and the CPU begins to serve 
the addition task until it exits. Figure 8 illustrates the 
communication caused by the migration. The migration 
occurs when source machine is quite busy. The data 
restoration is started almost at the same time on the 
destination machine, and the initialized process resumes 
execution in parallel with the data collection and 
restoration. That is, the process resumes execution at the 
destination before the migration ends. This testing is to 
explore the time consuming on each phrase of process 
migration in decision-making and rescheduling. 

5.3 Rescheduling and Policies 
We defined 3 migrating policies to examine the 

effectiveness of the rescheduler. Table 3 compares the 
performance of the application under these 3 different 
migration policies, which are described as follows: 
� Policy 1: No Migration. 
� Policy 2: Migrate when any of the following conditions 
are met: 1) 1-min load average is greater than 2; 2) the 
number of active processes is greater than 150. The 
destination machine must meet all of the following 
conditions: 1) 1-min load average is lower than 1; 2) the 
number of active processes is less than 100. 
� Policy 3: Migrate when any of the following conditions 
are met: 1) 1-min load average is greater than 2; 2) the 
number of active processes is greater than 150; 3) the 
current incoming/outgoing communication flow is no 
more than 5MB/s. The destination machine must meet all 
of the following conditions: 1) 1-min load average is 
lower than 1; 2) the number of active processes is less 
than 100; 3) the current incoming/outgoing 
communication flow is no more than 3MB/s.  

We performed the tests using 5 workstations. The 1st is 
the source machine where the process is originally started. 
The 2nd is busy in communication with the 5th machine. 
The communication speed is from 6.71MB/s to 7.78MB/s 
when applying policy 2 and policy 3. The 3rd workstation 
has a CPU workload of 2.52. The 4th workstation is free. 

As shown by Table 2, for each policy, we start the same 
MPI application on the 1st workstation. Then additional 
tasks are loaded to the 1st workstation and the system 
becomes busy. Under Policy 1, the application does not 
migrate and it takes 983.6 seconds to finish. Under Policy 
2, the rescheduler does not consider the communication 
state of each workstation. At that time the load of the 2nd 
workstation is 0.97, which is below the threshold, so the 
rescheduler chooses the 2nd workstation as the destination 
machine. The total execution time for the application is 
433.27 seconds. Under Policy 3, the rescheduler chooses 
the 4th workstation as the destination machine, and the 
total execution time is 329.71 seconds. 

Table 2. Comparison of Policies 

The rescheduler improves the performance of an 
application by choosing a good destination host. In this 
case, the execution time is reduced to 33.5%. The 
migration policy of the rescheduler is very important. The 
communication cost is also an important factor in the 
decision-making. Similarly, data access locality is another 
important issue that should be considered in the process of 
decision-making. If a process involves a lot in a local data 
access, the process is not to be migrated for slight 
performance degradation. These features have been 
enclosed in the application schema. An optimized policy 
can greatly improve the accuracy of migration decision.  

 
6. Conclusion 
  

Runtime dynamic scheduling is a fundamental issue of 
parallel and distributed computing. In parallel computing, 
it is conventionally instigated by load balancing and 
performance optimization. In a distributed Grid 
environment, it becomes more essential and can be 
applied for fault tolerance (reschedule when the machine 
will shut down, intrusion is detected, etc.); resources 
availability (reschedule when special hardware and 
software are required); data locality (reschedule the 
process close to the data); etc. in addition to load balance.  
In this study, we have successfully designed and 
implemented a runtime rescheduling support system, 
which triggers rescheduling automatically, and carries the 
dynamic rescheduling via process migration for MPI 
programs. We have addressed the technical hurdles of 
integrating rescheduling decision-making methodology 
with the heterogeneous process migration mechanisms, 
and verified the feasibility of MPI-2 [17] and HPCM 
(High Performance Computing Mobility) middleware [11] 
in supporting runtime dynamic scheduling. With the 
assistance of the runtime system and the support of 

Policy total  exec
time (sec)

start at
 

migrate 
to 

source 
(sec) 

destination 
(sec) 

migration 
time (sec)

1 983.6 1st - 983.6 0 - 
2 433.27 1st 2nd 242.68 198.98 8.31 
3 329.71 1st 4th 221.28 115.13 6.71 



 

HPCM, a MPI subtask, written in traditional languages 
such as C or Fortran, can automatically migrate from one 
machine to another, searching for required computing 
resources or for a better performance. By setting up a rule-
based decision-making and scheduling mechanism, the 
system is extensible and flexible to various heterogeneous 
computing platforms. We experimentally tested the 
system for overhead and efficiency, as well as autonomics 
under MPI environments. Experimental and analytical 
results show that the rescheduling system works well and 
is a complement of existing work on dynamic scheduling, 
which mostly focuses on redistribution of independent 
new tasks instead of reschedule of running tasks.  

HPCM is supported by the NSF Middleware Initiative 
(NMI) program and is released under NMI software 
release [11]. The current prototype implementation of the 
runtime system, as well as HPCM, is only for the proof of 
concept. Many issues remain open. We plan further 
improving the reschedule supported system with the 
ability of self-configuring and self-adjustment, so that the 
system can take feedbacks from the scheduling and 
performance history, and automatically improve its 
accuracy and efficiency. This study focuses on system and 
technical support to carry dynamic scheduling. It provides 
a system that can carry different decision-making and 
rescheduling algorithms, but does not intend to introduce 
any new algorithm. Interested readers may refer to [23, 
25] for newly proposed rescheduling algorithms.  
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