

A Runtime System for Autonomic Rescheduling of MPI Programs*

Cong Du, Sumonto Ghosh, Shashank Shankar, and Xian-He Sun
Department of Computer Science

Illinois Institute of Technology
{ducong, ghossum, shankar, sun}@iit.edu

Abstract*
Intensive research has been conducted on dynamic job

scheduling, which dynamically allocates jobs to
computing systems. However, most of the existing work is
limited to redistribute independent tasks or at the
algorithm design level. There is no runtime system
available to support automatic redistribution of a running
process in a heterogeneous network environment. In this
study, we present the design and implementation of a
system that dynamically reschedules running processes
over a network of computing resources via automatic
decision-making and process migration. The system is
implemented on top of MPI-2 and HPCM (High
Performance Computing Mobility) middleware.
Experimental and analytical results show that the runtime
system works well. It makes dynamic rescheduling of
running tasks possible and improves system performance
considerably. While the implementation is for MPI
programs and using HPCM, the design of the system is
general and can be extended to other distributed
environments as well.

1. Introduction

Runtime dynamic scheduling is a fundamental issue of
parallel and distributed computing. The emergence of
Grid [9], provides a promising platform for large-scale
and resource intensive applications. The Grid provides the
basic software infrastructure with mechanisms for
resource sharing over a distributed heterogeneous
network. The job scheduling and management system is
an integrated component of Grid computing. When one
system encounters some difficulties, such as a system
failure, temporary resource unavailability, network
outrage, system reconfiguration, or just performance
degradation caused by preemption from high priority local
jobs, the Grid jobs need to be rescheduled to another host
to continue. In traditional job scheduling systems, task
allocation is static. Once a task is assigned, it will stay
where it is until it finishes or restarts at another site from

* This research was supported in part by National Science Foundation
under NSF ACI-0130458, ANI-0123930, and EIA-0130673.

the beginning. In these systems, a reassignment means the
loss of all partial results. The nature of static allocation
may cause dramatic performance loss in practice. Also,
jobs may have to be rejected when a certain host cannot
satisfy the jobs for required resources. However, if the
mobility is supported and the decision is made
automatically at runtime, a job can move from one host to
another for both resource availability and performance
gain. In this study, we intend to develop a novel system
enabling dynamical reschedule of running processes over
a network of computing resources, via automatic decision-
making and process migration. We present the design and
implementation of a runtime support system, which
enables dynamic re-allocation of processes in a
heterogeneous distributed environment. We also present a
highly configurable and extensible rule-based mechanism
for policy making that supports various system conditions
in such environment.

Process migration is the act of transferring an active
process from one computer to another. The process retains
its execution sequence and memory state during a
migration. The process is interrupted on the source
machine and then is resumed at the break point with the
same memory state on the destination machine [8]. HPCM
is a heterogeneous process migration middleware [5, 6, 8].

The Message Passing Interface (MPI) is a standard
library specification for message passing. It is proposed,
developed broadly by vendors, implementers, and users.
MPI-2 includes an extension to MPI-1 standard. It
supports process creation and management, one-sided
communications, extended collective operations, external
interfaces, I/O, and additional language bindings [17].

In this study, we design and implement a runtime
system on top of HPCM and MPI-2, providing resource
registration, resource monitoring, process registration, and
soft-state management to support dynamic rescheduling of
MPI tasks. The system has a rule-based decision-making
component that coordinates with other components of
HPCM as a commander, and invokes the migration when
it reaches a migration decision according to a highly
configurable and extensible rule-based mechanism.
Though the system is implemented on top of the MPI and
HPCM middleware, it is general and can be extended for

checkpointing-based or mobile computing systems, and
for other distributed environments.

This paper is organized as follows. In Section 2, we
give an overview of related works on process migration
and job scheduling. In Section 3, we present the features
of the rescheduler and describe the implementation
details. We present the rule-based decision-making
mechanism in Section 4. Section 5 shows the performance
results and analysis. Section 6, finally, concludes this
paper and presents future works.

