ﬁ:‘,{.’
ILLINOIS INSTITUTE ¥V

\\ SCALABLE COMPUTING

SOFTWARE LABORATORY OF TECHNOLOGY

Vidya: Performing Code-Block 1/0
Characterization for Data Access Optimization

HIPC’18 25t IEEE International Conference on High Performance Computing, Data, & Analytics

“_ Hariharan Devarajan; Anthony-Kougkas; Prajwal Challa, and Xian-He Sui- = ¥

GaiVirg it - - g = = = =

—————
f—

B, e —
- e
=S - W -

: e =
%Fg,*\’: . ==

. Be CoimEgmmmeTe o =
— = — e = —

mailto:hdevarajan@hawk.iit.edu

N
\\ SCALABLE COMPUTING ILLINOIS INSTITUTE\W
_SOFTWARE LABORATORY OF TECHNOLOGY

Complex modern big data applications

e Multi-faceted : programming languages, libraries, algorithms, etc.

o Montage has 23 million lines of code with 38 executables
o Cubed-Sphere-Finite-Volume has more than a million lines of code with 23 simulation kernels and 54 analysis

kernels.
o (oogle has a code base of 2 billion lines with more than 50 languages and frameworks.

Tuning 1/0 of these applications is crucial in the performance of various systems

N
\\ SCALABLE COMPUTING ILLINOIS INSTITUTE\W
_SOFTWARE LABORATORY OF TECHNOLOGY

Current |/0 Profiling tools

e Static analysis tools
o tracing applications runtime behavior
o Example: Darshan

e Dynamic analysis tools

o identifying application’s repetitive behavior using statistical or grammer-based prediction models.
o Example: Omnisc’l0

N
SCALABLE COMPUTING ILLINOIS INSTITUTE‘V

SOFTWARE LABORATORY

OF TECHNOLOGY

Current 1/0 tuning process

5. Applying the optimization 1. Application Analysis

Once you identify the optimizations these have to
implemented manually into code.

Understand the structure of
application and workflow

Application tuning

4. Profiler output analysis 2. Profiler Choice

Profiler outputs various graphs showcasing
the behavior of application. Understanding
it to pin-point optimizations could be a
challenge

Each Profiler extracts its own set
of metrics and features

3. Running the Profiler

Link application with profiler
and run them (expensive)

N
SCALABLE COMPUTING ILLINOIS INSTITUTE\W
_SOFTWARE LABORATORY OF TECHNOLOGY

Problem

e Static analysis tools are more accurate but have high profiling cost
e Dynamic analysis tools have little profiling cost but its accuracy depends on repetitive patterns

Can we do something hetter to halance this tradeoff?

\\ SCALABLE COMPUTING
_SOFTWARE LABORATORY

ﬁ;;;
ILLINOIS INSTITUTE V
OF TECHNOLOGY

Overview

e Approach
e Design
e Results
{]
o

Conclusion
Q&A

N
\\ SCALABLE COMPUTING ILLINOIS INSTITUTE\W
_SOFTWARE LABORATORY OF TECHNOLOGY

Approach (Basic ldea)

Goal: Lower Profiling Cost with good accuracy on profiling (add definitions)

We use the source code based approach to achieve this goal.

APPROACH

DESIGN | RESULTS | DISCUSSION | CONCLUSION |

N
\\ SCALABLE COMPUTING ILLINOIS INSTITUTE\V
_SOFTWARE LABORATORY OF TECHNOLOGY

Approach (Overview)

Map source Build the Build a tool
code to model to perform
runtime Collect data based on profiling and
behavior data optimization

APPROACH

DESIGN | RESULTS | DISCUSSION | CONCLUSION |

\\ SCALABLE COMPUTING
_SOFTWARE LABORATORY

Co-relate application-behavior with its source code

ILLINOIS INSTITUTE“W
OF TECHNOLOGY

100 A CPU s CPUV!ait = Memory — Dlsk —
e Montage]|} L
o 38 million lines, 38 executables, complex end- el (AR |
to-end worklow 7l {1l m [t
o We profile application using existing S L ‘ \ 'l
. . ‘240'“ L N\ E | ! /1 L
profiling tools and manually inspect the gso-ﬂ ' | .EMJ. ‘l\ Ill‘ M“I | .
code with seen behavior 5ol . i u it h”"""""“”u'“l
o Compute-intensive: mimgthl, mProjExec, and Pt S
o Data-intensive: mHdrWWTExec, mProjectQL, and
mViewer.

o Balanced: mAdd, mFitExec, and mDiffExec.

