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1 EXTENDED ABSTRACT

Due to their ability to create predictable environments isolated
from other applications and flexibility on deployment, and given
the fact that they are able to run virtually everywhere, contain-
ers have been widely adopted in cloud solutions. Particularly, data
analysis and machine learning applications have benefited from
containerization. And since such applications’ moving to high per-
formance computing (HPC) environments, the need for container
support has become preeminent. Hence, containers face crucial
performance and I/O challenges in HPC setups. However, given the
new challenges they face in such setups, their impact and perfor-
mance have not been thoroughly investigated, especially from the
I/O operations point of view.

Our aim is to fill this gap by providing an empirical analysis
of some of the widely used container solutions in HPC environ-
ments. We also examine how containers interact with the OrangeFS
parallel storage system in an HPC environment. In this endeavor,
we make use of the Chameleon experimental platform. We detail
the design and implementation of our analysis setup that captures
CPU, memory, network, and I/O statistics from the nodes. And we
present the key insights from our analysis, e.g. how Singularity
is better suitable for such environments in terms of performance
and mobility, how Docker falls behind in HPC-related tasks despite
its popularity in the container world. Our evaluation shows that
containers that are designed specifically for HPC environments
produce promising results that indicate that they can be safely
employed for I/O intensive HPC applications too.

2 CONTAINERS & ORANGEFS

Containers offer different virtualization aspects than that of other
virtualization methods like KVM which explicitly virtualizes the
hardware and runs separate kernels. Without the heavy resource
utilization of a VM, containers that are running on the same host
share the same kernel and are able to provide isolation through
cgroups and namespaces. As a result, they consume less resources
and allow the host to run many more containers in parallel than if it
were to run VMs. Figure 1 shows the difference on the architecture
of both approaches and how VMs place a guest OS on top of the
virtualization layer.

To provide the ability to perform I/O on a directory on the
host, containers support bind-mounting. When used, a bind-mount
mounts a file or directory on the host machine into the container.
In fact, this particular ability is the prime source of inspiration for
this study.

In addition to isolation and the ability to perform I/O on a host
directory, one of the most praised benefits of containers is the
simplicity of packaging the application and all of its dependencies
in a readily deployable format. This is specifically advantageous
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Figure 1: Architectures of containers and VMs

for I/O intensive HPC applications where faulty nodes have to be
easily recovered, and downtimes are not in any way welcomed.
Our solution consists of the following components:

(1) Docker: is undoubtedly the most popular container solution.
It quickly became unrivaled due to being a better and more
efficient solution for providing isolation and mobility for
applications in the cloud computing setting. However, when
security concerns, the necessity for root user privileges for
most of the tasks, and the lack of distributed storage inte-
gration are considered, Docker’s further adoption in HPC
becomes questionable.
Singularity: is specifically crafted for the HPC ecosystem.
[1] It leverages bind mounts for mapping host directories
inside the container, as well as user namespaces and mapping
users to specific containers without root access. Although
such capabilities may look similar to that of Charliecloud, it
differs in wrapping all images in a single file and therefore
providing ease of deployment across different resources.

(3) LXC: is one of the early examples of containers and was de-
veloped around 2008. It is built on top of the idea of layering
user space tooling via cgroups and namespaces, similarly to
container solutions that came after. Considering the fact that
it provides operating system-level virtualization, we want
to examine how it performs along with newer container
solutions.

(4) Podman: is a container engine without a daemon for de-
veloping, managing, and running containers. What makes
Podman suitable for HPC environments is that it can run
containers either as root or in rootless mode.

(5) Charliecloud: is designed to handle the workload on HPC
clusters [2]. It comes with an ability to make use of the
Docker images by converting them into their own image
format. And since Charliecloud utilizes user namespaces
to avoid requiring root privileges, it provides a quick solu-
tion for HPC users who want to migrate to an HPC-focused
container from Docker.
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(6) OrangeFS: is a frequently used high performance, parallel
file system that was developed to meet research and HPC
storage needs. Currently, it is mostly used in data-intensive
applications due to its ability to decompose large files into
small objects that are distributed over the multiple nodes of
a cluster in a parallel manner.

3 INITIAL RESULTS

Methodology: To evaluate the container solutions, we first con-
ducted experiments on a bare OrangeFS server-client setup without
any virtualization. We use the results of these experiments as our
base performance metrics. Next, to understand the impacts of vir-
tualization, we employ containerized servers one at a time and
measure the performance of the host machine on CPU and memory
utilization, and disk I/O and network throughput.

Workload: Our experimental setup essentially comprises a server
and a client of a parallel storage system. The workload we used
in our experiments consists of two different files that are fed into
our OrangeFS setup via a benchmark tool called IOR. We selected
IOR because its accuracy in measuring the performance of an I/O
application [3] and its nature of being suitable for parameterization
through a configuration file. Two types of workloads that are run
in 8 repetitions:

® 1GB workload with 1MB transfers in 16MB blocks over 64 segments
o 8GB workload with 1MB transfers in 64MB blocks over 128 segments

Testbed: Chameleon is our experiment platform because it pro-
vides a configurable environment for large-scale cloud research.
We specifically used its compute nodes called “Haswell”, with each
having dual Intel® Xeon® E5-2670 CPU running at 2.3GHz with
a total of 24 cores, and 128GB of RAM. The compute nodes are
connected to each other via a 10 Gbps Ethernet network.
Analysis: Figure 2 shows CPU utilization with average values of
idle, steal, iowait, system and user times combined. They all seem
to behave similarly in how they use CPU against all workloads. We
merely observe small spikes on Docker and LXC, but they may be
interpreted as a sign of potential risk. Podman seems to produce
the less overhead under various workloads.

Figure 3 shows the sum of the total number of requests at a given
time. Docker outperforms other containers by producing more
throughput in a longer time. LXC seems to reach larger numbers
from time to time but the overall result seems to be inconsistent
and noisy. Singularity performs similarly to bare metal with barely
10% overhead.

Figure 4 shows plot of network bandwidth comparison between
Singularity and Docker. Apart from Docker, all other solutions
behave similarly in terms of network utilization and they seem to
use a similar amount of bandwidth against all workloads. Docker
seems to consume almost twice network bandwidth for the same
workload.

4 CONCLUSIONS

We have presented our empirical analysis on the I/O performance of
container solutions for HPC environments with their comparison to
bare metal. We studied five container solutions: Singularity, Docker,
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Figure 2: CPU Utilization
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Figure 3: Disk I/O Throughput
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Figure 4: Network Bandwidth

LXC, Podman and Charliecloud. We also presented the tools and
methods that we employed during our study.

Our evaluations show that Singularity suits such environments
and overall performs better than other container solutions. More
importantly, our study proves that OrangeFS can work within any
container and can perform the tasks that it was designed to do and
that we can still interact with OrangeFS and work with its API
while it is hosted in a container. This is promising and opens ways
to further explore the area and think about the possibilities.
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