2. Related Works

The existing computation and data Grid do not support
dynamic task re-allocation in general. Traditional static
task scheduling requires that before scheduling, the arrival
time and execution time of tasks and their dependencies
be known to the scheduling system. Usually their
relationships are defined by a DAG [12]. Clearly, this
condition cannot be met in Grid computing. Some
researchers have developed new algorithms for dynamic
scheduling with limitations. Some algorithms duplicate
the tasks and issue them simultaneously on multiple
computing resources [14], [16]. Some issue multiple
copies of tasks to idle computing resources [10]. These
algorithms have limitations on the usage of resources.
They provide dynamic features at the expense of resources
and performance. They may also cause mutual exclusion
problems when utilized in the tasks requiring non-
duplicable resources. Some of them are based on
performance prediction. In this case, the system may pay a
penalty in terms of prediction error or system failure.
Once performance degradation or system failures occur, a
reassignment is necessary. In practice, this can cause the
loss of all partial results and dramatic performance
degradation.

Due to its importance, intensive research has been done
in process migration. Some of the early works, such as
MOSIX [3], V [4] and Sprite [7], combine the migration
functionality to cluster operating systems. Because these
systems work on clusters with specific operating systems,
they do not use or provide a general runtime re-allocating
function. These systems cannot be used in a Grid
environment.

There are several other systems implemented for
widely used operating systems at user-level, e.g. Condor
[15], or at kernel-level, e.g. Linux Zap [21] to support
homogeneous process migration. Condor is geared
towards High Throughput Computing, through resource
and job matching. A centralized broker uses a Class-Ads
mechanism to match jobs to resources and then, schedule
jobs on the Condor machines. Condor uses a
checkpointing-based mechanism to implement process
migration at the user-level. It only supports homogeneous
process migration. Although several job scheduling

policies are proposed [1, 2], they do not support
heterogeneous runtime process rescheduling. The Zap
system supports migration of legacy applications through
the use of loadable kernel modules and virtualization of
both the hosts and processes with respect to each other
[21]. It uses a checkpointing-based mechanism to support
process migration and cannot migrate over heterogeneous
environments. However, the Zap system has not
implemented the mechanism for scheduling and re-
allocation. Heterogeneous process migration has been
studied by a few researchers [22, 24] who address several
important problems and discuss how to build their
prototype systems. They also propose some triggering
conditions, but they do not develop those simple triggers
into a runtime rescheduling system.

There are some other applications that obtain mobility
via mobile agents or mobile codes. Compared to process
migration, mobile agents are modularly designed
applications that inherently need to “jump” or “goto”
other machines. They are scheduled by the execution
workflow itself. They work under certain predefined
virtual environments, and work well only for certain
special purpose applications [13].

3. System Design and Features

The basic functionalities of our rescheduler include
resource monitoring and registration; process registration;

soft-state management; and a rule-based decision-making
mechanism. It provides services that enable: effective
communication between and within the hosts; transparent
sharing, resources discovery and usage; and rule-based
intelligent monitoring and decision-making.

Our system model consists of system state monitoring
entities, commander entities and a process registration and
decision-making entity. Figure 1 shows the system model.

A monitor and a commander entity reside on each host,
including candidate destination hosts. There is also a
central or hierarchical registry/scheduler, which can reside
on any host with or without other entities. As shown in
Figure 1, the monitor registers the host static information
to the registry/scheduler and periodically gathers and
updates the system status to it. The monitor determines the
status of its local system resources as free, busy,
overloaded or unavailable. It then reports its system status
and other information to the registry/scheduler. The

Figure 1. System Model

registry/scheduler analyzes the data from monitors and
makes a decision regarding which process to migrate and
where to migrate it. The registry/scheduler sends a
message to the source machine’s local commander to
initialize the migration. After receiving the message, the
source machine’s local commander issues a command to
the migrating process to start the process migration. The
migrating process, in turn, initializes a process at the
destination machine through the dynamic process creation,
and creates a communication channel between the
migrating process and the initialized process. The
initialized process, then, is ready to take over the
computation on the destination machine. The migrating
process transfers the execution, memory, and
communication states to the initialized process on the
destination host at the nearest poll-point (pre-defined
possible point in the execution sequence where a
migration can occur). The details of the process migration
mechanisms can be found in [5, 6, 8].

3.1 Monitoring and Decision-Making
At each host, the monitor gathers system information

and manages local system state based on the information.
Local decisions of the system state are made and are
reported to its registry/scheduler. Monitoring can be
performed periodically or only when necessary. We chose
the former for a better reaction time. Based on the rules
used in monitoring, the monitor can be very light-
weighted.

