
Vidya: Performing Code-Block I/O
Characterization for Data Access Optimization

Hariharan Devarajan, Anthony Kougkas, Prajwal Challa, and Xian-He Sun

HIPC’18 25th IEEE International Conference on High Performance Computing, Data, & Analytics

hdevarajan@hawk.iit.edu

mailto:hdevarajan@hawk.iit.edu

Complex modern big data applications
● Multi-faceted : programming languages, libraries, algorithms, etc.

○ Montage has 23 million lines of code with 38 executables
○ Cubed-Sphere-Finite-Volume has more than a million lines of code with 23 simulation kernels and 54 analysis

kernels.
○ Google has a code base of 2 billion lines with more than 50 languages and frameworks.

Tuning I/O of these applications is crucial in the performance of various systems

Current I/O Profiling tools
● Static analysis tools

○ tracing applications runtime behavior
○ Example: Darshan

● Dynamic analysis tools
○ identifying application’s repetitive behavior using statistical or grammer-based prediction models.
○ Example: Omnisc’IO

Current I/O tuning process
1. Application Analysis

Understand the structure of

application and workflow

5. Applying the optimization

Once you identify the optimizations these have to

implemented manually into code.

2. Profiler Choice

Each Profiler extracts its own set

of metrics and features

4. Profiler output analysis

Profiler outputs various graphs showcasing

the behavior of application. Understanding

it to pin-point optimizations could be a

challenge

3. Running the Profiler

Link application with profiler

and run them (expensive)

Application tuning

Problem
● Static analysis tools are more accurate but have high profiling cost
● Dynamic analysis tools have little profiling cost but its accuracy depends on repetitive patterns

Can we do something better to balance this tradeoff?

Overview
● Approach
● Design
● Results
● Conclusion
● Q & A

Approach (Basic Idea)

Lower Profiling Cost with good accuracy on profiling (add definitions)Goal:

We use the source code based approach to achieve this goal.

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

Build a tool
to perform

profiling and
optimization

Build the
model

based on
data

Collect data

Map source
code to
runtime
behavior

Approach (Overview)

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

Co-relate application-behavior with its source code
● Montage

○ 38 million lines, 38 executables, complex end-
to-end worklow

● We profile application using existing
profiling tools and manually inspect the
code with seen behavior
○ Compute-intensive: mImgtbl, mProjExec, and

mDiff
○ Data-intensive: mHdrWWTExec, mProjectQL, and

mViewer.
○ Balanced: mAdd, mFitExec, and mDiffExec.

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

Correlate application-behavior with its source code
S.No Description Eg. Executable

P1 loop count containing I/O calls (i.e., number of iterations) mProjectQL

P2 number of I/O operations (i.e., count of calls) mHdrWWTExec

P3 amount of I/O (i.e., size in bytes) mHdrWWTExec

P4 number of synchronous I/O operations mAdd

P5 number of I/O operations enclosed by a conditional statement mAdd

P6 number of I/O operations that use binary data format mViewer

P7 number of flush operations mViewer

P8 size of file opened mHdrWWTExec

P9 number of sources/destination files used mProjectQL

P10 space-complexity of code mProjectQL

P11 function stack size of the code DiffExec

P12 number of random file accesses mViewer

P13 number of small file accesses mProjectQL

P14 size of application (i.e. number of processes) Application Specific

P15 storage device characteristics (i.e. access concurrency, latency and bandwidth) System specific

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

Collecting Data

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

● Build dataset consists from a variety of applications:
○ graph exploration kernels (BFS, DFS, Page-rank)
○ sorting programs (Tera-sort, external-sort)
○ machine learning kernels (Kmeans, random forest classifications)
○ I/O and CPU benchmarks (IOR, Graph500, HACC)

● We use code-block as a unit (a function/class/branch/loop/line of code)
● I/O intensity of a code-block is I/O time by the overall time of the code-block
● final dataset consists of 4200 records.

Build a model (CIOC – Code-block I/O intensity)
● Model all parameters as Variables (more details in the paper)
● Build a linear regression model of the form

𝑌𝑚 𝑣 = 𝛽0 + σ𝑖=1
𝑣 𝛽𝑖 ∗ 𝑋𝑖𝑚

where
● Y is the dependent variable I/O intensity,
● m is the mth code block,
● v are the variables,
● β are the coefficients of the regression
● Xim is the value of the ith variable for mth code-block.

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

Linear Regression model (CIOC)

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

● The linear regression model
excludes variables with |t| <2

● Good model fit and predictability
○ High R2

○ High f-statistic score
● Top two significant variables
○ Amount of I/O
○ Number of files opened

Vidya design

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

High level design

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

Example (Extractor and Analyzer)

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

Example (Optimizer) Psuedo-code(Does not compile :)

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

Evaluation
● Chameleon Cluster

○ 32 client nodes and 8 storage server nodes
○ Each node has 128 GB RAM, 10Gbit Ethernet, and a local 200GB HDD

● Applications used
○ Synthetic Benchmarks
○ CM1
○ WRF
○ Graph500’s bfs and GMC

● Baselines
○ Darshan
○ Omnisc’IO

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

Profiling Performance
● Profiling scale

○ Sensitive for Darshan
○ Application CM1
○ Prediction I/O intensity

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

● Results
○ Vidya’s parsing or Omnisc’IO is not affected
○ Darshan’s accuracy is better if the tracing

is done close actual running scale but that
decreases profiling performance.

Profiling Performance
● Workload irregularity

○ Sensitive for Omnisc’IO
○ Applications: WRF, BFS, GMC
○ Prediction I/O intensity

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

● Results
○ Vidya’s parsing or Darshan’s tracing

is not affected
○ Omnisc’IO has a known limitation

irregular patterns

Profiling Performance
● Complexity of code

○ Sensitive for Vidya
○ Application: Synthetic
○ Complexity: loops, functions,classes and files
○ Prediction I/O intensity

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

● Results
○ The parsing time for Vidya extractor

increases
■ still 3x faster than tracing
■ But 2x slower than Omnisc’IO

I/O Optimization

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

● Prefetching Optimization
○ Applications: WRF and BFS
○ Characteristics: Irregular workloads with simple code.
○ Prediction if prefetching is required (based on opportunity

to overlap)

● Results
○ Darshan has the best optimized code
○ Omnisc’IO has the least profiling time/overhead
○ Vidya has the best overall performance

(profiling+optimization)

I/O Optimization

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

● Caching Optimization
○ Applications: CM1 and GMC
○ Characteristics: repetitive with complex code structures.
○ Prediction if caching is required (based on I/O interference)

● Results
○ Darshan has the best optimized code
○ Omnisc’IO has the least profiling time/overhead
○ Vidya has the best overall performance

(profiling+optimization)

Discussion & Limitations
● Discussion: Measurement Vs Prediction

○ it is a trade-off between accuracy and cost of profiling

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

● Limitation: Source code approach
○ Dynamic runtime flows
○ Dynamic code generation
○ Dynamic library linking

Conclusions
● Vidya proposes a tradeoff of accuracy to profiling performance.
● Results show that Vidya can make profiling of applications faster by 9x while having a high

accuracy of 98%.
● Vidya can be used to optimize applications up to 3.7x.

APPROACH DESIGN RESULTS DISCUSSION CONCLUSION

Q & A
Hariharan Devarajan hdevarajan@hawk.iit.edu

mailto:hdevarajan@hawk.iit.edu