APPROACH DESIGN | RESULTS | DISCUSSION | CONCLUSION |

\\ SCALABLE COMPUTING
_SOFTWARE LABORATORY

\4
ILLINOIS INSTITUTE ¥
OF TECHNOLOGY

Correlate application-behavior with its source code

Description Eg. Executable
P, loop count containing I/O calls (i.e., number of iterations) mProjectQL
P, number of I/O operations (i.e., count of calls) mHdrWWTExec
P amount of I/O (i.e., size in bytes) mHdrWWTExec
P, number of synchronous I/O operations mAdd
Ps number of I/O operations enclosed by a conditional statement mAdd
Ps number of I/O operations that use binary data format mViewer
P, number of flush operations mViewer
Pg size of file opened mHArWWTExec
Py number of sources/destination files used mProjectQL
Pio space-complexity of code mProjectQL
P function stack size of the code DiffExec
P, number of random file accesses mViewer
Pis number of small file accesses mProjectQL
P14 size of application (i.e. number of processes) Application Specific
Pis storage device characteristics (i.e. access concurrency, latency and bandwidth) System specific

APPROACH

DESIGN | RESULTS | DISCUSSION

CONCLUSION |

N
\\ SCALABLE COMPUTING ILLINOIS INSTITUTE\W
_SOFTWARE LABORATORY OF TECHNOLOGY

Collecting Data

o Build dataset consists from a variety of applications:
o graph exploration kernels (BFS, DFS, Page-rank)
o sorting programs (Tera-sort, external-sort)

o machine learning kernels (Kmeans, random forest classifications)
o 1/0 and CPU benchmarks (IOR, Graph500, HACC)

e We use code-block as a unit (a function/class/branch/loop/line of code)
e |/0 intensity of a code-block is I/0 time by the overall time of the code-block
o final dataset consists of 4200 records.

APPROACH

DESIGN | RESULTS | DISCUSSION | CONCLUSION |

N
\\ SCALABLE COMPUTING ILLINOIS INSTITUTE\W
_SOFTWARE LABORATORY OF TECHNOLOGY

Build a model (CIOC — Code-block I/0 intensity)

o Model all parameters as Variables (more details in the paper)
e Build a linear regression model of the form

Ym(v) = o + Z?zl Bi * Xim

where
e Yisthe dependent variable |/0 intensity,
m is the mt code block,
v are the variables,
B are the coefficients of the regression
Xi., is the value of the it" variable for mt" code-block.

APPROACH

DESIGN | RESULTS | DISCUSSION | CONCLUSION |

SCALABLE COMPUTING
SOFTWARE LABORATORY

ﬁs,{:
ILLINOIS INSTITUTE V

OF TECHNOLOGY

Eige_ar Regression model (CIOC)

e The linear regression model
excludes variables with [t] <2

e (Good model fit and predictability
o High R2
o High f-statistic score

e Top two significant variables

o Amount of /0
o Number of files opened

APPROACH

Name | Coefficient | Std. Error | t-ratio
const —1.99 0.16 | —11.92
X1 0.17 0.33 2.53
Xs 278.80 4418 6.30
e e R e
4 1= : : s Mean dependent | —6.78
X5 Excluded
S.D. dep. var 1.69
X Excluded Sum? resid 367576
X, | —10487.80 | 251120 | —4.17 '
S.E. of reg. 0.79
Xy Excluded R 092
X9 809.04 93.55 8.64 Adiusied B2 0'91
X1 | 183996.00 | 5843.16 31.49 Juste :
F(16,4183) 785.13
X111 Excluded Pvalue(F 0.00
X1 22798 18.43 1236 | LP-value(t) :
X3 6456.39 2257.85 2.86
X4 0.78 0.10 7.24
X5 Excluded
X6 Excluded
DESIGN | RESULTS | DISCUSSION | CONCLUSION

\\ SCALABLE COMPUTING ILLINOIS INSTITUTE V

SOFTWARE LABORATORY OF TECHNOLOGY

Vidya design

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

SCALABLE COMPUTING
_SOFTWARE LABORATORY

is;;
ILLINOIS INSTITUTE 4
OF TECHNOLOGYI

High level design

[" N
Vidya Framework
Extractor Analyzer Optimizer
Svstem Application
CPU Code Parser Code-block Bottleneck
Classifier |dentifier
i J | ™ 37
Memory PDG Builder PDG Aggregator Code Injector
I/O System I/O Decorator CIOC calculator Code Compiler
APPROACH RESULTS | DISCUSSION | CONCLUSION |

\\ SCALABLE COMPUTING
_SOFTWARE LABORATORY

N

ILLINOIS INSTITUTE y

OF TECHNOLOGY

Example (Extractor and Analyzer)

1 void main(int argc, char *xargv[]) {

2 int loop_count = std::stoi(argv[1]);