System information consists of static and dynamic
information. Static information, such as host name, IP
address, operating system, and memory size, is not likely
to change during the lifetime of the specific monitoring
entity. The static information is used only for one-time
registration. On the other hand, dynamic information from
computational resources, memory, networks, disks or
applications is quite likely to change with time. We gather
dynamic information either through the use of scripts
(such as UNIX shell-scripts on *NIX, or batch-files on
Windows), or through APIs provided (such as sysinfo on
LINUX platform, or the WMI on Windows platform). We
chose to implement a script-based mechanism, partially
for the ease of implementation, and partially for its
portability. We implemented the shell scripts using
utilities like ‘vmstat’, ‘prstat’, ‘ps’ etc, on Sun Solaris 5.8
to gather system information. These mechanisms could be
easily ported to LINUX where the shell scripts could read
the system parameters from ‘/proc’,

The monitors collect various types of information.
They are:
� Processor utilization and load: parameters include the
load average, CPU utilization and the number of processes
per processor.

� Memory state: available memory and percentage of
available memory for both virtual and physical memory,
and the memory statistics regarding the process.
� Disk usage: parameters include disk space used, disk
space available. It gathers the disk usage parameters of the
various mount points.
� Communication: parameters include latency, and
bandwidth.

Based on the information, the monitor determines the
system status according to a rule-based mechanism. This
decision is made locally and specifically according to the
rules defined for a specific local system. We can
accommodate our system into a large number of
heterogeneous systems with very large gaps in both
performance and resource availability.

3.2 Registry/Scheduler
Registry/scheduler is an entity that resides on any host

in the HPCM system. It can also reside on a host without
any other entities configured, and it is a global system
state manager and decision-making entity. Although
conceptually it is a centralized entity in the system, we can
extend it as a service in hierarchy. Each local system has
its own registry/scheduler and each registry/scheduler has
its own upper level registry/scheduler. We can configure a
local registry/scheduler on a local cluster and its upper
level registry/scheduler to a specific organization, such as
a Virtual Organization in a Grid environment. The lower
level registry/scheduler has its own health condition,
which indicates its overall workload and availability of
each kind of resource. Usually, it is preferred that the
migration destination is chosen inside one’s control
domain, which includes the systems registered to the same
registry/scheduler entity. This hierarchical design solves
the problem of a centralized bottleneck, thereby
improving the performance and the system scalability.

Registration mechanisms can be either pull or push
based. The good thing about the pull based registration
mechanisms is that the registry/scheduler can decide when
it needs the information and status of each host. It then
queries the current information to make more optimized
decisions. But, this also leads to the registry/scheduler
having to make a query at runtime when a decision is
expected, thus slowing down the process.

The other side is the push model where all the
registrants are expected to refresh their status every once
in a while. This model forces the clients to maintain timers
and to constantly keep querying the status of the registry,
thus guaranteeing a certain amount of traffic. In this
model there are chances of flooding the registry, if all the
registrants become synchronized.

In our system, the registration of resources is based on
a soft-state mechanism, wherein clients have to regularly
update their presence and state information to the

registry/scheduler through the push model, otherwise the
registry/scheduler will consider them as unavailable.

Scheduling involves decision-making utilizing static
information and runtime data. The registry/scheduler
makes a decision on where to migrate a process based on
“first fit” policy. From the machine list, the
registry/scheduler chooses the first host, which is ready
and owns all the resources required, as the migration
destination host.

3.3 Communication
The monitor, commander and registry/scheduler of our

system are components of communication. In addition to
these, the migrating process and the initialized process are
also involved in communication during process migration.
Altogether, five kinds of communication parties
coordinate and communicate with each other to form an
automatic migration system as shown in Figure 1. We
have developed several communication mechanisms, so
that we can achieve high performance, scalability and
extensibility. We discuss these mechanisms as follows:
� Migrating process and initialized process: The
communication data between the migrating process and
initialized process include the execution state and memory
state. The amount of communication highly depends on
the application. We have built up mechanisms to reduce
the communication cost in process state transfer. We still
need faster communication to improve the migration
performance. In the following discussions, we use the
communication channel of LAM MPI-2 [18] in process
state transfer. Currently, we have tested several
communication channels for the process state transfer
including TCP/IP, MPI and PVM. We take advantage of
the MPI-2 standard dynamic communicator management
to support communication state migration over MPI-2. To
enable process migration over MPI-2, we need to
dynamically create a process with a communicator and
join the communicators together, so that the migrating
process and initialized process can communicate in one
communicator. Fortunately, dynamic process management
is defined in MPI-2 standard and LAM is one of the few
MPI environments that support these functions. We
cannot use other MPI such as MPICH-2 [19] and Sun MPI
[20] because they do not support the dynamic process
management, and the implementation is in their future
schedule.
� Rescheduler, migrating and initialized process: The
commander needs to issue a migration command to the
migrating process. Then the address and the port of the
destination machine are written to a temporary file and are
read by the migrating process. We defined this command
as a user-defined signal, which is simple, efficient and
easy to bind to most systems and communication
environments. The detailed application information,
parameters, and resource requirements are encapsulated in

an application schema in a XML format and sent to the
destination machine to initialize the process on the
destination machine. The application schema contains
information such as: application characteristics, which
include data, communication, or computing intensive;
estimated communication data size; resources requirement;
and estimated execution time on workstation with certain
computing power. The application schema is initially
provided by the users and is updated according to the
statistics of actual executions.
� Entities of rescheduler: We combine a custom XML
based protocol with TCP/IP sockets to form the
communication subsystem of the rescheduler. The XML
based protocol is used for communications between the
monitor, registry/scheduler and commander entities. We
chose this combination because its implementation can be
easily extended, its protocol is simple to implement, and it
is easy to debug. As its name suggests, XML is extensible
and is transmitted using plain ASCII format and it is also
transport independent. Even though we have chosen
TCP/IP as our transport protocol, it could be changed in
the future to another communication channel, such as
various channels of MPI.

4. Rule-based Decision-Making Mechanism

We established a rule to describe the requirement of the
system based on one or some specific performance or
availability parameters. A rule is built to define the
resource status of a system. We defined a policy as a
group of rules. The policy defines the transformation
mechanism of hosts or resources states. We classify the
system states with a fine granularity using a series of
numbers to support more complex migration rules and
policies. Here we use a simplified three-state
representation to introduce our mechanisms, which can be
easily reconfigured to a finer granularity representation.

The relationship between the actions and the states is
shown in Table 1. We define the system states as:
 free: The host is willing and able to accept incoming
HPCM-enabled applications.
busy: The host is no longer accepting any incoming
applications. It is a state of “as is”. The host does not try
to migrate the migration-enabled applications out.
overloaded: This host needs to offload its applications
onto other host, in order to switch either to busy or to free.

Table 1. System State Description
System state Loaded Migrate in Migrate out

Free No Yes No
Busy Yes No No

Overloaded Yes No Yes
We configure a time interval as Monitoring Frequency

for each state. It indicates how often the system
information is to be gathered. According to the established
protocol, when a host reaches an overloaded state in the

monitor, it consults the registry/scheduler to get a
recommended candidate of destination machine. At the
moment this registry/scheduler simply checks for host
environments that are in the free state, and if there is one,
it recommends it as the move-to host. The
registry/scheduler then sends this message to the
commander of the overloaded host, thus ensuing the
migration.

In our system architecture, a monitoring entity resides
on each host. A monitoring entity is composed of system
information gathering engines, the process selector, the
monitoring information database, and the rule-evaluator.
Each of these modules is configurable, thus it is possible
to change the internal architecture of gathering
information, process selection etc. A flow representation
of the monitoring architecture is shown in Figure 2. The
registry/scheduler selects the process to be migrated. In
the current system, we selected a migration-enabled
process based on the start time of the process and the
application description information provided in the
application schema for each application. We get the
estimated execution time of the application from the
application schema, and the start time of the application
from the pid file time-stamp. The registry/scheduler tends
to migrate a process that has the latest completing time to
reduce the possibility of migrating multiple processes.

A rule file contains the rule name (rl_name), the
command to be fired to retrieve the system information
(rl_script), description of the rule (rl_desc), the logic
operator to evaluate the rule (rl_operator), a list of
parameters to be passed to the shell script to retrieve the
system information (rl_param), and the conditions for the
system to be in busy state (rl_busy), and overloaded state
(rl_overLd). The rules are shown in figure 3.

Rule 1 [processorStatus]: Makes decisions based on the
process status, i.e. the idle time of the processor, and
amount of time spent in executing idle process. It uses the
Unix utility ‘vmstat’ to determine the processor status.
This rule does not require any parameter. If the
processor’s idle time is higher than 45 but lower than 50
then the system is kept in busy state; if the processor’s idle

time is lesser than 45 then the system is kept in
overloaded state; otherwise the system is put into free.