3 for (int i = @; i < loop_count; i++) {

4 if (myrank % 2 == 0)

5 fwrite(write_buf, write_sz, write_cnt, input_fh);
6 else

7 fread(read_buf, read_sz, read_cnt, output_fh);

8 checkpoint(i);

9 }

10 sort_temp();

il if (myrank == 0)

12 fwrite(result_buf, result_sz,result_cnt,results_fh);
131 | (1K

14 int checkpoint(int i) {

15 for (int j = 0; j < i} j++)

16 fwrite(temp_buf,temp_sz,temp_cnt, intermediate_th);
L7 | (K

18 int sort_temp() {

19 std::sort(temp_results.begin(), temp_results.end())};
20 }

FERERS 3 renees
ESize;o}oMB :
- Offset:0

* Soirce: N
: forcffileddat ©

 Offset:2048 :
- Source: :

.......

: Offset:2048
* Source: :

)

Size:100MB
Offset:1024
Source:

courft: 10
3) (5)

Size:30MB Size:50MB
Offset:0 Offset:2048
Source: Source:
Jsreffiled.dat /src/file2.dat

fsreffile.dat

Size:10OMB
Offset1024

Source:

Ssreffile.dat

APPROACH DESIGN RESULTS

DISCUSSION

fwrite
|

CONCLUSION

N
\\ SCALABLE COMPUTING ILLINOIS INSTITUTE\V
_SOFTWARE LABORATORY OF TECHNOLOGY

Example (Optimizer) Psuedo-code(Does not compile :)

. gosion 1 void main(int argc, char *argv
1 void main(int argc, char *argv[]) { ") . g_ s _g (D 1 _

.) int loop_count = std::stoi(argv[1]);
2 int loop_count = std::stoi(argv[1]); 3 far (It %.0; 4 ¥ Tnom counts: 1) 1
3 for (int 1 = @; 1 < loop_count; i++) { 4 vidya: :async_prefetch(read_buf, read_sz,
4 std: :sort(temp_results.begin(), 5 read_cnt, input_fh);
5 temp_results.rbegin()-1); 6 std::sort(temp_results.begin(),
6 fread(read_buf, read_sz, 7 temp_results.rbegin()-1);
7 read_cnt, input_fh); 8 vidya: :buffer_read(read_buf, read_sz,

9 read_cnt, input_fh);

¢ } 10 }
R if (m)./r‘ank s 9) 11 if (myrank == 0)
10 fwrite(result_buf,result_sz, 12 furite(result_buf,result sz,
11 result_cnt,results_fh); 13 result_cnt,results_fh);
2. } 14 }

| APPROACH DESIGN RESULTS | DISCUSSION | CONCLUSION |

N
\\ SCALABLE COMPUTING ILLINOIS INSTITUTE\W
_SOFTWARE LABORATORY OF TECHNOLOGY

Evaluation

e (Chameleon Cluster

o 32 client nodes and 8 storage server nodes
o Each node has 128 GB RAM, 10Gbit Ethernet, and a local 200GB HDD

e Applications used
o Synthetic Benchmarks

o CM1
o WRF
o Graph500’s bfs and GMC
o Baselines
o Darshan
o Omnisc’l0
| APPROACH | DESIGN DISCUSSION | CONCLUSION |

\\ SCALABLE COMPUTING ILLINOIS INSTITUTE\W
_SOFTWARE LABORATORY OF TECHNOLOGY

Profiling Performance

. Darshan —— Parsing ——= Analysis ——=
o Profiling scale Omniscl0 —»— _ Tracing ==
N Vidya —=— Prediction —=
o Sens.ltlvg for Darshan 45 ———1— —— — ’I"‘F 00
o Application CM1 ﬁgg ———
o Prediction 1/0 intensity %50l 1 s
E25f 160 >
201 { £
o Results g2 Jeo 3
H ’ . . y . =
o Vidya’s parsing or Omnisc’l0 is not affected 210} 120
o Darshan’s accuracy is better if the tracing g [|=|_I=| —-_— — |,
i i A g
is done close ac.t.ual running scale but that ﬁa \1\"-’ \&\545 & {@o q\a@
decreases profiling performance. 024
Prnflllng scale (%t processes)
APPROACH | DESIGN RESULTS DISCUSSION | CONCLUSION |