Rule 2 [ntStatIpv4]: Determines the number of Ipv4
sockets currently open in the system. It uses the Unix
utility ‘netstat’ to determine the number of sockets in a
specified state. The rule takes as input a parameter

specifying the state of the socket to be monitored, such as
the sockets in the ESTABLISHED state.

 A complex rule evaluation determines the state of the
system on the basis of a combination of rules. Figure 4
shows a Complex Rule. The rl_type determines the type
of the rule to be complex. The rl_script specifies how the
decision is made based on individual rules evaluated. It
can be represented in an expression or a file name
containing the expression. The rl_param, rl_busy,
rl_operator and rl_overLd need not be specified in a
complex rule.

Thus, as shown in Figure 4, rule numbers 4, 1, 3 and 2
are fired in sequence and the system is in busy state if both
rule 2 and a combination evaluation of rule 4, 1 and 3 are
in busy or one of them is in busy and the other is in
overloaded. We can also define a complex rule as a
weighted sum of several simple rules.

5. Evaluation

We implemented and tested the rescheduler working
with other components of the HPCM system on a platform
of 64-node cluster running on SunOS 5.8. Each
workstation is a Sun Blade 100 with 1 UltraSparc-IIe
500MHz CPU, 256K L2 cache, and 128MB memory. We
used the LAM/MPI [18] version 6.5.9 as the MPI-2
communication platform. The communication between the
workstations is a 100Mbps internal Ethernet with
exclusive use. We also used a computational intensive
migration-enabled application named “test_tree”, which
creates binary trees with specified number of levels,
assigns a random number to each node of the trees, sorts
the trees and computes the sum of all the tree nodes. We

 rl_number: 1
rl_name: processorStatus
rl_type: simple
rl_script: processorStatus.sh
rl_desc: This rule determines the
processor status i.e. the idle time.
rl_operator: <
rl_param:
rl_busy: 50
rl_overLd: 45

rl_number: 2
rl_name: ntStatIpv4
rl_type: simple
rl_script: ntStatIpv4.sh
rl_desc: This rule determines the
number of sockets in a give state.
rl_operator: >
rl_param: ESTABLISHED
rl_busy: 700
rl_overLd: 900

Figure 3. Simple Rules

Figure 2. Rule Evaluation

rl_number: 5
rl_name: cmp_rule
rl_type: complex
rl_desc: A Complex Rule.
rl_ruleNo: 4 1 3 2
rl script: (40% * r 4 + 30% * r1 + 30% * r3) & r2

Figure 4: A Complex Rule

used NTP (Network Time Protocol) to synchronize the
timing on workstations. The maximum error range is no
more than 0.02 second.

5.1 Rescheduler Overhead
We monitor the host performance with or without the

rescheduler using a standalone performance sensor, named
“sysinfo”, for performance data collection. We configure
the monitor, the commander and the registry/scheduler on
one workstation. Another workstation is configured with a
monitor and a commander and is registered to the
registry/scheduler. Several performance parameters,
including load average, CPU utilization, and
communication cost, are collected. The comparisons of
the measured results are shown in Figure 5 and Figure 6.

L o a d A v e r a g e 1 - m in

0 . 1 5
0 . 1 7
0 . 1 9
0 . 2 1
0 . 2 3
0 . 2 5
0 . 2 7
0 . 2 9
0 . 3 1
0 . 3 3
0 . 3 5

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 1 0 1 1 1 1
1 0 s e c o n d s

w i t h o u t r e - s c h e d u le r w i t h r e - s c h e d u le r

Figure 5. Overhead – Load Average 1-min
Com m unication (Kbytes/s)

5.4

5.6

5.8

6

6.2

6.4

1 11 21 31 41 51 61 71 81 91 101 111

10 seconds

send w ithout re-scheduler recv w ithout re-scheduler
send w ith re-scheduler recv w ith rescheduler

Figure 6. Overhead – Communication
The performance data is gathered at an interval of 10

seconds. The load average value is 0.256 for 1-minute
without the rescheduler and 0.266 with the rescheduler.
The overhead is 3.9%. The load average value is 0.262 for
5-minute without the rescheduler and 0.263 with the
rescheduler. The overhead is 0.4%. The 1-minite load
average is shown in Figure 5. The CPU utilization average
is 0.263 and 0.260 for with and without the rescheduler
and the overhead is 3.46%. The communication load with
or without rescheduler is 5.82 KB/s for sending and
5.99KB/s for receiving as illustrated in Figure 6. The
upper two curses are for receiving and the lower two
curves are for sending. We can see clearly that there is
almost no overhead for communication. Through the
testing, we see that the overhead of the rescheduler
operation is usually less that 4%. This testing is to explore
only the overhead of the rescheduler. The overhead of

process migration is also small. Details of the migration
overhead on both homogeneous and heterogeneous
platforms can be found at our prior publication [8].

5.2 System Efficiency
Figure 7 and Figure 8 illustrate the efficiency of our

system by another experiment. The tests are performed on
two workstations and the whole duration is recorded in a
10-second time interval.

p ro c s ta rt a d d lo a d m ig e n dm ig s ta rt lo a d e n d
p ro c in it m ig e n d p ro c e n d

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

1 6 1 1 1 6 2 1 2 6 3 1 36 4 1 4 6 51 5 6 6 1 66 7 1 7 6 8 1
1 0 s e c o n d s

% s o u rc e d e s tin a tio n

Figure 7. Efficiency – CPU Utilization

lo a d e n dm ig e n da d d lo a d m ig s t a r tp r o c s t a r t

0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

1 6 1 1 1 6 2 1 2 6 3 1 3 6 4 1 4 6 5 1 5 6 6 1 6 6 7 1 7 6
1 0 s e c o n d s

K
B

yt
es

/s
ec

Figure 8. Efficiency – Communication

We start a migration-enabled process at the time point
28 (280 seconds from the beginning of test). We then add
an additional application, which causes a dramatic load
increase on this workstation and the rescheduler decides to
migrate the migration-enabled process to another
workstation. The migration decision is made at point 50. It
takes 72 seconds, from the time that additional task is
loaded, for the system to warm up and for the monitor to
find out that this is a long task and determine that the
system is overloaded. If the additional load is a short task,
this period of time can avoid the fault migration caused by
small system performance variations. It is a configurable
parameter of the rescheduler and can be optimized for
different type of workstations. We did not configure the
system to be more sensitive because we tried to avoid
false migration, which may reach a wrong decision. Then
it takes 0.002 second to make a migration decision and
within 0.3 seconds, the initialized process is started on the
destination machine. The initialization is performed using

the LAM/MPI dynamic process management. Though the
LAM/MPI dynamic process management operations are
slow, currently we do not have other choice because
MPICH-2 [19] and Sun MPI [20] do not support dynamic
process management operations at this time. We can use
other MPI-2 implementation in future to reduce the
initialization time. We can also choose to improve this
performance by pre-initializing the processes on the
candidate destination machines. In this example, we do
not use pre-initialization because we want to show clearly
the entire process of the decision-making and migration. It
takes the migrating process 1.4 seconds to reach its
nearest poll-point. The initialized process starts data
restoration and then resumes its execution within 1
second. After of 7.5 seconds, the process is migrated to
another system completely, the CPU utilization drops
down as shown in Figure 7, and the CPU begins to serve
the addition task until it exits. Figure 8 illustrates the
communication caused by the migration. The migration
occurs when source machine is quite busy. The data
restoration is started almost at the same time on the
destination machine, and the initialized process resumes
execution in parallel with the data collection and
restoration. That is, the process resumes execution at the
destination before the migration ends. This testing is to
explore the time consuming on each phrase of process
migration in decision-making and rescheduling.

5.3 Rescheduling and Policies
We defined 3 migrating policies to examine the

effectiveness of the rescheduler. Table 3 compares the
performance of the application under these 3 different
migration policies, which are described as follows:
� Policy 1: No Migration.
� Policy 2: Migrate when any of the following conditions
are met: 1) 1-min load average is greater than 2; 2) the
number of active processes is greater than 150. The
destination machine must meet all of the following
conditions: 1) 1-min load average is lower than 1; 2) the
number of active processes is less than 100.
� Policy 3: Migrate when any of the following conditions
are met: 1) 1-min load average is greater than 2; 2) the
number of active processes is greater than 150; 3) the
current incoming/outgoing communication flow is no
more than 5MB/s. The destination machine must meet all
of the following conditions: 1) 1-min load average is
lower than 1; 2) the number of active processes is less
than 100; 3) the current incoming/outgoing
communication flow is no more than 3MB/s.

We performed the tests using 5 workstations. The 1st is
the source machine where the process is originally started.
The 2nd is busy in communication with the 5th machine.
The communication speed is from 6.71MB/s to 7.78MB/s
when applying policy 2 and policy 3. The 3rd workstation
has a CPU workload of 2.52. The 4th workstation is free.