N
\\ SCALABLE COMPUTING ILLINOIS INSTITUTE\W
_SOFTWARE LABORATORY OF TECHNOLOGY

Profiling Performance

Darshan —— Parsing —— Analysis —/——
] . Omnisc'lO —w— Tracing ——
e Workload irregularity o Vb3 = Predoton ==
o Sensitive for Omnisc’l0 so—— S ————1100
o Applications: WRF, BFS, GMC 8 701 180 —
o Prediction I/0 intensit o 80F 3 =
24or Jao 3
e Results =3 1% 8
e , v S 20} i P
o Vidya’s parsing or Darshan’s tracing o gtk — -
is not affected 0 L1 1g
: en & 2O 82 S o & 0O &2
o Omnisc’lO has a known limitation ﬁfsu‘g:;\qh& W oS N o ¢
irregular patterns " wrF ‘::nput%%ma ;O eMc

RESULTS

APPROACH | DESIGN DISCUSSION | CONCLUSION |

\\' SCALABLE COMPUTING
_SOFTWARE LABORATORY

is;;
ILLINOIS INSTITUTE 4
OF TECHNOLOGYI

Profiling Performance

Darshan ——
Omnisc' | —=—
Vidya —=—

e Complexity of code

Parsing —=
Tracing ——
Prediction ——

Analysis =—=

I45| T T T T T T T T T 1
o Sensitive for Vidya 40— _:---.ﬁ 4%
ot : © 351 180 —
o Appllcatl.on.Synthetlc | | | — 1%z
o Complexity: loops, functions,classes and files 2 o5 {60 =
o Prediction I/0 intensity 220} 1ao S
= 15} 1 8
21op 120 ©
e Results 51 — -]
ino Hi i o) o) Xe)
S The parsing time for Vidya extractor #ﬁﬁ %ﬁxd\m@ &cﬁ*ﬁ E,c.\q;@i"" @.‘5@ %ﬁ\\i\‘ﬁ}
increases O oy o ediu O High
m still 3x faster than tracing Gﬂmp’i’gﬂwg} code
m But 2x slower than Omnisc’l0
APPROACH | DESIGN DISCUSSION | CONCLUSION |

SCALABLE COMPUTING
_SOFTWARE LABORATORY

ILLINOIS INSTITUTE\W
OF TECHNOLOGY

VQ_Optimization

e Prefetching Optimization

o Applications: WRF and BFS

o Characteristics: Irregular workloads with simple code.

o Prediction if prefetching is required (based on opportunity
to overlap)

e Results

o Darshan has the best optimized code

o Omnisc’l0 has the least profiling time/overhead

o Vidya has the best overall performance
(profiling+optimization)

APPROACH | DESIGN

RESULTS

time (sec)
R W s @ =
o o o o o O

—r
=

=

' Prnf'iling —
Execution /3 A

'-r\

é@@“{i PGS E

{\ ?iégﬁ 9‘30{(\{\
2O
Input workload

(a) Prefetching On/Off

BFS

DISCUSSION | CONCLUSION |

SCALABLE COMPUTING ILLINOIS INSTITUTE\{%
_SOFTWARE LABORATORY OF TECHNOLOGY

VQ_Optimization

e (aching Optimization 45— —_—
o Profiling =—=
o Applications: CM1 and GMC 40 Execution ===]
o Characteristics: repetitive with complex code structures. o3BT
o Prediction if caching is required (based on |/0 interference) 2301
£ 25
e Results 220}
o Darshan has the best optimized code % 151
o Omnisc’l0 has the least profiling time/overhead o 10}
o Vidya has the best overall performance 5}
(profiling+optimization) 0
€O @ 9 Co
HSe® ARSI S
W CM1 W GMC
Input workload
(b) Write-cache On/Off
APPROACH | DESIGN DISCUSSION | CONCLUSION |

N
\\ SCALABLE COMPUTING ILLINOIS INSTITUTE\W
_SOFTWARE LABORATORY OF TECHNOLOGY

Discussion & Limitations

e Discussion: Measurement Vs Prediction
o itis atrade-off between accuracy and cost of profiling

e Limitation: Source code approach
o Dynamic runtime flows
o Dynamic code generation
o Dynamic library linking

APPROACH | DESIGN | RESULTS DISCUSSION CONCLUSION |

N
\\ SCALABLE COMPUTING ILLINOIS INSTITUTE\W
_SOFTWARE LABORATORY OF TECHNOLOGY

Conclusions

Vidya proposes a tradeoff of accuracy to profiling performance.
Results show that Vidya can make profiling of applications faster by 9x while having a high
accuracy of 98%.

e Vidya can be used to optimize applications up to 3./x.

CONCLUSION

APPROACH | DESIGN | RESULTS | DISCUSSION

N
SCALABLE COMPUTING = = ILLINOIS INSTITUTE\W
SOFTWARE LABORATORY ' _’ 2 h OF TECHNOLOGY

mailto:hdevarajan@hawk.iit.edu