As shown by Table 2, for each policy, we start the same
MPI application on the 1st workstation. Then additional
tasks are loaded to the 1st workstation and the system
becomes busy. Under Policy 1, the application does not
migrate and it takes 983.6 seconds to finish. Under Policy
2, the rescheduler does not consider the communication
state of each workstation. At that time the load of the 2nd
workstation is 0.97, which is below the threshold, so the
rescheduler chooses the 2nd workstation as the destination
machine. The total execution time for the application is
433.27 seconds. Under Policy 3, the rescheduler chooses
the 4th workstation as the destination machine, and the
total execution time is 329.71 seconds.

Table 2. Comparison of Policies

The rescheduler improves the performance of an
application by choosing a good destination host. In this
case, the execution time is reduced to 33.5%. The
migration policy of the rescheduler is very important. The
communication cost is also an important factor in the
decision-making. Similarly, data access locality is another
important issue that should be considered in the process of
decision-making. If a process involves a lot in a local data
access, the process is not to be migrated for slight
performance degradation. These features have been
enclosed in the application schema. An optimized policy
can greatly improve the accuracy of migration decision.

6. Conclusion

Runtime dynamic scheduling is a fundamental issue of
parallel and distributed computing. In parallel computing,
it is conventionally instigated by load balancing and
performance optimization. In a distributed Grid
environment, it becomes more essential and can be
applied for fault tolerance (reschedule when the machine
will shut down, intrusion is detected, etc.); resources
availability (reschedule when special hardware and
software are required); data locality (reschedule the
process close to the data); etc. in addition to load balance.
In this study, we have successfully designed and
implemented a runtime rescheduling support system,
which triggers rescheduling automatically, and carries the
dynamic rescheduling via process migration for MPI
programs. We have addressed the technical hurdles of
integrating rescheduling decision-making methodology
with the heterogeneous process migration mechanisms,
and verified the feasibility of MPI-2 [17] and HPCM
(High Performance Computing Mobility) middleware [11]
in supporting runtime dynamic scheduling. With the
assistance of the runtime system and the support of

Policy total exec
time (sec)

start at

migrate
to

source
(sec)

destination
(sec)

migration
time (sec)

1 983.6 1st - 983.6 0 -
2 433.27 1st 2nd 242.68 198.98 8.31
3 329.71 1st 4th 221.28 115.13 6.71

HPCM, a MPI subtask, written in traditional languages
such as C or Fortran, can automatically migrate from one
machine to another, searching for required computing
resources or for a better performance. By setting up a rule-
based decision-making and scheduling mechanism, the
system is extensible and flexible to various heterogeneous
computing platforms. We experimentally tested the
system for overhead and efficiency, as well as autonomics
under MPI environments. Experimental and analytical
results show that the rescheduling system works well and
is a complement of existing work on dynamic scheduling,
which mostly focuses on redistribution of independent
new tasks instead of reschedule of running tasks.

HPCM is supported by the NSF Middleware Initiative
(NMI) program and is released under NMI software
release [11]. The current prototype implementation of the
runtime system, as well as HPCM, is only for the proof of
concept. Many issues remain open. We plan further
improving the reschedule supported system with the
ability of self-configuring and self-adjustment, so that the
system can take feedbacks from the scheduling and
performance history, and automatically improve its
accuracy and efficiency. This study focuses on system and
technical support to carry dynamic scheduling. It provides
a system that can carry different decision-making and
rescheduling algorithms, but does not intend to introduce
any new algorithm. Interested readers may refer to [23,
25] for newly proposed rescheduling algorithms.

References

[1] J. H. Abawajy, “Job scheduling policy for high throughput
computing environments”, in the Proceedings of 9th
conference of Parallel and Distributed Systems, pp. 605-
610, Dec. 2002.

[2] J. Basney and M. Livny, “Managing Network Resources in
Condor”, In the Proceedings Of the HPDC9, pp. 298-299,
2000.

[3] A. Barak and R. Wheeler, “Mosix: An Integrated
Multiprocessor UNIX", in the Proceedings of Winter 1989
USENIX Conference, pp. 101-112, San Diego, CA, Feb.
1989.

[4] D. Cherton, “The V Distributed System”, Communications
of the ACM, 31(3): 314-333, March 1988.

[5] K. Chanchio and X.-H. Sun, “Communication State
Transfer for Mobility of Concurrent Heterogeneous
Computing”, in the Proceedings of the International
Conference on Parallel Processing (ICPP 2001, Best
Paper Award), Sep. 2001.

[6] K. Chanchio and X.-H. Sun, “Data collection and
restoration for heterogeneous process migration”,
SOFTWARE--PRACTICE AND EXPERIENCE, 32:1-27,
April 15, 2002.

[7] Frederick Douglis, “Transparent Process Migration in the
Sprite Operating System”, PhD thesis, University of
California, Berkeley, Sep. 1990.

[8] C. Du, X.-H. Sun and K. Chanchio, “HPCM: A Pre-
compiler Aided Middleware for the Mobility of Legacy

Code”, in the Proceedings of IEEE Cluster Computing
Conference, Hong Kong, Dec. 2003

[9] Ian Foster, Carl Kesselman, “The Grid 2: Blueprint for a
New Computing Infrastructure,” Morgan-Kaufman, ISBN
1558609334, Nov 2003.

[10] N. Fujimoto and K. Hagihara, “Near-Optimal Dynamic
Task Scheduling of Independent Coarse-Grained Tasks
onto a Computational Grid”, in the Proceedings of IEEE
International Conference on Parallel Processing,
Kaohsiung, Oct. 2003.

[11] HPCM: High Performance Computing Mobility,
http://meta.cs.iit.edu/~hpcm/.

[12] Y. K. Kwok and I. Ahmad, “Static Scheduling Algorithms
for Allocating Directed Task Graphs to Multiprocessors”,
ACM Computing Surveys Vol.31, No.4, 1999, pp.406-471.

[13] Danny B. Lange and Mitsuru Oshima, “Seven Good
Reasons for Mobile Agents”, Communications of the
ACM, Vol.42, No.3, March 1999.

[14] G. Li, D. Chen, D. Wang and D. Zhang, “Task Clustering
and Scheduling to Multiprocessors with Duplication”, in
the Proceedings of 2003 IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2003), Nice,
France, April 2003.

[15] M. Lizkow, M. Livny, and T. Tannenbaum. “Checkpoint
and Migration of UNIX Processes in the Condor
Distributed Environment”, Technical Report 1346.
University of Wisconsin-Madision, April 1997.

[16] G. Manimaran and C. Siva Ram Murthy, “A Fault-
Tolerant Dynamic Scheduling Algorithm for
Multiprocessor Real-Time Systems and Its Analysis”,
IEEE Transactions on Parallel and Distributed Systems,
vol 9, No. 11, p137, 1998.

[17] The Message Passing Interface (MPI) standard,
http://www-unix.mcs.anl.gov/mpi/.

[18] LAM/MPI Parallel Computing, http://www.lam-mpi.org.
[19] MPICH2, MPI-2 Home Page, http://www-

unix.mcs.anl.gov/mpi/mpich2/.
[20] Sun MPI-2, Sun MPI 6.0 Software Programming and

Reference Manual. http://www.sun.com/products-n-
solutions/hardware/docs/html/817-0085-10/index.html

[21] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason
Nieh, “The Design and Implementation of Zap: A System
for Migrating Computing Environment”, in the
Proceedings of the 5th Operating System Design and
Implementation OSDI’02, Dec. 2002.

[22] P. Smith and N. Hutchinson, “Heterogeneous Process
Migration: The Tui System”, Software -Practice and
Experience, Vol 28, No.6, pp.611-639, 1998.

[23] X.-H. Sun and M. Wu, “GHS: A Performance Prediction
and Task Scheduling System for Grid Computing,” in the
Proceedings of 2003 IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2003), Nice,
France, April 2003.

[24] M. M. Theimer and B. Hayes, “Heterogeneous Process
Migration by Recompilation”, in Proceedings of the 11th
IEEE International Conference on Distributed Computing
Systems, Jun. 1991.

[25] M. Wu and X.-H. Sun, “A General Self-adaptive Task
Scheduling System for Non-dedicated Heterogeneous
Computing”, in the Proceedings of IEEE Cluster
Computing Conference, Hong Kong, Dec. 2003.

	A Runtime System for Autonomic Rescheduling of MPI Programs*
	Introduction
	Related Works
	System Design and Features
	Monitoring and Decision-Making
	Registry/Scheduler
	Communication

	Rule-based Decision-Making Mechanism
	Evaluation
	Rescheduler Overhead
	System Efficiency
	Rescheduling and Policies

	Conclusion
	References

